
Quantitative monitoring of single nucleotide
mutations by allele-specific quantitative PCR
can be used for the assessment of minimal
residual disease in patients with
hematological malignancies throughout their
clinical course

著者 Taira Chiaki, Matsuda Kazuyuki, Kamijyo Yuka,
Sakashita Kazuo, Ishida Fumihiro, Kumagai
Toshiko, Yamauchi Kazuyoshi, Okumura Nobuo,
Honda Takayuki

journal or
publication title

Clinica chimica acta

volume 412
number 1-2
page range 53-58
year 2011-01
権利 (C) 2010 Elsevier B.V.
URL http://hdl.handle.net/2241/107849

doi: 10.1016/j.cca.2010.09.011



                                           AS-qPCR for monitoring MRD 1 

Quantitative monitoring of single nucleotide mutations by allele-specific 

quantitative PCR can be used for the assessment of minimal residual disease in 

patients with hematological malignancies throughout their clinical course 

 

Chiaki Taira
a
, Kazuyuki Matsuda

a*
, Yuka Kamijyo

a
, Kazuo Sakashita

b
, Fumihiro 

Ishida
c
, Toshiko Kumagai

a
, Kazuyoshi Yamauchi

d
, Nobuo Okumura

e
, Takayuki 

Honda
a
 

a,
 Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, 

Matsumoto 390-8621, Japan. 

b,
 Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan. 

c,
 Division of Hematology, Department of Internal Medicine, Shinshu University School 

of Medicine, Matsumoto, Japan. 

d,
 Department of Medicine, Molecular Clinical Pathology, Graduate School of  

Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan. 

e,
 Laboratory of Clinical Chemistry and Immunology, Department of Biomedical 

Laboratory Sciences, School of Health Sciences, Shinshu University, Matsumoto, Japan. 

*Correspondence: Kazuyuki Matsuda, PhD, Department of Laboratory Medicine, 

Shinshu University Hospital, 3-1-1, Asahi, Matsumoto, 390-8621, Japan. 

TEL: +81-263-37-2802; FAX: +81-263-34-5316; E-mail: kmatsuda@shinshu-u.ac.jp 

The type of paper: Original Research Communications 

Running Title: AS-qPCR for monitoring MRD 

Keywords: allele-specific quantitative PCR; minimal residual disease; single nucleotide 

mutation; hematopoietic stem cell transplantation 

*Manuscript
Click here to view linked References

mailto:kmatsuda@shinshu-u.ac.jp
http://ees.elsevier.com/cca/viewRCResults.aspx?pdf=1&docID=7906&rev=1&fileID=154446&msid={E75F3585-4C29-49AC-862E-FED4EA8F8C03}


                                           AS-qPCR for monitoring MRD 2 

Abstract 

Background: Monitoring of minimal residual disease (MRD) in patients with 

hematological malignancies is important for evaluating the patients’ therapeutic 

response and risk of relapse.  Single nucleotide mutations associated with 

leukemogenesis can be considered as applicable MRD markers. 

Methods: We developed an allele-specific quantitative polymerase chain reaction 

(AS-qPCR) for FLT3 2503G > T, KIT 2446G > T, and KIT 2447A > T and compared the 

change in the expression levels of the FLT3 or KIT mutations assessed by AS-qPCR to 

those of the RUNX1-RUNX1T1 fusion gene and WT1 by conventional quantitative PCR.   

Results: The AS-qPCR using primers including template-mismatched nucleotide or 

template-mismatched nucleotide plus locked nucleic acid substituted nucleotide 

provided higher selectivity for mutant nucleotides.  The change in the expression 

levels of the FLT3 or KIT mutations at the time of relapse and just after hematopoietic 

stem cell transplantation correlated well with that of the RUNX1-RUNX1T1 fusion gene 

and WT1.  Moreover, during complete remission, only AS-qPCR could detect 

low-level expression of residual mutations.   

