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Abstract
We introduce q-deformed connections on the quantum 2-sphere and 3-sphere, satis-
fying a twisted Leibniz rule in analogy with q-deformed derivations. We show that
such connections always exist on projective modules. Furthermore, a condition for
metric compatibility is introduced, and an explicit formula is given, parametrizing all
metric connections on a free module. On the quantum 3-sphere, a q-deformed torsion
freeness condition is introduced and we derive explicit expressions for the Christoffel
symbols of a Levi–Civita connection for a general class of metrics. We also give met-
ric connections on a class of projective modules over the quantum 2-sphere. Finally,
we outline a generalization to any Hopf algebra with a (left) covariant calculus and
associated quantum tangent space.

Keyword Noncommutative geometry · Noncommutative Levi–Civita connection ·
Quantum groups

Mathematics Subject Classification 58B32 · 46L87

1 Introduction

In recent years, a lot of progress has been made in understanding Riemannian aspects
of noncommutative geometry. These are not only mathematically interesting, but also
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important in physics where noncommutative geometry is expected to play a key role,
notably in a theory of quantum gravity. In Riemannian geometry the Levi–Civita
connection and its curvature have a central role, and it turns out that there are several
different ways of approaching these objects in the noncommutative setting (see e.g.
[2, 4, 5, 7–10, 12, 14, 18, 21]).

Fromanalgebraic perspective, the set of vector fields and the set of differential forms
are (finitely generated projective) modules over the algebra of functions, a viewpoint
which is also adopted in noncommutative geometry. However, considering vector
fields as derivations does not immediately carry over to noncommutative geometry,
since the set of derivations of a (noncommutative) algebra is in general not a module
over the algebra but only a module over the center of the algebra. Therefore, one is led
naturally to focus on differential forms and define a connection on a general module
as taking values in the tensor product of the module with the module of differential
forms. More precisely, let M be a (right) A-module and let �1(A) denote a module
of differential forms together with a differential d : A → �1(A). A connection on M
is a linear map ∇ : M → M ⊗ �1(A) satisfying a version of Leibniz rule

∇(m f ) = (∇m) f + m ⊗ d f (1.1)

for f ∈ A and m ∈ M . In differential geometry, for a vector field X one obtains a
covariant derivative∇X : M → M , by pairing differential formswith X (as differential
forms are dual to vector fields). In a noncommutative version of the above, there is in
general no canonical way of obtaining a “covariant derivative” ∇X : M → M . In a
derivation based approach to noncommutative geometry (see e.g. [13, 14]), one puts
emphasis on the choice of a Lie algebra g of derivations of the algebra A. Given a
(right) A-module M one defines a connection as a map ∇ : g × M → M , usually
writing ∇(∂,m) = ∇∂m for ∂ ∈ g and m ∈ M , satisfying

∇∂ (m f ) = (∇∂m) f + m ∂( f )

for f ∈ A and m ∈ M , in parallel with (1.1). We stress that in general g is not a
module overAwhenA is not commutative. Thus we do not requireA-linearity in the
argument ∂ of∇∂ . This is in contrast with the braided geometry framework [4, 6]where
for a braided commutative algebra the braided Lie algebra of its braided derivations
is a module over the algebra and such a A-linearity on the connection can be stated.
Braided commutativity of a Hopf algebra is a feature of its being cotriangular (and
not just coquasitriangular).

For quantum groups, it turns out that natural analogues of vector fields are not quite
derivations, but rather maps satisfying a twisted Leibniz rule. For instance, as we shall
see, for the quantum 3-sphere S3q one defines maps Xa : S3q → S3q satisfying

Xa( f g) = Xa( f )σa(g) + f Xa(g) (1.2)

for f , g ∈ S3q , and σa : S3q → S3q , for a = 1, 2, 3, are algebra morphisms. In this
note we explore the possibility of introducing a corresponding q-affine connection
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on a (right) S3q -module M . Motivated by (1.2) we introduce a covariant derivative
∇Xa : M → M such that

∇Xa (m f ) = (∇Xam)σa( f ) + mXa( f )

for f ∈ S3q and m ∈ M . In the following, we make these ideas precise and prove
that there exist q-affine connections on projective modules. Again, we will not ask
for S3q -linearity in the argument X of ∇X . Furthermore, we introduce a condition for
metric compatibility, and in the particular case of a left covariant calculus over S3q ,
we investigate a derivation based definition of torsion. Then we explicitly construct
a Levi–Civita connection, that is a torsion free and metric compatible connection.
Moreover, we construct metric connections on a class of projective modules over the
quantum 2-sphere. We mention that the Riemannian geometry of quantum spheres
was studied [7] from the point of view of a bimodule connection on differential forms
satisfying (1.1) as well as a right Leibniz rule twisted by a braiding map. In a final
section we sketch a way to generalise (some of) the constructions of the present paper
to any Hopf algebra with a (left) covariant differential calculus and corresponding
quantum tangent space of twisted derivations.

The present paper is an alternative and extended version of the paper [1] where the
left module structure of differential forms was used to construct q-affine connections,
rather than the right module structure considered in the following.

2 The Quantum 3-Sphere

In this section we recall a few basic properties of the quantum 3-sphere [22]. The
algebra S3q is a unital ∗-algebra generated by a, a∗, c, c∗ fulfilling

ac = qca c∗a∗ = qa∗c∗ ac∗ = qc∗a,

ca∗ = qa∗c cc∗ = c∗c a∗a + c∗c = aa∗ + q2cc∗ = 1,

for a real parameter q. The identification of S3q with the quantum group SUq(2) is via
the Hopf algebra structure given by

�(a) = a ⊗ a − qc∗ ⊗ c �(c) = c ⊗ a + a∗ ⊗ c,

�(a∗) = −qc ⊗ c∗ + a∗ ⊗ a∗ �(c∗) = a ⊗ c∗ + c∗ ⊗ a∗,

with antipode and counit

S(a) = a∗ S(c) = −qc ε(a) = 1 ε(c) = 0,

S(a∗) = a S(c∗) = −q−1c∗ ε(a∗) = 1 ε(c∗) = 0.
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We also need the dual quantum enveloping algebra Uq(su(2)), which is the ∗-algebra
with generators E, F, K , K−1 satisfying

K±1E = q±1EK±1 K±1F = q∓1FK±1 [E, F] = K 2 − K−2

q − q−1 .

The corresponding Hopf algebra structure is given by the coproduct,

�(E) = E ⊗ K + K−1 ⊗ E �(F) = F ⊗ K + K−1 ⊗ F �(K±1) = K±1 ⊗ K±1

together with antipode and counit

S(K ) = K−1 S(E) = −qE S(F) = −q−1F,

ε(K ) = 1 ε(E) = 0 ε(F) = 0.

We recall that there is a unique bilinear pairing between Uq(su(2)) and S3q given by

〈
K±1, a

〉
= q∓ 1/2,

〈
K±1, a∗〉 = q∓ 1/2, 〈E, c〉 = 1,

〈
F, c∗〉 = −q−1,

with the remaining pairings being zero.
The algebra S3q is a noncommutative algebra which is not quasi-commutative. This

stems from the Hopf algebra SUq(2) being coquasitriangular and not simply cotri-
angular. Dually, the Hopf algebra Uq(su(2)) is quasitriangular and not triangular [16,
§8, §10].

