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Abstract. We introduce a similarity function on formulae of signal tem-
poral logic (STL). It comes in the form of a kernel function, well known
in machine learning as a conceptually and computationally efficient tool.
The corresponding kernel trick allows us to circumvent the complicated
process of feature extraction, i.e. the (typically manual) effort to identify
the decisive properties of formulae so that learning can be applied. We
demonstrate this consequence and its advantages on the task of predict-
ing (quantitative) satisfaction of STL formulae on stochastic processes:
Using our kernel and the kernel trick, we learn (i) computationally effi-
ciently (ii) a practically precise predictor of satisfaction, (iii) avoiding the
difficult task of finding a way to explicitly turn formulae into vectors of
numbers in a sensible way. We back the high precision we have achieved
in the experiments by a theoretically sound PAC guarantee, ensuring our
procedure efficiently delivers a close-to-optimal predictor.

1 Introduction

Is it possible to predict the probability that a system satisfies a property without
knowing or executing the system, solely based on previous experience with the
system behaviour w.r.t. some other properties? More precisely, let PM [ϕ] denote
the probability that a (linear-time) property ϕ holds on a run of a stochastic
process M . Is it possible to predict PM [ϕ] knowing only PM [ψi] for properties
ψ1, . . . ,ψk, which were randomly chosen (a-priori, not knowing ϕ) and thus do
not necessarily have any logical relationship, e.g. implication, to ϕ?

While this question cannot be in general answered with complete reliability,
we show that in the setting of signal temporal logic, under very mild assumptions,
it can be answered with high accuracy and low computational costs.
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Probabilistic verification and its limits. Stochastic processes form a natural
way of capturing systems whose future behaviour is determined at each moment
by a unique (but possibly unknown) probability measure over the successor
states. The vast range of applications includes not only engineered systems such
as software with probabilistic instructions or cyber-physical systems with failures
but also naturally occurring systems such as biological systems. In all these cases,
predictions of the system behaviour may be required even in cases the system is
not (fully) known or is too large. For example, consider a safety-critical cyber-
physical system with a third-party component, or a complex signalling pathway
to be understood and medically exploited.

Probabilistic model checking, e.g. [4], provides a wide repertoire of analysis
techniques, in particular to determine the probability PM [ϕ] that the system
M satisfies the logical formula ϕ. However, there are two caveats. Firstly, de-
spite recent advances, [12] the scalability is still quite limited, compared to e.g.
hardware or software verification. Moreover, this is still the case even if we only
require approximate answers, i.e., for a given precision ε, to determine v such
that PM [ϕ] ∈ [v − ε, v + ε]. Secondly, knowledge of the model M is required to
perform the analysis.

Statistical model checking [33] fights these two issues at an often acceptable
cost of relaxing the guarantee to probably approximately correct (PAC), requiring
that the approximate answer of the analysis may be incorrect with probability at
most δ. This allows for a statistical evaluation: Instead of analyzing the model,
we evaluate the satisfaction of the given formula on a number of observed runs
of the system and derive a statistical prediction, which is valid only with some
confidence. Nevertheless, although M may be unknown, it is still necessary to
execute the system in order to obtain its runs.

“Learning” model checking is a new paradigm we propose, in order to fill in
a hole in the model-checking landscape where very little access to the system
is possible. We are given a set of input-output pairs for model checking, i.e.,
a collection {(ψi, pi)}i of formulae and their satisfaction values on a given model
M , where pi can be the probability PM [ψi] of satisfying ψi, or its robustness
(in case of real-valued logics), or any other quantity. From the data, we learn a
predictor for the model checking problem: a classifier for Boolean satisfaction,
or a regressor for quantitative domains of pi. Note that apart from the results
on the a-priori given formulae, no knowledge of the system is required; also, no
runs are generated and none have to be known. As an example consequence, a
user can investigate properties of a system even before buying it, solely based
on producer’s guarantees on the standardized formulae ψi.

Advantages of our approach can be highlighted as follows, not intending to
replace standard model checking in standard situations but focusing on the case
of extremely limited (i) information and (ii) online resources. Probabilistic model
checking re-analyzes the system for every new property on the input; statistical
model checking can generate runs and then, for every new property, analyzes
these runs; learning model checking performs one analysis with complexity de-
pendent only on the size of the data set (a-priori formulae) and then, for every
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new formula on input, only evaluates a simple function (whose size is again in-
dependent of the system and the property, and depends only on the data set
size). Consequently, it has the least access to information and the least compu-
tational demands. While lack of any guarantees is typical for machine-learning
techniques and, in this context with the lowest resources required, expectable,
yet we provide PAC guarantees.