Conclusions: The AS-qPCR for analyzing single nucleotide mutations contributes to the 

monitoring of MRD in patients without recurrent fusion gene throughout the clinical 

course and thus broadens the spectrum of patients in whom MRD can be monitored. 
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1. Introduction 

In patients with hematological malignancies, minimal residual disease (MRD) status is 

correlated with the clinical outcome, and monitoring of MRD during chemotherapy and 

after hematopoietic stem cell transplantation (HSCT) is important in evaluating the 

patients’ therapeutic response and the risk of relapse.  The targets frequently used for 

MRD detection are fusion gene transcripts such as RUNX1-RUNX1T1, CBFB-MYH11, 

and PML-RARA resulting from t(8;21)(q22;q22), inv(16)(p13q22) or t(16;16)(p13;q22), 

and t(15;17)(q22;q12) [1].  In addition to the recurrent reciprocal translocations 

associated with leukemogenesis, a number of genetic alterations such as insertion, 

interstitial/partial tandem duplication, and single nucleotide mutation have been 

reported to be involved in the pathogenesis of leukemia and associated with the 

prognosis of the affected patients [2,3].  Recently, several groups have performed 

quantitative assessment of NPM1 or FLT3 mutations and used them as MRD markers in 

patients with acute myelogenous leukemia [4–10].  NPM1 mutations are mainly 

characterized by tetranucleotide insertion.  The quantitative assessments of the NPM1 

mutation were performed by using TaqMan systems or LightCycler assays using 

primers or probes specific for the duplicated tetranucleotide.  FLT3 mutations consist 

of 2 major types: internal tandem duplication and a missense point mutation in the 

tyrosine kinase domain.  Quantitative assessments of FLT3- internal tandem 

duplication have been reported using the assay similarly to that for assessment of NPM1 

mutations.  According to the review by Renneville et al. [3], single nucleotide 

mutations of genes such as KIT, FLT3, RAS, and PTPN11; RUNX1 and CEBPA; and 

TP53 are involved in proliferative advantage, impairment of hematopoietic 
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differentiation, and regulation of cell cycle and apoptosis, respectively.  These single 

nucleotide mutations can be considered as applicable targets for monitoring MRD.  

However, a few studies have reported the quantitative assessments of single nucleotide 

mutations as compared to those that have reported insertions/duplications. 

Recently, several studies have reported that single nucleotide mutations of JAK2 and 

MPL, or BCR-ABL were quantitatively monitored in myelofibrosis patients following 

transplantation [11–13], or in chronic myelogenous leukemia patients with imatinib 

resistance, respectively [14,15].  The detection of single nucleotide mutations in excess 

amount of wild-type nucleotides is more complicated than that of 

insertions/duplications involving several nucleotides.  Allele-specific quantitative 

polymerase chain reaction (AS-qPCR) based on the amplification refractory mutation 

system (ARMS) or mismatch amplification mutation assay (MAMA) has been 

developed for quantification of single nucleotide mutations [16–18].  To obtain high 

specificity and sensitivity of the AS-qPCR, improvements, including the modification of 

primers and/or probes and additional procedures with restriction enzymes to digest 

residual wild-type nucleotides are required [19–21].  The AS-qPCR for single 

nucleotide mutations seems to be a useful method for the assessment of MRD. 

In the present study, to evaluate whether AS-qPCR for single nucleotide mutations 

can be used for precise monitoring of MRD, we developed AS-qPCRs for FLT3 2503G 

> T, KIT 2446G > T, or KIT 2447A > T and compared the change in the expression 

levels of the FLT3 or KIT mutations assessed by AS-qPCR to those of 

RUNX1-RUNX1T1 fusion gene and WT1, which were assessed using conventional 

quantitative PCR (qPCR). 
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2. Materials and methods 

2.1. Patients and controls 

We performed the present study using bone marrow (BM) cells obtained from 4 

t(8;21)-positive acute myeloid leukemia (AML) patients carrying gene mutations (1 

with FLT3 2503G > T, 1 with KIT 2446G > T, and 2 with KIT 2447A > T) (Table 1).  