The pairing above induces a Uq(su(2))-bimodule structure (left and right actions)
on S3q :

h 
 f = f(1)
〈
h, f(2)

〉
and f 
 h = 〈

h, f(1)
〉
f(2) (2.1)

for h ∈ Uq(su(2)) and f ∈ S3q , with Sweedler’s notation �( f ) = f(1) ⊗ f(2) (and
implicit sum). The ∗-structure on Uq(su(2)), denoted here by † (to distinguish it from
the ∗-structure of the algebra), is given by (K±1)† = K±1 and E† = F . The action
of Uq(su(2)) is compatible with the ∗-algebra structures in the following sense

h � f ∗ = (
S(h)† � f

)∗
f ∗ 
 h = (

f 
 S(h)†
)∗

. (2.2)
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Let us for convenience list the left and right actions of the generators:

K±1 � an = q∓ n
2 an K±1 � cn = q∓ n

2 cn,

K±1 � a∗ n = q± n
2 (a∗)n K±1 � c∗ n = q± n

2 (c∗)n,
E � an = −q(3−n)/2[n]an−1c∗ E � cn = q(1−n)/2[n]cn−1a∗,
E � (a∗)n = 0 E � (c∗)n = 0,

F � an = 0 F � cn = 0,

F � (a∗)n = q(1−n)/2[n]c(a∗)n−1 F � (c∗)n = −q−(1+n)/2[n]a(c∗)n−1,

and

an 
 K±1 = q∓ n
2 an (a∗)n 
 K±1 = q± n

2 (a∗)n,
cn 
 K±1 = q± n

2 cn (c∗)n 
 K±1 = q∓ n
2 (c∗)n,

an 
 F = q
n−1
2 [n]can−1 (a∗)n 
 F = 0,

cn 
 F = 0 (c∗)n 
 F = −q
n−3
2 [n]a∗(c∗)n−1,

an 
 E = 0 (a∗)n 
 E = −q
n−3
2 [n]c∗(a∗)n−1,

cn 
 E = q
n−1
2 [n]cn−1a (c∗)n 
 E = 0,

where [n] = (qn − q−n)/(q − q−1).

2.1 The Covariant Calculus and the QuantumTangent Space

It is well known [22] that there is a left covariant (first order) differential calculus on
S3q , denoted by �1(S3q ), generated as a left S3q -module by

ω1 = ω+ = a dc − qc da ω2 = ω− = c∗da∗ − qa∗dc∗ ω3 = ωz = a∗da + c∗dc.

In fact, �1(S3q ) is a free left module with a basis given by {ω+, ω−, ωz}. Moreover,
�1(S3q ) is a bimodule with respect to the relations

ωza = q−2aωz ωza
∗ = q2a∗ωz ωzc = q−2cωz ωzc

∗ = q2c∗ωz,

ω±a = q−1aω± ω±a∗ = qa∗ω± ω±c = q−1cω± ω±c∗ = qc∗ω±,

and, furthermore, �1(S3q ) is a ∗-bimodule with

ω
†
+ = −ω− ω†

z = −ωz

satisfying ( f ωg)† = g∗ω† f ∗ for f , g ∈ S3q and ω ∈ �1(S3q ).
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The differential d : S3q → �1(S3q ) is computed using a dual basis {X+, X−, Xz} of
twisted derivations (the corresponding quantum tangent space [16, §14.1.2]),

d f = (X+ � f )ω+ + (X− � f )ω− + (Xz � f )ωz, f ∈ S3q , (2.3)

with explicitly,

X+ = √
qEK X− = 1√

q
FK Xz = 1 − K 4

1 − q−2 .

Their twisted derivation properties are easily found. For f , g ∈ S3q , and a = ±, z one
has,

Xa � f g = f (Xa � g) + (Xa � f )(σa � g)

(and similarly for the right action), with

σ+ = σ− = K 2 and σz = K 4.

Furthermore, these maps satisfy the following q-deformed commutation relations

X−X+ − q2X+X− = Xz, (2.4)

q2Xz X− − q−2X−Xz = (1 + q2)X−, (2.5)

q2X+Xz − q−2Xz X+ = (1 + q2)X+. (2.6)

As for the ∗-structures, one checks that X†
± = X∓ and K † = K . From this, using

(2.2) one computes, for f ∈ S3q , that

X± 
 f ∗ = −(K−2X∓ 
 f )∗ = −K 2 
 (X∓ 
 f )∗

Xz 
 f ∗ = −(K−4Xz 
 f )∗ = −K 4 
 (Xz 
 f )∗.
(2.7)

In the classical limit of q = 1, the above reduces to the Lie algebra of su(2) and
the calculus is the usual calculus on the sphere S3 given in terms of left invariant
one-forms.

3 q-Affine Connections

In differential geometry, a connection extends the action of derivatives to vector fields,
and for S3q a natural set of (q-deformed) derivations is given by {X+, X−, Xz}. In this
section, we will introduce a framework extending the action of Xa to a connection on
S3q -modules. Let us first define the set of q-deformed derivations we shall be interested
in.
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Definition 3.1 The quantum tangent space of S3q is defined as

T S3q = C 〈X+, X−, Xz〉 ,

that is the complex vector space generated by Xa for a = ±, z.

We point out that T S3q is not a module over S3q .
Considering T S3q to be the analogue of a (complexified) tangent space of S3q , we

would like to introduce a covariant derivative ∇X on a (right) S3q -module M , for X ∈
T S3q . Since the basis elements of T S3q act as q-deformed derivations, the connection
should obey an analogous q-deformed Leibniz rule. The motivating example is when
M = S3q and the action of T S3q is simply ∇X f = X < ( f ) = X( f ) for X ∈ T S3q and
f ∈ S3q . (To lighten notation, in the following we shall drop the symbol < for the left
action when there is no risk of ambiguities.)
In fact, let us be slightly more general and consider the action on a free module of rank
n. Thus, we let M be a free right S3q -module with basis {ei }ni=1, and write an arbitrary
element m ∈ M as m = eimi for mi ∈ S3q , implicitly assuming a summation over i
from 1 to n.

Let us define ∇0 : T S3q × M → M by setting

∇0
Xa

(m) = ei Xa(m
i ) (3.1)

for m = eimi ∈ M (and extending it linearly to all of T S3q ). Now, it is easy to check
that

∇0
Xa

(m f ) = (∇0
Xa
m)σa( f ) + mXa( f )

for f ∈ S3q andm ∈ M . Let us generalize these concepts to arbitrary right S3q -modules.

Definition 3.2 Let M be a right S3q -module. A right q-affine connection on M is a map
∇ : T S3q × M → M such that

(1) ∇X (λ1m1 + λ2m2) = λ1∇Xm1 + λ2∇Xm2,
(2) ∇λ1X+λ2Ym = λ1∇Xm + λ2∇Ym,
(3) ∇Xa (m f ) = (∇Xam)σa( f ) + mXa( f ), a = ±, z,

for m,m1,m2 ∈ M , f ∈ S3q , X ∈ T S3q and λ1, λ2 ∈ C.