Technique and our approach. To this end, we show how to efficiently learn
on the space of temporal formulae via the so-called kernel trick, e.g. [32]. This in
turn requires to introduce a mapping of formulae to vectors (in a Hilbert space)
that preserves the information on the formulae. How to transform a formula
into a vector of numbers (of always the same length)? While this is not clear
at all for finite vectors, we take the dual perspective on formulae, namely as
functionals mapping trajectories to values. This point of view provides us with
a large bag of functional analysis tools [11] and allows us to define the needed
semantic similarity of two formulae (the inner product on the Hilbert space).

Application examples. Having discussed the possibility of learning model
checking, the main potential of our kernel (and generally introducing kernels for
any further temporal logics) is that it opens the door to efficient learning on
formulae via kernel-based machine-learning techniques [27,31]. Let us sketch a
few further applications that immediately suggest themselves:
Game-based synthesis Synthesis with temporal-logic specifications can often

be solved via games on graphs [25,19]. However, exploration of the game
graph and finding a winning strategy is done by graph algorithms ignoring
the logical information. For instance, choosing between a and ¬a is tried
out blindly even for specifications that require us to visit as. Approaches
such as [21] demonstrate how to tackle this but hit the barrier of inefficient
learning of formulae. Our kernel will allow for learning reasonable choices
from previously solved games.

Translating, sanitizing and simplifying specifications A formal specifica-
tion given by engineers might be somewhat different from their actual inten-
tion. Using the kernel, we can, for instance, find the closest simple formula
to their inadequate translation from English to logic, which is then likely
to match better. (Moreover, the translation would be easier to automate by
natural language processing since learning from previous cases is easy once
the kernel gives us an efficient representation for formulae learning.)

Requirement mining A topic which received a lot of attention recently is that
of identifying specifications from observed data, i.e. to tightly characterize a
set of observed behaviours or anomalies [7]. Typical methods are using either
formulae templates [6] or methods based e.g. on decision trees [9] or genetic
algorithms [28]. Our kernel opens a different strategy to tackle this problem:
lifting the search problem from the discrete combinatorial space of syntactic
structures of formulae to a continuous space in which distances preserve
semantic similarity (using e.g. kernel PCA [27] to build finite-dimensional
embeddings of formulae into Rm).
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Our main contributions are the following:
– From the technical perspective, we define a kernel function for temporal

formulae (of signal temporal logic, see below) and design an efficient way
to learn it. This includes several non-standard design choices, improving the
quality of the predictor (see Conclusions).

– Thereby we open the door to various learning-based approaches for analysis
and synthesis and further applications, in particular also to what we call the
learning model checking.

– We demonstrate the efficiency practically on predicting the expected satis-
faction of formulae on stochastic systems. We complement the experimental
results with a theoretical analysis and provide a PAC bound.

1.1 Related Work

Signal temporal logic (STL) [24] is gaining momentum as a requirement
specification language for complex systems and, in particular, cyber-physical sys-
tems [7]. STL has been applied in several flavours, from runtime-monitoring [7],
falsification problems [17] to control synthesis [18], and recently also within learn-
ing algorithms, trying to find a maximally discriminating formula between sets
of trajectories [9,6]. In these applications, a central role is played by the real-
valued quantitative semantics [15], measuring robustness of satisfaction. Most of
the applications of STL have been directed to deterministic (hybrid) systems,
with less emphasis on non-deterministic or stochastic ones [5].

Metrics and distances form another area in which formal methods are pro-
viding interesting tools, in particular logic-based distances between models, like
bisimulation metrics for Markov models [2,3,1], which are typically based on a
branching logic. In fact, extending these ideas to linear time logic is hard [14],
and typically requires statistical approximations. Finally, another relevant prob-
lem is how to measure the distance between two logic formulae, thus giving a
metric structure to the formula space, a task relevant for learning which received
little attention for STL, with the notable exception of [23].

Kernels make it possible to work in a feature space of a higher dimension
without increasing the computational cost. Feature space, as used in machine
learning [31,13], refers to an n-dimensional real space that is the co-domain
of a mapping from the original space of data. The idea is to map the original
space in a new one that is easier to work with. The so-called kernel trick, e.g. [32]
allows us to efficiently perform approximation and learning tasks over the feature
space without explicitly constructing it. We provide the necessary background
information in Section 2.2.