Ten BM samples from persons without hematological malignancies were used as 

normal controls.  This study was approved by the institutional review board of the 

Shinshu University.  Informed consent was obtained from the patients or guardians of 

the patients following institutional guidelines. 

 

2.2 Total RNA extraction and complementary DNA (cDNA) synthesis  

Total RNA was extracted from 4 t(8;21)-positive AML patients with gene mutations 

using the QIAamp RNA blood mini kit (QIAGEN, Valencia, CA) according to the 

manufacturer’s instructions.  The first-strand cDNA was synthesized from 1 μg total 

RNA in 20 μL reaction buffer containing 10 mM of deoxynucleotide triphosphate, 0.1 

M of dithiothreitol, 25 µM of random hexamer primers, and 200 U of Moloney murine 

leukemia virus reverse transcriptase.  The reverse transcription reaction was incubated 

at 42°C for 1 h. 

 

2.3. Construction of plasmids carrying wild-type or mutant FLT3 and KIT 

To construct plasmids carrying the wild-type FLT3 or KIT, PCR products obtained 

by amplification of cDNA samples from normal controls were cloned into a pCR2.1 

vector using the TA cloning kit (Invitrogen, Paisley, UK).  Plasmids carrying the FLT3 

2503G > T, KIT 2446G > T, or KIT 2447A > T mutation were then synthesized from the 



                                           AS-qPCR for monitoring MRD 6 

wild-type plasmids by oligonucleotide-directed mutagenesis using a site-directed 

mutagenesis kit (Stratagene, La Jolla, CA).  The nucleotide sequences of the wild-type 

and mutant plasmids were confirmed by direct sequencing from both directions on an 

automatic DNA sequencer (ABI3100 Genetic Analyzer, Applied Biosystems, Foster 

City, CA). 

 

2.4. Design of the primers for the FLT3 or KIT mutations in 3 types of AS-qPCR 

Three different mutation-specific primers for the FLT3 or KIT mutations were 

designed as follows: mutant AS-qPCR primers including only a mutant-matched 

nucleotide in the 3′-end; mismatched AS-qPCR primers including a mutant-matched 

nucleotide in the 3′-end and a template-mismatched nucleotide at the penultimate 

3′-end; locked nucleic acid (LNA)-AS-qPCR primers including a mutant-matched 

nucleotide in the 3′-end, a template-mismatched nucleotide at the penultimate 3′-end, 

and LNA at the -2 position from the 3′-end (Table 2) [19,21]. 

 

2.5. AS-qPCR 

TaqMan probes, including fluorescein amidite (FAM) at the 5′-end nucleotide and a 

quencher (tetramethylrhodamine, TAMRA) at the 3′-end nucleotide, were exploited to 

assess the specificity and sensitivity of the AS-qPCR.  The AS-qPCR reaction mixture 

contained cDNA (corresponding to 100 ng RNA), 1× TaqMan Universal PCR Master 

Mix (Applied Biosystems), 0.5 μmol/L of each primer, and 0.25 μmol/L of TaqMan 

probe in a total of 50 μL.  The AS-qPCR was performed using an ABI PRISM 7900 

Sequence Detection System (Applied Biosystems) at 50°C for 2 min, 95°C for 10 min, 

followed by 50 cycles at 95°C for 15 sec and 60°C for 1 min.  To examine the 
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specificity of the 3 types of AS-qPCR to discriminate between wild-type and mutant 

plasmid DNA, the difference of the threshold cycles (ΔCt) was calculated as follows: 

(Ct for mutant plasmid) - (Ct for wild-type plasmid) in each AS-qPCR assay.  To 

investigate the sensitivity for mutant plasmid DNA of the mismatched AS-qPCR and 

LNA-AS-qPCR, the delay in Ct (delay Ct) was calculated as follows: (Ct for mutant 

plasmid in mismatched AS-qPCR or LNA-AS-qPCR) - (Ct for mutant plasmid in 

mutant AS-qPCR) [19,21].  The expression levels of the FLT3 or KIT mutations, 

RUNX1-RUNX1T1 fusion gene, or WT1 were normalized with respect to the expression 

of the abelson (ABL) gene, and expressed as copy numbers every 10
4
 copies of ABL 

[22].  Each AS-qPCR assay for an individual patient was performed in triplicate.  