Remark 3.3 Asmentioned previously, the space T S3q is not a module over S3q . Thus we
are not requiring S3q -linearity ‘in the first argument’, that is we are not requiring the
connection to satisfy the relation ∇X f m = (∇X m) f ) for f ∈ S3q . This is in contrast
withwhat happens in braided geometry [4, 6] where for a braided commutative algebra
the braided Lie algebra of its braided derivations is a module over the algebra and such
a relation on the connection can be stated. Braided commutativity of a Hopf algebra
is a feature of its being cotriangular.
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Definition 3.4 A Hermitian form on a right S3q -module M is a map h : M × M → S3q
such that

h(m1,m2 f ) = h(m1,m2) f h(m1,m2)
∗ = h(m2,m1),

h(m1 + m2,m3) = h(m1,m3) + h(m2,m3),

for f ∈ S3q and m1,m2,m3 ∈ M . Moreover, h is said to be invertible if the induced

map ĥ : M → M∗, defined by ĥ(m1)(m2) = h(m1,m2), is bijective.

On a free module with basis {ei }ni=1, a Hermitian form is given by hi j = h∗
j i ∈ S3q by

setting

h(m1,m2) = (mi
1)

∗hi jm j
2

for m1 = eimi
1 ∈ (S3q )

n and m2 = eimi
2 ∈ (S3q )

n . Moreover, if h is invertible,

then there exist hi j ∈ S3q such that hi j h jk = δik1. In case the module is projective
(but not necessarily free) and generated by {ei }ni=1, one can find hi j ∈ S3q such that
ei hi j h jk = ek if the Hermitian form is invertible (see e.g. [3]).

Next, wewill introduce a notion of compatibility between a q-affine connection and
a Hermitian form. To motivate Definition 3.5, let us study the case of free modules.
For the q-affine connection ∇0 in (3.1), one finds that

X+
(
h(m1,m2)

) = X+
(
(mi

1)
∗hi jm j

2

)

= (mi
1)

∗X+(hi jm
j
2) + X+

(
(mi

1)
∗)K 2(hi jm

j
2)

= (mi
1)

∗hi j X+(m j
2) + (mi

1)
∗X+(hi j )K

2(m j
2)

+ X+
(
(mi

1)
∗)K 2(hi jm

j
2).

For the connection∇0, a natural requirement for the compatibility with h is to demand
that X+(hi j ) = 0. Then, from (2.7) X+( f ∗) = −(K−2X−( f ))∗ = −K 2(X−( f ))∗,
and one has,

X+
(
h(m1,m2)

) = (mi
1)

∗hi j X+(m j
2) + X+

(
(mi

1)
∗)K 2(hi jm

j
2)

= (mi
1)

∗hi j X+(m j
2) − (

K−2X−(m1)
)∗
K 2(hi jm

j
2)

= (mi
1)

∗hi j X+(m j
2) − K 2(X−(m1)

∗)K 2(hi jm
j
2)

= (mi
1)

∗hi j X+(m j
2) − K 2(X−(m1)

∗hi jm j
2

)

= h
(
m1,∇0

X+m2
) − K 2(h(∇0

X−m1,m2)
)
.

Corresponding formulas are easily worked out for ∇0
X− ,∇0

Xz
, and we shall take this

as a motivation for the following definition.
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Definition 3.5 A q-affine connection ∇ on a right S3q -module M is compatible with
the Hermitian form h : M × M → S3q if

X+
(
h(m1,m2)

) = h
(
m1,∇X+m2

) − K 2(h(∇X−m1,m2)
)
, (3.2)

X−
(
h(m1,m2)

) = h
(
m1,∇X−m2

) − K 2(h(∇X+m1,m2)
)
, (3.3)

Xz
(
h(m1,m2)

) = h
(
m1,∇Xzm2

) − K 4(h(∇Xzm1,m2)
)
, (3.4)

for m1,m2 ∈ M .

Note that (3.2) and (3.3) are equivalent since

(
X+

(
h(m2,m1)

) − h(m2,∇X+m1) + K 2(h(∇X−m2,m1)
))∗

= −K−2
(
X−

(
h(m1,m2)

) + K 2(h(∇X+m1,m2)
) − h(m1,∇X−m2)

)
.

In the case of a q-affine connection on a free module, one can derive a convenient
parametrization of all connections that are compatible with a given Hermitian form.
To this end, let us introduce some notation. Let (S3q )

n be a free right S3q -module with
basis {ei }ni=1. A q-affine connection ∇ on (S3q )

n can be determined by specifying the
Christoffel symbols

∇Xa ei = e j

j
ai ,

with 

j
ai ∈ S3q for a = ±, z and i, j = 1, . . . , n, and setting

∇Xa (eim
i ) = (∇Xa ei )σa(m

i ) + ei Xa(m
i ) = e j

(



j
aiσa(m

i ) + Xa(m
j )

)
.

The next result gives the form of the Christoffel symbols for a q-affine connection
compatible with an invertible Hermitian form on a free module.

Proposition 3.6 Let (S3q )
n be a free right S3q -module with a basis {ei }ni=1 and let ∇

be a q-affine connection on (S3q )
n given by the Christoffel symbols ∇aei = e j


j
ai .

Furthermore, assume that h is an invertible Hermitian form on (S3q )
n and set hi j =

h(ei , e j ). Then ∇ is compatible with h if and only if there exist γi j , ρi j ∈ S3q such that
ρ∗
i j = ρ j i and


i
+ j = hik

( 1
2 X+(hkj ) + K (γk j )

)
, (3.5)


i
− j = hik

( 1
2 X−(hkj ) + K (γ ∗

jk)
)
, (3.6)


i
z j = hik

( 1
2 Xz(hkj ) + K 2(ρk j )

)
. (3.7)
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Proof Let us start by showing that if (3.2)–(3.4) in Definition 3.5 hold for a set of
generators of the module, then the equations hold for all elements of the module.
Thus, for m1 = eimi

1 and m2 = e jm
j
2, one computes

h
(
eim

i
1,∇X+(e jm

j
2)

) − K 2(h(∇X−(eim
i
1), e jm

j
2)

)

= (mi
1)

∗h
(
ei , (∇X+e j )σ+(m j

2) + e j X+(m j
2)

)

− K 2(h((∇X−ei )σ−(mi
1) + ei X−(mi

1), e j )m
j
2

)

= (mi
1)

∗h
(
ei ,∇X+e j

)
σ+(m j

2) + (mi
1)

∗h
(
ei , e j

)
X+(m j

2)

− K 2(σ−(mi
1)

∗h(∇X−ei , e j )m
j
2

) − K 2(X−(mi
1)

∗h(ei , e j )m
j
2

)
,

and using that σ+ = σ− = K 2, K ( f )∗ = K−1( f ∗) and X−( f )∗ = −K−2X+( f ∗)
one may rewrite the above expression as

h
(
eim

i
1,∇X+(e jm

j
2)

) − K 2(h(∇X−(eim
i
1), e jm

j
2)

)

= (mi
1)

∗(h(ei ,∇X+e j ) − K 2(h(∇X−ei , e j )
))

K 2(m j
2)

+ (mi
1)

∗h
(
ei , e j

)
X+(m j

2) + X+(m∗
1)K

2(h(ei , e j )m
j
2

)
.

Now, assuming that (3.2) holds for m1 = ei and m2 = e j , i.e.