Overview of the paper: Section 2 recalls STL and the classic kernel trick. Sec-
tion 3 provides an overview of our technique and results. Section 4 then discusses
all the technical development in detail. In Section 5, we experimentally evaluate
the accuracy of our learning method. In Section 6, we conclude with future work.
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2 Background

Let R,R≥0,Q,N denote the sets of non-negative real, rational, and (positive)
natural numbers, respectively. For vectors x,y ∈ Rn (with n ∈ N), we write
x = (x1, . . . , xn) to access the components of the vectors, in contrast to sequences
of vectors x1,x2, . . . ∈ Rn. Further, we write 〈x,y〉 =

∑n
i=1 xiyi for the scalar

product of vectors.

2.1 Signal Temporal Logic

Signal Temporal Logic (STL) [24] is a linear-time temporal logic suitable
to monitor properties of trajectories. A trajectory is a function ξ : I → D with a
time domain I ⊆ R≥0, and a state space D ⊆ Rn for some n ∈ N. We define the
trajectory space T as the set of all possible continuous functions5 over D. An
atomic predicate of STL is a continuous computable predicate6 on x ∈ Rn of the
form of f(x1, ..., xn) ≥ 0, typically linear, i.e.

∑n
i=1 qixi ≥ 0 for q1, . . . , qn ∈ Q.

Syntax. The set P of STL formulae is given by the following syntax:

ϕ := tt | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b]ϕ2

where tt is the Boolean true constant, π ranges over atomic predicates, negation
¬ and conjunction ∧ are the standard Boolean connectives and U[a,b] is the
until operator, with a, b ∈ Q and a < b. As customary, we can derive the
disjunction operator ∨ by De Morgan’s law and the eventually (a.k.a. future)
operator F[t1,t2] and the always (a.k.a. globally) operator G[t1,t2] operators from
the until operator.

Semantics. STL can be given not only the classic Boolean notion of satisfaction,
denoted by s(ϕ, ξ, t) = 1 if ξ at time t satisfies ϕ, and 0 otherwise, but also a
quantitative one, denoted by ρ(ϕ, ξ, t). This measures the quantitative level of
satisfaction of a formula for a given trajectory, evaluating how “robust” is the
satisfaction of ϕ with respect to perturbations in the signal [15]. The quantitative
semantics is defined recursively as follows:

ρ(π, ξ, t) =fπ(ξ(t)) for π(x1, ..., xn) =
(
fπ(x1, ..., xn) ≥ 0

)

ρ(¬ϕ, ξ, t) =− ρ(ϕ, ξ, t)

ρ(ϕ1 ∧ ϕ2, ξ, t) =min
(
ρ(ϕ1, ξ, t), ρ(ϕ2, ξ, t)

)

ρ(ϕ1U[a,b]ϕ2, ξ, t) = max
t′∈[a+t,b+t]

(
min

(
ρ(ϕ2, ξ, t

′), min
t′′∈[t,t′]

ρ(ϕ1, ξ, t
′′)
))

Soundness and Completeness Robustness is compatible with satisfaction in
that it complies with the following soundness property: if ρ(ϕ, ξ, t) > 0 then
s(ϕ, ξ, t) = 1; and if ρ(ϕ, ξ, t) < 0 then s(ϕ, ξ, t) = 0. If the robustness is 0, both

5 The whole framework can be easily relaxed to piecewise continuous càdlàg trajecto-
ries endowed with the Skorokhod topology and metric [8].

6 Results are easily generalizable to predicates defined by piecewise continuous càdlàg
functions.
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satisfaction and the opposite may happen, but either way only non-robustly:
there are arbitrarily small perturbations of the signal so that the satisfaction
changes7. In fact, it complies also with a completeness property that ρ measures
how robust the satisfaction of a trajectory is with respect to perturbations,
see [15] for more detail.

Stochastic process in this context is a probability space M = (T ,A, µ), where
T is a trajectory space and µ is a probability measure on a σ-algebra A over
T . Note that the definition is essentially equivalent to the standard definition of
a stochastic process as a collection {Dt}t∈I of random variables, whereDt(ξ) ∈ D
is the signal ξ(t) at time t on ξ [8]. The only difference is that we require, for
simplicity8, the signal be continuous.