 

2.6. Detection limit of the AS-qPCR for FLT3 and KIT mutations or qPCR for 

RUNX1-RUNX1T1 fusion gene, and normal expression level of WT1  

To determine the detection limit of the AS-qPCR, cDNA obtained from patients at 

diagnosis were serially 10-fold diluted in pooled cDNA from healthy controls, and the 

AS-qPCR was performed using the diluted samples [23].  In patient 2, the sample at 

diagnosis was not available and thus, the BM sample after chemotherapy was used to 

determine the detection limit.  The normal expression level of WT1 was determined 

using BM samples from persons without hematological malignancies. 

 

2.7. Quantification of RUNX1-RUNX1T1 fusion gene and WT1 

The expression levels of the RUNX1-RUNX1T1 fusion gene or WT1 were quantified 

by conventional qPCR using the cDNA of the same time point as that used for the 

AS-qPCR [1,24]. 
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2.8. Statistics 

Analysis of variance (ANOVA) was used for the comparisons of ΔCt among the 3 

types of AS-qPCR, and unpaired t-test was used for the comparisons of delay Ct 

between mismatched AS-qPCR and LNA-AS-qPCR; p < 0.05 was considered to be 

significant. 

 

3. Results 

3.1. Characterization of mutant AS-qPCR, mismatched AS-qPCR, and 

LNA-AS-qPCR 

Using equal copy numbers of the constructed wild-type and mutant plasmids, the 

ΔCt was examined in the mutant AS-qPCR, mismatched AS-qPCR, and LNA-AS-qPCR 

(Figure 1).  Compared with the mutant AS-qPCR, the other 2 types of AS-qPCR 

(mismatched AS-qPCR and LNA-AS-qPCR) showed significantly higher specificity for 

discrimination between the wild-type and mutant plasmid in all 3 gene mutations (Fig. 1, 

p < 0.01).  Next, the delay Ct was calculated to evaluate the sensitivity for mutant 

plasmids by mismatched AS-qPCR or LNA-AS-qPCR (Fig. 1).  The delay Ct in the 

mismatched AS-qPCR for FLT3 2503G > T, KIT 2446G > T, and KIT 2447A > T were 

0.12, 0.00, and 0.69 cycles, respectively.  The delay Ct in the LNA-AS-qPCR for FLT3 

2503G > T, KIT 2446G > T, and KIT 2447A > T were 1.59, 0.17, and 4.63 cycles, 

respectively.  We adopted the LNA-AS-qPCR for FLT3 2503G > T and KIT 2446G > 

T except KIT 2447A > T.  For KIT 2447A > T, we adopted the mismatched AS-qPCR 

because the delay Ct in the LNA-AS-qPCR was 4.63 cycles which meant a more than 

10 (2
3.33

)-fold reduction of sensitivity.  
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3.2. Detection limit of the AS-qPCR for FLT3 and KIT mutations or qPCR for the 

RUNX1-RUNX1T1 fusion gene, and normal expression level of WT1 

The expression levels of FLT3 2503G > T or KIT 2447A > T at diagnosis in patient 

1, 3, and 4 were 2.04 × 10
4
, 3.02 × 10

4
, and 4.43 × 10

4
, respectively (Fig. 2a, c, and d).  

The detection limits of FLT3 2503G > T or KIT 2447A > T in patient 1, 3, and 4 were 

2.04 × 10, 3.02 × 10, and 4.43 × 10, respectively (Fig. 2a, c, and d).  As compared with 

the expression level at diagnosis, the mutations could be detected at a 10
3
-fold lower 

expression level.  In patient 2 (Fig. 2b), a sample at diagnosis was not available; 

therefore, a BM sample after chemotherapy was used to determine the detection limit.  