X+(h(ei , e j )) = h(ei ,∇X+e j ) − K 2(h(∇X−ei , e j )
)
,

one obtains

h
(
eim

i
1, ∇X+(e jm

j
2)

) − K 2(h(∇X−(eim
i
1), e jm

j
2)

)

= (mi
1)

∗X+
(
h(ei , e j )

)
K 2(m j

2) + (mi
1)

∗h
(
ei , e j

)
X+(m j

2) + X+(m∗
1)K

2(h(ei , e j )m
j
2

)

= (mi
1)

∗X+
(
h(ei , e j )m

j
2

) + X+(m∗
1)K

2(h(ei , e j )m
j
2

)

= X+
(
(mi

1)
∗h(ei , e j )m

j
2

) = X+
(
h(eim

i
1, e jm

j
2)

)
,

by using that f X+(g) + X+( f )σ+(g) = X+( f g). An analogous computation corre-
sponding to (3.4) shows that one indeed only needs to check (3.2)–(3.4) for a set of
generators.

It is then straight forward to check that the q-affine connection ∇, defined by

∇Xa ei = e j

j
ai
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with 

j
+i , 


j
−i , 


j
zi given by (3.5)–(3.7) defines a connection compatible with h. For

instance,

h
(
ei ,∇X+e j

) − K 2(h(∇X−ei , e j )
) = hik


k
+ j − K 2((
k

−i )
∗hkj

)

= hik

k
+ j − K 2((h jk


k
−i )

∗)

= hikh
kl( 1

2 X+(hl j ) + K (γl j )
) − K 2

((
h jkh

kl ( 1
2 X−(hli ) + K (γ ∗

il )
) )∗)

= 1
2 X+(hi j ) + K (γi j ) − K 2( 1

2 X−(h ji )
∗ + K (γ ∗

i j )
∗)

= 1
2 X+(hi j ) + K (γi j ) − K 2( − 1

2K
−2X+(hi j ) + K−1(γi j )

)

= 1
2 X+(hi j ) + K (γi j ) + 1

2 X+(hi j ) − K (γi j ) = X+(hi j ).

Conversely, assume that the connection ∇ is compatible with h, and write ∇Xa ei =
e j


j
ai . From the compatibility condition (3.2) one finds that the Christoffel symbols

satisfy

X+(hi j ) = hik

k
+ j − K 2((
k

−i )
∗hkj

)

= hik

k
+ j − K 2((h jk


k
−i )

∗)

= 
+,i j − K 2(
∗−, j i

)
,

with 
a,i j = hik
k
a j , which can be written as


+,i j = X+(hi j ) + K 2(
∗−, j i

)
. (3.8)

Defining

γi j = K−1(
−, j i )
∗ + 1

2K
−1X+(hi j )

it follows immediately that 
−,i j = 1
2 X−(hi j ) + K (γ ∗

j i ), and (3.8) implies that


+,i j = 1
2 X+(hi j ) + K (γi j ),

giving (3.5) and (3.6) via 
i
a j = hik
a,k j . Similarly, (3.4) implies that

Xz(hi j ) = 
z,i j − K 4((
z, j i )
∗), (3.9)

and defining

ρi j = K−2(
z,i j ) − 1
2K

−2Xz(hi j )

it follows immediately that 
z,i j = 1
2 Xz(hi j ) + K 2(ρi j ), and (3.9) implies that ρi j =

ρ∗
j i . 
�
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Thus the previous proposition gives the general class of q-affine connections which
are compatible with an invertible Hermitian form on a free right S3q -module. Later on
in Sect. 4, on the right free S3q -module �1(S3q ) we shall select a subclass of these that
are also torsion free.

3.1 q-Affine Connections on Projective Modules

As expected, one can construct q-affine connections on projective modules. More
precisely, one proves the following result.

Proposition 3.7 Let M be a right S3q -module and let∇ be a q-affine connection on M.

Given a projection on M, i.e. an endomorphism p : M → M such that p2 = p, then
p ◦ ∇ is a q-affine connection on the right S3q -module p(M).

Proof Since ∇ is a q-affine connection and p is an endomorphism, it is immediate
that ∇̃ = p ◦ ∇ satisfies properties (3.2) and (3.2) in Definition 3.2. Moreover, for
m ∈ p(M)

∇̃Xa (m f ) = p
(∇Xa (m f )

) = p
(
(∇Xam) σa( f )

) + p
(
mXa( f )

)

= (∇̃Xam) σa( f ) + mXa( f ),

since p(m) = m when m ∈ p(M). We conclude that ∇̃ is a q-affine connection on
p(M). 
�
Since we have shown in the previous section that q-affine connections exist on free
modules, Proposition 3.7 implies that every projective S3q -module can be equippedwith
a q-affine connection. Moreover, let ∇ and ∇̃ be q-affine connections on a S3q -module
M and define

α(X ,m) = ∇Xm − ∇̃Xm.

Then α : T S3q × M → M satisfies

α(λX + μY ,m1) = λα(X ,m1) + μα(Y ,m1), (3.10)

α(X ,m1 f + m2g) = α(X ,m1) f + α(X ,m2)g, (3.11)

for m1,m2 ∈ M , X ,Y ∈ T S3q , f , g ∈ S3q and λ,μ ∈ C. Conversely, every q-affine
connection on a projective module M can be written as

∇Xm = p(∇0
Xm) + α(X ,m),

where ∇0 is the connection defined in (3.1) and α : T S3q × M → M is an arbitrary
map satisfying (3.10) and (3.11). Next, let us show that a connection on a projective
module is compatible with the restricted metric if the projection is orthogonal.
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Proposition 3.8 Let ∇ be a q-affine connection on the S3q -module M and assume
furthermore that ∇ is compatible with a Hermitian form h on M. If p : M → M is
an orthogonal projection, i.e. p is a projection such that, for all m1,m2 ∈ M,

h
(
p(m1),m2

) = h
(
m1, p(m2)

)

then ∇̃ = p ◦ ∇ is a q-affine connection on p(M) that is compatible with h restricted
to p(M).

Proof First of all, it follows fromProposition3.7 that ∇̃ = p◦∇ is aq-affine connection
on p(M). Since p is an orthogonal projection, one finds that for m1,m2 ∈ p(M)

h
(
m1, ∇̃X+m2

) − K 2(h(∇̃X−m1,m2)
)

= h
(
m1, p(∇X+m2)

) − K 2(h(p(∇X−m1),m2)
)

= h
(
p(m1),∇X+m2

) − K 2(h(∇X−m1, p(m2))
)

= h
(
m1,∇X+m2

) − K 2(h(∇X−m1,m2)
) = X+

(
h(m1,m2)

)

by using that ∇ is compatible with h. A similar computation shows that

Xz
(
h(m1,m2)

) = h
(
m1, ∇̃Xzm2

) − K 4(h(∇̃Xzm1,m2)
)
,

from which we conclude that ∇̃ is compatible with h restricted to p(M). 
�

4 A q-Affine Levi–Civita Connection onÄ1(S3q)

In this section we shall construct a q-affine connection on �1(S3q ), compatible with
an invertible Hermitian form h and satisfying a certain torsion freeness condition. The
module�1(S3q ) is a free S

3
q -module of rank 3with basisω+, ω−, ωz which implies that

the results of Proposition 3.6 may be used. Although�1(S3q ) has a bimodule structure,
we shall only consider the rightmodule structure of�1(S3q ) inwhat follows. In the case
of a q-affine connection on �1(S3q ), there is a natural definition of torsion freeness,
suggested by the relations (2.4)–(2.6).