Expected robustness and satisfaction probability. Given a stochastic pro-
cess M = (T ,A, µ), we define the expected robustness RM : P × I → R as

RM(ϕ, t) := EM[ρ(ϕ, ξ, t)] =

∫

ξ∈T
ρ(ϕ, ξ, t)dµ(ξ) .

The qualitative counterpart of the expected robustness is the satisfaction proba-
bility S(ϕ), i.e. the probability that a trajectory generated by the stochastic pro-
cessM satisfies the formula ϕ: SM(ϕ, t) := EM[s(ϕ, ξ, t)] =

∫
ξ∈T s(ϕ, ξ, t)dµ(ξ).9

Finally, when t = 0 we often drop the parameter t from all these functions.

2.2 Kernel Crash Course

We recall the needed background for readers less familiar with machine learning.

Learning linear models. Linear predictors take the form of a vector of weights,
intuitively giving positive and negative importance to features. A predictor
given by a vector w = (w1, . . . , wd) evaluates a data point x = (x1, . . . , xd)
to w1x1+ · · ·+wdxd = 〈w,x〉. To use it as a classifier, we can, for instance, take
the sign of the result and output yes iff it is positive; to use it as a regressor, we
can simply output the value. During learning, we are trying to separate, respec-
tively approximate, the training data x1, . . .xN with a linear predictor, which
corresponds to solving an optimization problem of the form (f is a suitable loss)

argmin
w∈Rd

f(〈w,x1〉, . . . , 〈w,xN 〉, 〈w,w〉)

where the possible, additional last term comes from regularization (preference
of simpler weights, with lots of zeros in w).

7 The satisfaction of subformulae changes and, provided the predicates are “indepen-
dent” of each other, the satisfaction of the whole formula, too.

8 Again, this assumption can be relaxed since continuous functions are dense in the
Skorokhod space of càdlàg functions.

9 As argued above, this is essentially equivalent to integrating the indicator function
of robustness being positive since a formula has robustness exactly zero only with
probability zero as we sample all values from continuous distributions.
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Need for a feature map Φ : Input → Rn. In order to learn, the input object
first needs to be transformed to a vector of numbers. For instance, consider
learning the logical exclusive-or function (summation in Z2) y = x1 ⊕x2. Seeing
true as 1 and false as 0 already transforms the input into elements of R2. However,
observe that there is no linear function separating sets of points {(0, 0), (1, 1)}
(where xor returns true) and {(0, 1), (1, 0)} (where xor returns false). In order to
facilitate learning by linear classifiers, richer feature space may be needed than
what comes directly with the data. In our example, we can design a feature map
to a higher-dimensional space using Φ : (x1, x2) ,→ (x1, x2, x1 · x2). Then e.g.
x3 ≤ x1+x2−1

2 holds in the new space iff x1 ⊕ x2 and we can learn this linear
classifier.

Fig. 1. An example illustrating the need for
feature maps in linear classification [20].

Another example can be seen in
Fig. 1. The inner circle around zero
cannot be linearly separated from
the outer ring. However, considering
x3 := x2

1+x2
2 as an additional feature

turns them into easily separable lower
and higher parts of a paraboloid.

In both examples, a feature map
Φ mapping the input to a space with
higher dimension (R3), was used. Nev-
ertheless, two issues arise:

1. What should be the features? Where do we get good candidates?
2. How to make learning efficient if there are too many features?

On the one hand, identifying the right features is hard, so we want to consider
as many as possible. On the other hand, their number increases the dimension
and thus decreases the efficiency both computationally and w.r.t. the number of
samples required.

Kernel trick. Fortunately, there is a way to consider a huge amount of features,
but with efficiency independent of their number (and dependent only on the
amount of training data)! This is called the kernel trick. It relies on two properties
of linear classifiers:

– The optimization problem above, after the feature map is applied, takes the
form

argmin
w∈Rn

f
(
〈w,Φ(x1)〉, . . . , 〈w,Φ(xN )〉, 〈w,w〉

)

– Representer theorem: The optimum of the above can be written in the form

w∗ =
N∑

i=1

αiΦ(xi)

Intuitively, anything orthogonal to training data cannot improve precision
of the classification on the training data, and only increases ||w||, which we
try to minimize (regularization).
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Consequently, plugging the latter form into the former optimization problem
yields an optimization problem of the form (g is a suitable loss derived from f):

argmin
α∈RN

g
(
α, 〈Φ(xi),Φ(xj)〉1≤i,j≤N

)