The expression level of KIT 2446G > T in the BM sample after chemotherapy was 3.85 

× 10
3
 and the detection limit was 3.85 × 10; thus, the mutation could be detected at a 

10
2
-fold lower expression level.  The expression levels of the RUNX1-RUNX1T1 

fusion gene in patient 1, 2, 3, and 4 were 3.75 × 10
4
, 3.03 × 10

2
, 2.02 × 10

4
, and 2.71 × 

10
4
, respectively (Fig. 2).  The detection limits in patient 1, 2, 3, and 4 were 3.75, 3.03, 

2.02, and 2.71, respectively (Fig. 2).  As compared with the expression level at 

diagnosis, the RUNX1-RUNX1T1 fusion gene could be detected at a 10
4
-fold lower 

expression level, except in patient 2.  In patient 2, the RUNX1-RUNX1T1 fusion gene 

could be detected at a 10
2
-fold lower expression level.  The expression levels of WT1 

in patient 1, 2, 3, and 4 were 1.59 × 10
3
, 3.03 × 10, 3.39 × 10

2
, and 3.90 × 10

3
, 

respectively (Fig. 2).  The mean expression level of WT1 in 10 normal controls was 

(5.96 ± 4.63) × 10 (Fig. 2). 

 

3.3 Comparison of the change in the expression levels of FLT3 2503G > T, KIT 
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2446G > T, or KIT 2447A > T assessed by AS-qPCR with that of the 

RUNX1-RUNX1T1 fusion gene and WT1 by qPCR 

Using samples obtained from 4 t(8;21)-positive patients with FLT3 2503G > T, KIT 

2446G > T, or KIT 2447A > T, the clinical significance of the AS-qPCR was 

investigated by comparison of the change in the expression level of these mutations 

with that of the RUNX1-RUNX1T1 fusion gene and WT1.  In patient 1 (Fig. 2a), the 

expression level of FLT3 2503G > T and the RUNX1-RUNX1T1 fusion gene decreased 

to an undetectable level soon after induction therapy and retained this level during 

complete remission (CR).  In contrast, the expression level of WT1 did not show more 

than 10
2
-fold reduction after induction therapy and the levels did not further decline 

during CR.  In patient 2 (Fig. 2b) whose diagnostic sample was not available and a 

sample obtained after chemotherapy was used as the first time point of the follow-up, 

the expression level of KIT 2446G > T showed an increase before and at the time of 

relapse, which was in accordance with that of the RUNX1-RUNX1T1 fusion gene and 

WT1.  In the follow-up during continuous CR after HSCT, the expression levels of KIT 

2446G > T and the RUNX1-RUNX1T1 fusion gene were detected at the level of 10- and 

10
2
-fold reduction.  The expression level of WT1 maintained at steady levels close to 

that of normal controls.  In patient 3 (Fig. 2c) who underwent HSCT twice, the 

increase in the expression level of KIT 2447A > T at the time of the first and second 

relapse, and the decrease in the expression level following the first and second HSCT 

agreed well with the change in the expression levels of the RUNX1-RUNX1T1 fusion 

gene and WT1.  During CR following the first HSCT, the expression levels of KIT 

2447A > T were marginally detectable, while that of the RUNX1-RUNX1T1 fusion gene 

were below the detection limit.  Seven months after the second HSCT, the expression 
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level of KIT 2447A > T was below the detection limit and retained at that level until 

now.  In patient 4 (Fig. 2d), after HSCT, the expression levels of KIT 2447A > T and 

the RUNX1-RUNX1T1 fusion gene decreased 10
3
-fold and that of WT1 decreased 

40-fold.  However, the expression of both KIT 2447A > T and the RUNX1-RUNX1T1 

fusion gene have been detected at the level of 10 to 10
2
 at 11 months after HSCT. 

 

4. Discussion 

In the present study, we developed AS-qPCRs to quantify leukemia-associated 

single nucleotide mutations in genes such as FLT3 and KIT, and evaluated the AS-qPCR 

to monitor MRD during chemotherapy and post-HSCT by comparison with the qPCR 

for the RUNX1-RUNX1T1 fusion gene and WT1. 