We have already mentioned that those relations reduce to the Lie algebra of su(2)
in the classical limit of q = 1. These relations are reflected in the notion of the torsion
T . For instance one would have T (X−, X+) := ∇−X+ − ∇+X− − [X−, X+] and its
vanishing is just the condition ∇−X+ − ∇+X− = [X−, X+] = Xz ; for dual forms
this translates into ∇−ω+ − ∇+ω− = ωz . There are similar expressions the other
two cases. Given the duality between the derivations Xa and the basis forms ωa , for
a = ±, z, we propose the following definition for a torsion freeness condition on the
connection.
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Definition 4.1 A q-affine connection ∇ on �1(S3q ) is torsion free if

∇−ω+ − q2∇+ω− = ωz, (4.1)

q2∇zω− − q−2∇−ωz = (1 + q2)ω−, (4.2)

q2∇+ωz − q−2∇zω+ = (1 + q2)ω+. (4.3)

In the following, we will construct a torsion free q-affine connection on �1(S3q ) that
is compatible with a Hermitian form. We call a connection satisfying these conditions
a q-affine Levi–Civita connection. As it turns out, for such connections to exist, the
Hermitian form needs to satisfy a compatibility condition.

Deriving a family of metric and torsion free connections under some conditions
undermines in general the classical uniqueness result for such a (Levi–Civita) con-
nection. This seems to be a common feature of the study of linear connections in the
framework of truly non commutative algebras (and not just braided-commutative).
It is however interesting to see when and why metric and torsion free connections
are unique or not. A natural question would then be under which additional ‘natural’
conditions is it possible to single out a canonical connection. This problem will be
addressed elsewhere.

Proposition 4.2 Let h bean invertibleHermitian formon the (right) S3q -module�1(S3q )

and write hab = h(ωa, ωb). A q-affine Levi–Civita connection on�1(S3q ) exists if and
only if

Xz(h++ − q2h−−) = K 2X−(hz+) − q2X−(h−z) − q2K 2X+(hz−) + X+(h+z).

(4.4)

Proof Assume that h is an invertible Hermitian form on �1(S3q ) and write hab =
h(ωa, ωb) with inverse hab. Furthermore, we write ∇a = ∇Xa and

∇aωb = ωc

c
ab

for a, b = ±, z. In terms of 
a,bc = hbp

p
ac the torsion free equations (4.1)–(4.3)

become


−,a+ − q2
+,a− = haz, (4.5)

q2
z,a− − q−2
−,az = (1 + q2)ha−, (4.6)

q2
+,az − q−2
z,a+ = (1 + q2)ha+. (4.7)

Since �1(S3q ) is a free (right) module, one can apply the results of Proposition 3.6 to
obtain
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+,ab = 1
2 X+(hab) + K (γab),


−,ab = 1
2 X−(hab) + K (γ ∗

ba),


z,ab = 1
2 Xz(hab) + K (ρab),

for “parameters” (γab, ρab = ρ∗
ba) in S3q , giving all q-affine connections compatible

with h.
Inserting the above expressions into (4.5)–(4.7) gives

γ ∗+a − q2γa− = K−1(haz) − 1
2K

−1X−(ha+) + 1
2q

2K−1X+(ha−) ≡ Aa,

q2K (ρa−) − q−2γ ∗
za = K−1

[
(1 + q2)ha− − 1

2q
2Xz(ha−) + 1

2q
−2X−(haz)

]
≡ Ba,

q2γaz − q−2K (ρa+) = K−1
[
(1 + q2)ha+ − 1

2q
2X+(haz) + 1

2q
−2Xz(ha+)

]
≡ Ca .

Note that the right hand sides Aa , Ba and Ca only depend on the metric components
hab.
The above nine equations can be grouped into three independent sets:
Group 1

γ ∗++ − q2γ+− = A+, (G1.1)

γ ∗+− − q2γ−− = A−, (G1.2)

Group 2

q2ρ̃+− − q−2γ ∗
z+ = B+, (G2.1)

q2ρ̃z− − q−2γ ∗
zz = Bz, (G2.2)

q2γ−z − q−2ρ̃−+ = C−, (G2.3)

q2γzz − q−2ρ̃z+ = Cz, (G2.4)

Group 3

γ ∗+z − q2γz− = Az, (G3.1)

q2ρ̃−− − q−2γ ∗
z− = B−, (G3.2)

q2γ+z − q−2ρ̃++ = C+, (G3.3)

where for notational convenience we denoted ρ̃ab = K (ρab).
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The equations in Group 1 can be solved as

γ++ = A∗+ + q2γ ∗+−, (4.8)

γ−− = q−2γ ∗+− − q−2A−, (4.9)

and the equations in Group 2 can be solved as

γz+ = q4ρ̃∗+− − q2B∗+, (4.10)

ρz− = q−2K−1(Bz) + q−4K−1(γ ∗
zz), (4.11)

γ−z = q−2C− + q−4ρ̃−+, (4.12)

ρz+ = q4K−1(γzz) − q2K−1(Cz). (4.13)

Note that the condition ρ∗
ab = ρba will not pose a problem here, since neither ρ−z

nor ρ+z appear in any other equation, and may simply be defined as ρ−z = ρ∗
z− and

ρ+z = ρ∗
z+.

For the equations in Group 3, the fact that we require ρ∗++ = ρ++ and ρ−− = ρ∗−−
gives a non-trivial condition for solutions to exist. From (G3.2) and (G3.3) one obtains

γz− = q4K−2(ρ̃−−) − q2B∗−, (4.14)

γ+z = q−2C+ + q−4ρ̃++, (4.15)

and inserted into (G3.1) this gives

q−4ρ++ − q6ρ−− = K (Az) − q4K (B∗−) − q−2K (C∗+) ⇔
ρ++ = q10ρ−− + q4K (Az) − q8K (B∗−) − q2K (C∗+). (4.16)

A necessary (and sufficient) condition for solutions to exist, is that the right hand side
of the above equation is Hermitian. From

Az = K−1
[
hzz − 1

2 X−(hz+) + 1
2q

2X+(hz−)
]
,

B− = K−1
[
(1 + q2)h−− − 1

2q
2Xz(h−−) + 1

2q
−2X−(h−z)

]
,

C+ = K−1
[
(1 + q2)h++ − 1

2q
2X+(h+z) + 1

2q
−2Xz(h++)

]
,
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one obtains

K (Az) = hzz − 1
2 X−(hz+) + 1

2q
2X+(hz−),

K (B∗−) = (1 + q2)K 2(h−−) + 1
2q

2K−2Xz(h−−) − 1
2q

−2X+(hz−)

= q2

2(1−q−2)

(
K 2(h−−) + K−2(h−−)

) − q−2

1−q−2 K
2(h−−) − 1

2q
−2X+(hz−),

K (C∗+) = (1 + q2)K 2(h++) + 1
2q

2X−(hz+) − 1
2q

−2K−2Xz(h++)

= − q−2

2(1−q−2)

(
K 2(h++) + K−2(h++)

) + q2

1−q−2 K
2(h++),+ 1

2q
2X−(hz+),

by using that Xz = (1 − K 4)/(1 − q−2).
Since ρ−− and hzz , as well as K 2(h−−) + K−2(h−−) and K 2(h++) + K−2(h++),
are Hermitian, the non-Hermitian terms of (4.16), which we denote by S, become

S = q6X+(hz−) − q4X−(hz+) + q6

1−q−2 K
2(h−−) − q4

1−q−2 K
2(h++).