In other words, optimizing weights α of expressions where data only appear in
the form 〈Φ(xi),Φ(xj)〉. Therefore, we can take all features in Φ(xi) into account
if, at the same time, we can efficiently evaluate the kernel function

k : (x,y) ,→ 〈Φ(x),Φ(y)〉

i.e. without explicitly constructing Φ(x) and Φ(y). Then we can efficiently learn
the predictor on the rich set of features. Finally, when the predictor is applied
to a new point x, we only need to evaluate the expression

〈w,Φ(x)〉 =
N∑

i=1

αi〈Φ(xi),Φ(x)〉 =
N∑

i=1

αik(xi,x)

3 Overview of Our Approach and Results

In this section, we describe what our tasks are if we want to apply the kernel
trick in the setting of temporal formulae, what our solution ideas are, and where
in the paper they are fully worked out.

1. Design the kernel function: define a similarity measure for STL formulae and
prove it takes the form 〈Φ(·),Φ(·)〉
(a) Design an embedding of formulae into a Hilbert space (vector space with

possibly infinite dimension) ([10], Thm.3 in App.B proves this is well
defined): Although learning can be applied also to data with complex
structures such as graphs, the underlying techniques typically work on
vectors. How do we turn a formula into a vector?
Instead of looking at the syntax of the formula, we can look at its seman-
tics. Similarly to Boolean satisfaction, where a formula can be identified
with its language, i.e., the set T → 2 ∼= 2T of trajectories that satisfy
it, we can regard an STL formula ϕ as a map ρ(ϕ, ·) : T → R ∼= RT

of trajectories to their robustness. Observe that this is a real function,
i.e., an infinite-dimensional vector of reals. Although explicit computa-
tions with such objects are problematic, kernels circumvent the issue. In
summary, we have the implicit features given by the map:

ϕ
Φ,→ ρ(ϕ, ·)

(b) Design similarity on the feature representation (in Sec. 4.1): Vectors’
similarity is typically captured by their scalar product 〈x,y〉 =

∑
i xiyi

since it gets larger whenever the two vectors “agree” on a component.
In complete analogy, we can define for infinite-dimensional vectors (i.e.
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functions) f, g their “scalar product” 〈f, g〉 =
∫
f(x)g(x) dx. Hence we

want the kernel to be defined as

k(ϕ,ψ) = 〈ρ(ϕ, ·), ρ(ψ, ·)〉 =
∫

ξ∈T
ρ(ϕ, ξ)ρ(ψ, ξ) dξ

(c) Design a measure on trajectories (Sec. 4.2): Compared to finite-dimen-
sional vectors, where in the scalar product each component is taken with
equal weight, integrating over uncountably many trajectories requires us
to put a finite measure on them, according to which we integrate. Since,
as a side effect, it necessarily expresses their importance, we define a
probability measure µ0 preferring “simple” trajectories, where the signals
do not change too dramatically (the so-called total variation is low). This
finally yields the definition of the kernel as10

k(ϕ,ψ) =

∫

ξ∈T
ρ(ϕ, ξ)ρ(ψ, ξ) dµ0(ξ) (1)

2. Learn the kernel (Sec. 5.1):
(a) Get training data xi: The formulae for training should be chosen ac-

cording to the same distribution as they are coming in the final task
of prediction. Since that distribution is unknown, we assume at least
a general preference of simple formulae and thus design a probability
distribution F0, preferring formulae with simple syntax trees (see Sec-
tion 5.1). We also show that several hundred formulae are sufficient for
practically precise predictions.

(b) Compute the “correlation” of the data 〈φ(xi),φ(xj)〉 by kernel k(xi,xj):
Now we evaluate (1) for all the data pairs. Since this involves an inte-
gral over all trajectories, we simply approximate it by Monte Carlo: We
choose a number of trajectories according to µ0 and sum the values for
those. In our case, 10 000 provide a very precise approximation.

(c) Optimize the weights α (using values from (b)): Thus we get the most
precise linear classifier given the data, but penalizing too “complicated”
ones since they tend to overfit and not generalize well (so-called regular-
ization). Recall that the dimension of α is the size of the training data
set, not the infinity of the Hilbert space.