Several allele-specific PCR methods based on ARMS or MAMA have been 

developed for the detection of single nucleotide mutations [16,17].  The primers 

included a mutant-matched nucleotide at the 3′-end and a template-mismatched 

nucleotide near the 3′-end.  Subsequently, an AS-qPCR based on ARMS or MAMA 

was developed to quantify low levels of mutant nucleotides in the presence of high 

levels of the counterpart wild-type nucleotides [18].  To increase the selectivity of the 

AS-qPCR, our present methods utilized primers including template-mismatched 

nucleotides or template-mismatched nucleotides plus LNA-substituted nucleotides 

which increased the binding affinity compared to standard nucleotides [19,21,25–27].  

For all mutations evaluated in this study, the ΔCt in the LNA-AS-qPCR was more than 

15 cycles and that in the mismatched AS-qPCR was more than 9 cycles (Fig. 1).  The 

LNA-AS-qPCR provided the highest selectivity for the 3 mutations.  The 

LNA-AS-qPCR was used to monitor the FLT3 2503G > T and KIT 2446G > T 
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mutations, and the mismatched AS-qPCR was used to monitor the KIT 2447A > T 

mutation.  Accordingly, we developed adequate AS-qPCRs with high specificity and 

sensitivity for each mutation. 

Throughout the clinical course, monitoring of MRD in patients with hematological 

malignancies is important for the early detection of hematological and/or 

extramedullary relapse.  Quantitative assessments of MRD can be achieved by qPCR 

techniques which target immunoglobulin/T-cell receptor gene rearrangements and 

fusion gene transcripts and by fluorescence in situ hybridization techniques which 

analyze for numerical and constructional chromosome abnormalities.  For the purpose 

of clinical validation, the present AS-qPCR assay was used for monitoring of MRD in 4 

patients of whom sequential samples were available. 

The qPCR analyses for fusion genes have been widely used and are regarded as 

reliable methods to evaluate MRD.  In comparison between the present AS-qPCR and 

qPCR for fusion genes, we used RUNX1-RUNX1T1 as an adequate MRD marker 

because the KIT or FLT3 mutations have been detected frequently in patients with the 

RUNX1-RUNX1T1 fusion gene.  Out of the 4 patients with the RUNX1-RUNX1T1 

fusion gene available for screening of the gene mutations, 1 had the FLT3 mutation and 

3 patients had KIT mutations.  The RUNX1-RUNX1T1 fusion transcripts are detected 

persistently by non-quantitative PCR analysis, so that the quantitative analysis of fusion 

gene transcripts should be performed to evaluate MRD [28,29].  At relapse, the 

increases in the expression of the FLT3 or KIT mutant gene by AS-qPCR were in 

accordance with that of the RUNX1-RUNX1T1 fusion gene by qPCR (Fig. 2a and b).  

In some measurements during complete remission (CR) in patient 3, the expression of 

KIT 2447A > T was detected at quantifiable levels, while that of the RUNX1-RUNX1T1 
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fusion gene was below the detection limit (Fig. 2c).  The recent studies have shown 

that, in patients with t(8;21)-positive leukemia, the expression of both wild-type KIT 

and mutated KIT was significantly higher than that in patients with t(8;21)-negative 

leukemia [30,31].  Therefore, during CR in patient 3, the over-expressed mutated KIT 

gene could be detected by the present AS-qPCR.  The observation that patient 3 

experienced a second relapse indicates that the AS-qPCR may be useful to monitor 

MRD for prediction of imminent relapse in patients with only a single nucleotide 

mutation as available MRD marker.  In patient 4, although no clinical and 

hematological abnormalities have been observed after HSCT, both KIT 2447A>T and 

RUNX1-RUVX1T1 have been detected at quantifiable levels persistently, and there is a 

possibility of relapse at high risk (Fig. 2d).  Therefore, close follow up of patient 4 

with AS-qPCR is requisite.  To develop a single gene mutation as a MRD marker, the 

stability of the gene mutation itself during follow-up is needed to be validated. 