Thus, a necessary and sufficient condition for ρ++ to be Hermitian is that

0 = S − S∗ = q6X+(hz−) + q6K−2X−(h−z) − q4X−(hz+) − q4K−2X+(h+z)

+ q6

1−q−2 K
2(h−−) − q6

1−q−2 K
−2(h−−) − q4

1−q−2 K
2(h++) + q4

1−q−2 K
−2(h++).

By using that Xz = (1 − K 4)(1 − q−2)−1, the above condition can be written as

q6X+(hz−) + q6K−2X−(h−z)

− q4X−(hz+) − q4K−2X+(h+z) + K−2Xz
(
q4h++ − q6h−−

) = 0,

which is equivalent to (4.4). Hence, assuming the above relation to hold true, a solution
to the torsion free equations, which is also compatible with h, is given by (4.8)–(4.16).
The free parameters in this solution are γ+−, γ−+, γzz, ρ+− andρ∗−− = ρ−−, ρ∗++ =
ρ++. 
�

Although the general q-affineLevi–Civita connection on�1(S3q )maybewritten down,
the expressions are rather lengthy and not particularly illuminating. However, let us
explicitly write down a Levi–Civita connection in the particular case of a diagonal
metric of the form

h−− = h, h++ = q2h, hzz = hz, hab = 0 if a �= b,

with h and hz invertible elements of S3q ; note that this choice clearly satisfies (4.4) in
Proposition 4.2.Using the solution given by (4.8)–(4.16) in the proof of Proposition 4.4
one finds
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∇X+ωa = ωbh
bc( 1

2 X+(hca) + K (γca)
)
,

∇X−ωa = ωbh
bc( 1

2 X−(hca) + K (γ ∗
ac)

)
,

∇Xzωa = ωbh
bc( 1

2 Xz(hca) + K 2(ρca)
)
,

with

γ++ = 1
2q

2K−1X+(h) + q2γ ∗+−,

γ−− = − 1
2K

−1X+(h) + q−2γ ∗+−,

γ+z = (1 + q2)K−1(h) + 1
2q

−2K−1Xz(h),

γz+ = q4K−1(ρ−+),

γ−z = q−4K (ρ−+),

γz− = q4K−1(ρ−−) − q2(1 + q2)K−1(h) − 1
2q

4K−3Xz(h),

and

ρz+ = q4K−1(γzz) + q4K−2X+(hz),

ρ+z = ρ∗
z+ = q4K (γ ∗

zz) − q4X−(hz),

ρz− = 1
2q

−4K−2X−(hz) + q−4K−1(γ ∗
zz),

ρ−z = ρ∗
z− = − 1

2q
−4X+(hz) + q−4K (γzz),

ρ++ = q10ρ−− + q4hz − 1
2q

4(1 + q2)(1 + q4)
(
K 2(h) + K−2(h)

)
.

Furthermore, setting γ+− = ρ−+ = γzz = ρ−− = 0 one obtains

∇+ω+ = ω+h−1X+(h),

∇+ω− = ωz
h−1
z

1 − q−2

((
1 − 1

2q
4)K 2(h) − 1

2q
4K−2(h)

)
,

∇+ωz = ω+q−2h−1
(
K 2(hz) + 1

1−q−2

( (
q2 − 1

2q
6
)
h − 1

2q
6K 4(h)

)) + ωz
1
2h

−1
z X+(hz),

∇−ω+ = ωz + ωz
h−1
z

1 − q−2

((
q2 − 1

2q
6)K 2(h) − 1

2q
6K−2(h)

)
,

∇−ω− = ω−h−1X−(h),

∇−ωz = ω−
h−1

1 − q−2

( (
1 − 1

2q
4
)
h − 1

2q
4K 4(h)

)
+ ωz

1
2h

−1
z X−(hz),

∇zω+ = ωz
1
2q

4h−1
z X+(hz) + ω+q2h−1K 2(hz) + ω+

h−1

1 − q−2

( (
1 − 1

2q
8
)
h − 1

2q
8K 4(h)

)
,

∇zω− = ωz
1
2h

−1
z q−4X−(hz) + ω−

h−1

1 − q−2

( 1
2h − 1

2K
4(h)

)
,

∇zωz = ωz
1
2h

−1
z Xz(hz) − ω+ 1

2q
2h−1K 2X−(hz) − ω− 1

2q
−4h−1K 2X+(hz),

giving a q-affine Levi–Civita connection on �1(S3q ) with respect to the Hermitian
form h.
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5 The Quantum 2-Sphere

The noncommutative (standard) Podleś sphere S2q [20] can be considered as a subal-
gebra of S3q by identifying the generators B0, B+, B− of S2q as

B0 = cc∗ B+ = ca∗ B− = ac∗ = B∗+,

satisfying then the relations

B− B0 = q2 B0 B− B+ B0 = q−2 B0 B+,

B− B+ = q2 B0
(
1 − q2 B0

)
B+ B− = B0

(
1 − B0

)
.

These elements generate the fix-point algebra of the right U (1)-action

αz(a) = az αz(a
∗) = a∗ z̄ αz(c) = cz αz(c

∗) = c∗ z̄ (5.1)

for z ∈ U (1) and a ∈ S3q , related to the U (1)-Hopf-fibration S2q ↪→ S3q . Equivalently,
the sphere S2q is the invariant subalgebra of S3q for the left action of K : S2q = { f ∈
S3q , K � f = f }. Then, the left action of the Xa does not preserve the algebra S2q
(since their left action does not commute with that of K ): one readily computes,

X+ � B0 = qa∗c∗ X− � B0 = −q−1ca Xz � B0 = 0,

X+ � B+ = q(a∗)2 X− � B+ = c2 Xz � B+ = 0,

X+ � B− = q2(c∗)2 X− � B− = −q−1(a)2 Xz � B− = 0.

Note, however, that the right action of Xa leaves S2q invariant; i.e. f 
 Xa ∈ S2q for
f ∈ S2q and a = ±, z. This is shown explicitly in Eq. (A.1) in the “Appendix”.