3. Evaluate the predictive power of the kernel and thus implicitly the kernel
function design:
– We evaluate the accuracy of predictions of robustness for single trajec-

tories (Sec. 5.2), the expected robustness on a stochastic system and
the corresponding Boolean notion of satisfaction probability (Sec. 5.3).
Moreover, we show that there is no need to derive kernel for each stochas-
tic process separately depending on their probability spaces, but the one

10 On the conceptual level; technically, additional normalization and Gaussian trans-
formation are performed to ensure usual desirable properties, see Cor. 1 in Sec. 4.1.
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derived from the generic µ0 is sufficient and, surprisingly, even more
accurate (Sec. 5.4).

– Besides the experimental evaluation, we provide a PAC bound on our
methods in terms of Rademacher complexity [26] (Sec. 4.4).

4 A Kernel for Signal Temporal Logic

In this section, we sketch the technical details of the construction of the STL
kernel, of the correctness proof, and of PAC learning bounds. More details on
the definition, including proofs, are provided in [10], Appendix B.

4.1 Definition of STL Kernel

Let us fix a formula ϕ ∈ P in the STL formulae space and consider the robustness
ρ(ϕ, · , · ) : T × I → R, seen as a real-valued function on the domain T × I,
where I ⊂ R is a bounded interval, and T is the trajectory space of continuous
functions. The STL kernel is defined as follows.

Definition 1. Fixing a probability measure µ0 on T , we define the STL-kernel

k′(ϕ,ψ) =
∫
ξ∈T

∫
t∈I ρ(ϕ, ξ, t)ρ(ψ, ξ, t)dtdµ0

The integral is well defined as it corresponds to a scalar product in a suitable
Hilbert space of functions. Formally proving this, and leveraging foundational
results on kernel functions [26], in [10], Appendix B, we prove the following:

Theorem 1. The function k′ is a proper kernel function.

In the previous definition, we can fix time to t = 0 and remove the integration
w.r.t. time. This simplified version of the kernel is called untimed, to distinguish
it from the timed one introduced above.

In the rest of the paper, we mostly work with two derived kernels, k0 and k:

k0(ϕ,ψ) =
k′(ϕ,ψ)√

k′(ϕ,ϕ)k′(ψ,ψ)
k(x, y) = exp

(
−1− 2k0(x, y)

σ2

)
. (2)

The normalized kernel k0 rescales k′ to guarantee that k(ϕ,ϕ) ≥ k(ϕ,ψ) , ∀ϕ,ψ ∈
P. The Gaussian kernel k, additionally, allows us to introduce a soft threshold σ2

to fine tune the identification of significant similar formulae in order to improve
learning. The following proposition is straightforward in virtue of the closure
properties of kernel functions [26]:

Corollary 1. The functions k0 and k are proper kernel functions.
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4.2 The Base Measure µ0

In order to make our kernel meaningful and not too expensive to compute, we
endow the trajectory space T with a probability distribution such that more
complex trajectories are less probable. We use the total variation [29] of a tra-
jectory11 and the number of changes in its monotonicity as indicators of its
“complexity”.

Because later we use the probability measure µ0 for Monte Carlo approxima-
tion of the kernel k, it is advantageous to define µ0 algorithmically, by providing
a sampling algorithm. The algorithm samples from continuous piece-wise linear
functions, a dense subset of T , and is described in detail in [10], Appendix A.
Essentially, we simulate the value of a trajectory at discrete steps ∆, for a total
of N steps (equal to 100 in the experiments) by first sampling its total varia-
tion distance from a squared Gaussian distribution, and then splitting such total
variation into the single steps, changing sign of the derivative at each step with
small probability q. We then interpolate linearly between consecutive points of
the discretization and make the trajectory continuous piece-wise linear.

In Section 5.4, we show that using this simple measure still allows us to make
predictions with remarkable accuracy even for other stochastic processes on T .