WT1 transcripts have been reported as MRD marker in patients with no recurrent 

chromosomal or genetic abnormalities.  There have been controversies regarding the 

significance of WT1 transcripts as MRD marker, because WT1 transcripts were detected 

not only in tumor cells but also in normal cells [32,33].  RUNX1-RUX1T1-positive 

patients showed significantly lower WT1 expression than patients with other types of 

AML and normal individuals [34,35].  In the present cases with the RUNX1-RUX1T1 

fusion gene, the ABL-normalized WT1 expressions levels were in the range 10
2
–10

4
.  

Although no decreases in the WT1 expression of more than 10
2
-fold were observed 

during CR, increases in the WT1 expression at relapse were paralleled to that of KIT 

2446G > T or KIT 2447A > T and the RUNX1-RUX1T1 fusion gene (Fig. 2b and c).  A 

quality-controlled standardized approach has been developed for an accurate and 
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reproducible quantification of WT1 expression [36].  For the wide application of the 

present AS-qPCR to monitor MRD in patients without recurrent chromosomal and 

genetic abnormalities, it should be required to compare the alteration in the quantity of 

the mutant gene to that of WT1 in a large number of patients. 

The percentage of autologous cells (chimerism) analyzed by short tandem 

repeat-PCR (STR-PCR), which characterizes the origin of post-transplant hematopoiesis, 

has been used as a surrogate marker for MRD [37].  The change in the quantity of the 

mutation detected by AS-qPCR using genomic DNA corresponded with the change of 

chimerism by STR-PCR [21].  The AS-qPCR was more sensitive than the STR-PCR.  

In our patients, the mutated gene could be quantified significantly by AS-qPCR even 

when the chimerism by STR-PCR was less than 5% or negative (data not shown). 

In conclusion, the AS-qPCRs for single nucleotide mutations had comparable 

accuracy to qPCR for the RUNX1-RUNX1T1 fusion gene and WT1 and were applicable 

to monitor MRD throughout the clinical course including prior to transplantation and 

post-transplantation.  The AS-qPCR for single nucleotide mutations may permit us to 

monitor MRD in patients that lack recurrent chromosomal abnormalities and the 

specific fusion gene, which broadens the spectrum of patients in whom MRD can be 

monitored. 

 

Abbreviations: MRD, minimal residual disease; AS-qPCR, allele-specific quantitative 

polymerase chain reaction; HSCT, hematopoietic stem cell transplantation; ARMS, 

amplification refractory mutation system; MAMA, mismatch amplification mutation 

assay; AML, acute myeloid leukemia; LNA, locked nucleic acid; FAM, fluorescein 

amidite; TAMRA, tetramethylrhodamine; ABL, abelson; CR, complete remission. 
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Nonstandard abbreviations: AS-qPCR, allele specific-quantitative PCR; q-PCR, 

quantitative PCR; LNA, locked nucleic acid; ARMS, amplification refractory mutation 

system; MAMA, mismatch amplification mutation assay; STR-PCR, short-tandem 

repeat PCR; BM, bone marrow; . 
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Figure Legends 

 

Figure 1. Comparison of 3 types of AS-qPCRs 

Three types of AS-qPCRs (1, mutant AS-qPCR; 2, mismatched AS-qPCR; 3, 

LNA-AS-qPCR) were compared in terms of difference of threshold cycles (ΔCt) and 

delay in Ct (delay Ct).  The ΔCt was calculated as follows: (Ct for mutant plasmid) - 

(Ct for wild-type plasmid) in each AS-qPCR assay.  The delay Ct was calculated as 

follows: (Ct for mutant plasmid in mismatched AS-qPCR or LNA-AS-qPCR) - (Ct for 

mutant plasmid in mutant AS-qPCR).  Data are expressed as means ± S.D.  
*
, p < 

0.05; 
**

, p < 0.01 in comparisons of ΔCt among the 3 types of AS-qPCRs.  
##

, p < 0.01 

in comparisons of delay Ct between mismatched AS-qPCR and LNA-AS-qPCR. N.S., 

not significant. 