5.1 A Left Covariant Calculus

Since the element Xz acts trivially (on the left) on S2q , the differential (2.3) when
restricted to f ∈ S2q becomes

d f = (X− � f ) ω− + (X+ � f ) ω+. (5.2)

Moreover, when acting on S2q both X+ and X− are usual derivations since K and then
σz are the identity on S2q . Classically, the form (5.2) of the differential that uses left
invariant vector fields and forms can be seen as identifying the cotangent bundle of
S2 with the direct sum of the line bundles of ‘charge’ ±2, that is �1(S2) � L−2ω− ⊕
L+2ω+. This identification can be used also for the quantum sphere S2q with the line
bundles defined as in (5.4).
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In particular from (5.2) one finds

dB+ = q (a∗)2 ω+ + c2 ω−,

dB− = −q2 (c∗)2 ω+ − q−1 a2 ω−,

dB0 = c∗a∗ ω+ − q−1ca ω−,

which can be inverted to yield

ω+ = q−1a2 dB+ − q2c2 dB− + (1 + q2)ac dB0,

ω− = (c∗)2 dB+ − q(a∗)2 dB− − (1 + q2)c∗a∗ dB0,

implying that the differential in (5.2) can be expressed as

d f = (
q−1(X+ � f ) a2 + (X− � f ) (c∗)2

)
dB+

− (
q2(X+ � f ) c2 + q(X− � f ) (a∗)2

)
dB−

+ (1 + q2)
(
(X+ � f ) ac − (X− � f ) c∗a∗)dB0. (5.3)

In spite of the fact that X±� f /∈ S2q , from the commutation relations K X± = q∓X∓K

one infer that all coefficients are in S2q . For instance: K 
 (
(X+ � f ) a2

) = (
(K X+ �

f ) K 
 a2
) = (qX+ � f ) q−1 
 a2 = (X+ � f ) a2, and similarly for the other terms.

5.2 Connections on Projective Modules over S2q

The definition of q-affine connections applies equally well to the subalgebra S2q . The
right actions of X±, Xz preserve S2q [cf. (A.1) in the “Appendix”], and thus restrict
to twisted derivations on S2q . However, even classically it is not possible to find two
vector fields that span the tangent space of S2 at each point. This is a consequence
of the fact that the module of vector fields on S2 is not a free module and one needs
at least three vector fields to generate the module of vector fields. Analogously, for
the quantum 2-sphere, even though the right actions of X±, Xz are related, as shown
in (A.2), there is no global way of writing e.g Xz as a S2q -linear combination of X±.
Hence, for a q-affine connection ∇ on a S2q -module M we still need three operators,
that is a map

∇ : C 〈X+, X−, Xz〉 × M → M

satisfying the conditions of Definition 3.2. Moreover, even if a q-affine connection is
not S2q -linear in its first argument, one expects a relation among the covariant deriva-
tives, although this needs not be immediately implied by the relation (A.2) on the
derivations. In this section, we construct q-affine connections on a class of projective
modules over S2q .
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The quantum Peter–Weyl theorem for S3q results into an explicit (vector space)
decomposition of the algebra S3q , that is S

3
q = ⊕n∈ZLn , with

Ln = { f ∈ S3q : αz( f ) = z̄n f }, (5.4)

for the U (1) action αz in (5.1). Equivalently, Ln =
{
f ∈ S3q , K � f = q− n

2 f
}
. It

follows thatL0 = S2q , as well asLnLm ⊆ Ln+m . Clearly, the right action of Uq(su(2))
leaves eachLn invariant. On the other hand, for the left action one has X±�Ln ⊂ Ln∓2.
It is easy to see that Ln is a S2q -bimodule. For f , g ∈ S2q and ψn ∈ Ln ,

αz( f ψng) = αz( f )αz(ψn)αz(g) = z̄n( f ψng),

which says that Ln is a S2q -bimodule. As a right (or equivalently left) module, each Ln

can be realised as a finitely generated projective S2q -module as we now briefly recall
(cf. [11, 15, 17]).

For n ≥ 0 and μ = 0, 1, . . . , n, let (�n)μ, (�n)μ ∈ S3q be given as

(�n)μ = √
αnμc

n−μaμ (�n)μ = √
βnμ(c∗)μ(a∗)n−μ

with

αnμ =
n−μ−1∏
k=0

1 − q2(n−k)

1 − q2(k+1)
βnμ = q2μ

μ−1∏
k=0

1 − q−2(n−k)

1 − q−2(k+1)
.

It is straight-forward to check that

n∑
μ=0

(�n)
∗
μ(�n)μ =

n∑
μ=0

(�n)
∗
μ(�n)μ = 1,

implying that

(pn)
μ

ν = (�n)μ(�n)
∗
ν = √

βnμβnν(c
∗)μ(a∗)n−μan−νcν,

(p−n)
μ

ν = (�n)μ(�n)
∗
ν = √

αnμαnνc
n−μaμ(a∗)ν(c∗)n−ν,

satisfy p2n = pn and p2−n = p−n . Moreover, it is easy to see that the entries (pn)μν and
(p−n)

μ
ν ∈ S2q , which implies that one has finitely generated projective S2q -modules

Mn =
{
pn(S2q )

n+1 if n ≥ 0,

p−|n|(S2q )|n|+1 if n < 0.

These modules Mn are isomorphic as right S2q -modules to Ln for each n ∈ Z.
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Now, let {eμ}nμ=0 be a basis of (S2q )
n+1. Given an invertible Hermitian form h on

(S2q )
n+1, the proof of Proposition 3.6 (repeated verbatimly for the algebra S2q ), gives

a q-affine connection on (S2q )
n+1 compatible with h as

∇̃X+eμ = eν

ν+μ = eνh

νρ
( 1
2hρμ 
 X+ + aρμ 
 K

)
,

∇̃X−eμ = eν

ν−μ = eνh

νρ
( 1
2hρμ 
 X− + a∗

μρ 
 K
)
,

∇̃Xz eμ = eν

ν
zμ = eνh

νρ
( 1
2hρμ 
 Xz + bρμ 
 K 2),

for arbitrary aμν, bμν ∈ S2q such that b∗
μν = bνμ. If n ≥ 0 then êμ = eν(pn)νμ are

generators of Mn = pn(S2q )
n+1 and Proposition 3.7 applied (mutatis mutandis) to S2q

implies that ∇ = pn ◦ ∇̃ is a q-affine connection on Mn with

∇X+ êμ = pn
(∇̃X+eν(pn)

ν
μ

) = pn(∇̃X+eν)
(
(pn)

ν
μ 
 K 2) + êν

(
(pn)

ν
μ 
 X+

)

= êγ h
γρq2(μ−ν)

( 1
2hρν 
 X+ + aρν 
 K

)
(pn)

ν
μ + êν

(
(pn)

ν
μ 
 X+

)
,

∇X− êμ = êγ h
γρq2(μ−ν)

( 1
2hρν 
 X− + a∗

νρ 
 K
)
(pn)

ν
μ + êν

(
(pn)

ν
μ 
 X−

)
,

∇Xz êμ = êγ h
γρq4(μ−ν)

( 1
2hρν 
 Xz + bρν 
 K 2)(pn)νμ + êν

(
(pn)

ν
μ 
 Xz

)
,

using that (pn)μν 
 K = qν−μ(pn)μν . Moreover, if pn is orthogonal with respect to
h, then ∇ is compatible with the restriction of h to Mn . A similar construction goes
for n < 0.

6 Further Comments: Sketching a Generalization

As final section of comments we sketch away to generalise (some of) the constructions
above for anyHopf algebrawith a left covariant differential calculus and corresponding
quantum tangent space [23]. While referring to [16, 14.1] for details, we recall that
a first order differential calculus (
, d) over the Hopf algebra (H ,�, S, ε) is called
left-covariant if there is a linear map �
 : 
 → H ⊗ 
 such that, for all f , g ∈ H it
holds that

�
( f dg) = �( f )(id ⊗ d))�(g).

An element ρ ∈ 
 is called left-invariant if �
(ρ) = 1 ⊗ ρ and we let inv
 denote
the vector space of invariant elements. There is then a corresponding quantum tangent
space T
 ⊂ H◦ (the dualHopf algebra)with a unique bilinear form 〈·, ·〉 : T
×
 → C

such that

〈X , f dg〉 = ε( f )X(g),

for g, f ∈ H , and X ∈ T
 . The vector spaces inv
 and T
 form a non-degenerate
dual pair with respect to this bilinear form. Also, the pairing induces a left action as
in (2.1),
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X 
 f = f(1)
〈
X , f(2)

〉

for X ∈ T
 and f ∈ H . Furthermore, one has dual bases {Xa, a = 1, 2, . . . , n} of T


and {ωa, a = 1, 2, . . . , n} of inv
 and a family of functionals {σ a
b , a, b = 1, 2, . . . , n}

such that

d f =
∑
a

(Xa 
 f ) ωa,

Xa 
 ( f g) = f Xa 
 (g) + Xb 
 ( f ) σ b
a 
 (g). (6.1)

In the dual Hopf algebra H◦ we have

�σ a
b = σ a

c ⊗ σ c
b , S(Xa) = −XbS(σ b

a ).

With compatible ∗-structures, using the second expression and requiring (2.2) one
computes:

Xa 
 f ∗ = −σ b
a 
 (X†

b 
 f )∗. (6.2)

Bywayof illustration let us consider the trivial rightmoduleM = H withHermitian
form h(m1,m2) = m∗

1m2. The analogue of the condition (3.2) in Definition 3.2 is read
from (6.1) as

∇Xa 
 (m f ) = m Xa 
 ( f ) + (∇Xb 
 (m)
)
σ b
a 
 ( f ). (6.3)

In turn, the compatibility with the Hermitian form reads:

Xa
(
h(m1,m2)

) = h
(
m1,∇Xam2

) − σ b
a 
 (

h(∇X†
b
m1,m2)

)
. (6.4)

Indeed, using (6.1) and (6.2), we compute

Xa
(
h(m1,m2)

) = Xa 
 (m∗
1m2) = m∗

1Xa 
 (m2) + Xb 
 (m∗
1) σ b

a 
 (m2)

= m∗
1Xa 
 (m2) − σ c

b 
 (X†
c 
 m1)

∗ σ b
a 
 (m2)

= m∗
1Xa 
 (m2) − σ c

a 
 (
X†
c 
 m1)

∗ (m2)
)

from which (6.4) follows.
Equations (6.3) and (6.4) can be the starting point for a theory of affine connections

on a quantum group with a quantum tangent space. For a torsion freeness condition
one would need (twisted) commutation relations among the elements of T
 . In general
these commutation relations could be involved; in particular they do not need to be
quadratic as in the classical case or in the example in (2.6)–(2.4). Details should await
a different time.
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Appendix A: The Calculus on the Sphere S2q via the Right Action

As we have seen in Sect. 5 the left action of the Xa does not preserve the algebra S2q ,
since their left action does not commute with that of K defining the fibration. On the
other hand, the right action of Xa does preserve the algebra S2q since the action does
commute with the left one of K . Let us denote Ya = Xa for the right action. Then, it
is easy to check that

B0 
 Y+ = q−1B− B0 
 Y− = −q−1B+ B0 
 Yz = 0,

B+ 
 Y+ = q1 − q(1 + q2)B0 B+ 
 Y− = 0 B+ 
 Yz = −q2(1 + q2)B+,

B− 
 Y+ = 0 B− 
 Y− = −q−11 + q−1(1 + q2)B0 B− 
 Yz = (1 + q−2)B−.

(A.1)

Note that when restricted to S2q the Ya are not independent. A long but straightforward
computation shows that they are indeed related as

(
( f 
 Y+)B+ q + ( f 
 Y−)B− q−1)(1 + q2) + ( f 
 Yz)

(
1 − 2

1 + q2

1 + q4
B0

)

= ( f 
 Y 2
z ) q−2

(
1 − q2

1 + q4
(2q4 + q2 + 1)B0 − (1 − q6)B2

0

)

+ ( f 
 K 4) q−2(1 + q2)
(
(q4 − 1)B0 + (1 − q6)B2

0

)
,

(A.2)

for f ∈ S2q . This is checked on a vector space basis for the algebra S2q , a basis which
can be taken as X(m)(B0)

n for m ∈ Z, n ∈ N with X(m) = (B+)m for m ≥ 0 and
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X(m) = (B−)−m for m < 0 (cf. [19]). From the expression in (5.3) one writes the
differential d on S2q in terms of the right acting operators Ya .

Lemma A.1 For f ∈ S2q , the differential in (5.2) can be written as

d f = ( f 
 V+) dB+ + ( f 
 V−) dB− + ( f 
 V0) dB0, (A.3)

where

V+ = Y+
(
1 − q−2(1 + q2)B0

)
q−1 − Yz B−

q−2(1 + q6)

1 + q4
+ Y 2

z B−
1 − q2

(1 + q2)(1 + q4)
,

V− = −Y−
(
1 − q2(1 + q2)B0

)
q + Yz B+

q−2(1 + q6)

1 + q4
− Y 2

z B+
1 − q2

(1 + q2)(1 + q4)
,

V0 = (
Y+ B+ q−1 − Y− B− q

)
(1 + q2) + Yz B0

(1 − q4)(1 + q6)

1 + q4
− Y 2

z B0
1 − q2

1 + q4
.

Proof By acting on the vector space basis X(m)(B0)
n (as introduced previously), one

explicitly checks the equality of (5.2) and (A.3) via a tedious but straightforward
computation. 
�

Remark A.2 When q = 1 the derivative (A.3) reduces to

d f = 2
(
( f 
 Y+) B+ − ( f 
 Y−) B−

)
dB0

+ (
( f 
 Y+) (1 − 2B0) − ( f 
 Yz) B−

)
dB+

+ ( − ( f 
 Y−) (1 − 2B0) + ( f 
 Yz) B+
)
dB−.

(A.4)

Classically, the vector field Xa are the left invariant vector fields on S3 = SU (2) with
dual left invariant forms ωa . Thus they do not project to vector fields on the base space
S2 with commuting coordinates (B+, B−, B0) and relation B+B− = B0(1 − B0):
Xa � f is not a function on S2 even when f is. On the other hand, the vector fields Ya
are the right invariant vector fields on SU (2) and thus they project to vector fields on
S2, where they are not independent any longer and are related by

2(B+Y+ + B−Y−) + (1 − 2B0)Yz = 0,

which is just the relation to which (A.2) reduces when q = 1.
By changing coordinates B0 = 1

2 (1 − x) so that the radius condition for S2 is
written as r2 = 4B+B− + x2, the exterior derivative operator in (A.4) becomes

d f = ∂x f dx + ∂+ f d B+ + ∂− f d B− − (� f ) (x dx + 2B− dB+ + 2B+ dB−)
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where � = x ∂x + B+ ∂+ + B− ∂− is the Euler (dilatation) vector field. One then
computes dr2 = 2(1 − r2)(x dx + 2B− dB+ + 2B+ dB−), which vanishes when
restricting to S2: r2 − 1 = 0.
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11. Brzeziński, T., Majid, S.: Line bundles on quantum spheres. In: Particles, fields, and gravitation (Lódź,
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