 

Figure 2. Comparison of the quantity of FLT3 2503G > T, KIT 2446G > T, and KIT 

2447A > T transcripts by AS-qPCR with that of RUNX1-RUNX1T1 fusion and WT1 

transcripts by qPCR throughout the clinical course 

The expression of the mutated genes, the RUNX1-RUNX1T1 fusion gene, and the 

WT1 gene was evaluated in 4 patients.  The expression of the target genes using cDNA 

was normalized with respect to the expression of the abelson (ABL) gene, and expressed 

as copy numbers every 10
4
 copies of ABL.  To determine the detection limit of the 

AS-qPCRs for FLT3 2503G > T, KIT 2446G > T, and KIT 2447A > T, and that of the 

qPCR for the RUNX1-RUNX1T1 fusion gene, cDNA obtained from patients at diagnosis 

were serially 10-fold diluted in pooled cDNA from healthy controls and the AS-qPCR 

and qPCR were performed using the diluted samples.  Dotted lines in FLT3 2503G > T, 
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KIT 2446G > T, KIT 2447A > T, and RUNX1-RUNX1T1 indicate the detection limit of 

the AS-qPCRs.  The normal expression of the WT1 gene was determined using 10 BM 

samples from persons without hematological malignancies.  Dotted line in WT1 

indicates the mean expression level of normal controls.  CR, complete remission; R, 

relapse; HSCT, hematopoietic stem cell transplantation 



Table 1. Summary of the 4 patients 

 

Patient Age Diagnosis        Type of gene mutation    Karyotype 

 

1 5 AML (M2) FLT3 2503G > T 46,XX,t(8;21)(q22;q22)[6]/46,XX[5] 

 

2 8 AML (M2) KIT 2446G > T 45,X,-Y,t(8;21)(q22;q22)[20] 

 

3 2 AML (M2) KIT 2447A > T 46,XY,der(4)t(4;8)(p16;q21),der(8)t(8;21)(q22;q22)[12]/46,XY[7] 

 

4 27 AML (M2) KIT 2447A > T 46,XX,t(8;21)(q22;q22)[20] 

 

 

Table 1



Table 2. Sequences of primers and probes for AS-qPCR  

 

Target genes Primers (5′ - 3′) Probes (5′ - 3′) 

 

FLT3 2503G > T F: gatatgtgactttggattggctcGct* FAM-gcaatgcccgtctgcctgtaaaatggatgg-TAMRA 

 R: ggtgtagatgccttcaaacaggc 

KIT 2446G > T F: gatttgtgattttggtctagccaGct FAM-ccatccacttcacaggtagtcgagcgtt-TAMRA 

 R: ccataggaccagacgtcactttc 

KIT 2447A > T F: gatttgtgattttggtctagccagact FAM-ccatccacttcacaggtagtcgagcgtt-TAMRA 

 R: ccataggaccagacgtcactttc 

RUNX1-RUNX1T1 F: cacctaccacagagccatcaaa FAM- aacctcgaaatcgtactgagaagcactcca-TAMRA 

 R: atccacaggtgagtctggcatt 

WT1 F: caggctgcaataagagatattttaagct FAM-cttacagatgcacagcaggaagcacactg-TAMRA 

 R: gaagtcacactggtatggtttctca 

ABL (abelson) F: tggagataacactctaagcataactaaaggt FAM-ccatttttggtttgggcttcacaccatt-TAMRA 

 R: gatgtagttgcttgggaccca 

 

* The LNA base is depicted in uppercase; template-mismatched base in lowercase in italics; mutant-matched base specific base in 

lowercase underlined.  LNA, locked nucleic acid; FAM, fluorescein amidite; TAMRA, tetramethylrhodamine.  The primers and 

probes for RUNX1-RUNX1T1, WT1, and ABL were designed according to the previous reports [1,22,24]. 

Table 2
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