4.3 Normalized Robustness

Consider the predicates x1 − 10 ≥ 0 and x1 − 107 ≥ 0. Given that we train and
evaluate on µ0, whose trajectories typically take values in the interval [−3, 3] (see
also [10], Appendix A), both predicates are essentially equivalent for satisfiability.
However, their robustness on the same trajectory differs by orders of magnitude.
This very same effect, on a smaller scale, happens also when comparing x1 ≥ 10
with x1 ≥ 20. In order to ameliorate this issue and make the learning less
sensitive to outliers, we also consider a normalized robustness, where we rescale
the value of the secondary (output) signal to (−1, 1) using a sigmoid function.
More precisely, given an atomic predicate π(x1, ..., xn) = (fπ(x1, ..., xn) ≥ 0), we
define ρ̂(π, ξ, t) = tanh (fπ(x1, ..., xn)). The other operators of the logic follow
the same rules of the standard robustness described in Section 2.1. Consequently,
both x1 − 10 ≥ 0 and x1 − 107 ≥ 0 are mapped to very similar robustness for
typical trajectories w.r.t. µ0, thus reducing the impact of outliers.

4.4 PAC Bounds for the STL Kernel

Probably Approximately Correct (PAC) bounds [26] for learning provide a bound
on the generalization error on unseen data (known as risk) in terms of the training
loss plus additional terms which shrink to zero as the number of samples grows.
These additional terms typically depend also on some measure of the complexity
of the class of models we consider for learning (the so-called hypothesis space),

11 The total variation of function f defined on [a, b] is V b
a (f) =

supP∈P

∑nP−1
i=0 |f(xi+1) − f(xi)|, where P = {P = {x0, . . . , xnP } |

P is a partition of [a, b]}.
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which ought to be finite. The bound holds with probability 1 − δ, where δ > 0
can be set arbitrarily small at the price of the bound getting looser.

In the following, we will state a PAC bound for learning with STL kernels
for classification. A bound for regression, and more details on the classification
bound, can be found in [10], Appendix C. We first recall the definition of the
risk L and the empirical risk L̂ for classification. The former is an average of
the zero-one loss over the data generating distribution pdata, while the latter
averages over a finite sample D of size m of pdata. Formally,

L(h) = Eϕ∼pdata

[
I
(
h(ϕ) 1= y(ϕ)

)]
and L̂D(h) =

1

m

m∑

i=1

I
(
h(ϕi) 1= y(ϕi)

)
,

where y(ϕ) is the actual class (truth value) associated with ϕ, in contrast to the
predicted class h(ϕ), and I is the indicator function.

The major issue with PAC bounds for kernels is that we need to constrain in
some way the model complexity. This is achieved by requesting the functions that
can be learned have a bounded norm. We recall that the norm ‖h‖H of a function

h obtainable by kernel methods, i.e. h(ϕ) =
∑N

i=1 αik(ϕi,ϕ), is ‖h‖H = αTKα,
where K is the Gram matrix (kernel evaluated between all pairs of input points,
Kij = k(ϕi,ϕj)). The following theorem, stating the bounds, can be proved by
combining bounds on the Rademacher complexity for kernels with Rademacher
complexity based PAC bounds, as we show in [10], Appendix C.

Theorem 2 (PAC bounds for Kernel Learning in Formula Space). Let
k be a kernel (e.g. normalized, exponential) for STL formulae P, and fix Λ > 0.
Let y : P → {−1, 1} be a target function to learn as a classification task. Then
for any δ > 0 and hypothesis function h with ‖h‖H ≤ Λ, with probability at least
1− δ it holds that

L(h) ≤ L̂D(h) +
Λ√
m

+ 3

√
log 2

δ

2m
. (3)

The previous theorem gives us a way to control the learning error, provided
we restrict the full hypothesis space. Choosing a value of Λ equal to 40 (the
typical value we found in experiments) and confidence 95%, the bound predicts
around 650 000 samples to obtain an accuracy bounded by the accuracy on the
training set plus 0.05. This theoretical a-priori bound is much larger than the
training set sizes in the order of hundreds, for which we observe good performance
in practice.

5 Experiments
We test the performance of the STL kernel in predicting (a) robustness and
satisfaction on single trajectories, and (b) expected robustness and satisfaction
probability estimated statistically fromK trajectories. Besides, we test the kernel
on trajectories sampled according to the a-priori base measure µ0 and according
to the respective stochastic models to check the generalization power of the
generic µ0-based kernel. Here we report the main results; for additional details
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as well as plots and tables for further ways of measuring the error, we refer the
interested reader to [10], Appendix D.

Computation of the STL robustness and of the kernel was implemented in
Python exploiting PyTorch [30] for parallel computation on GPUs. All the exper-
iments were run on a AMD Ryzen 5000 with 16 GB of RAM and on a consumer
NVidia GTX 1660Ti with 6 GB of DDR6 RAM. We run each experiment 1000
times for single trajectories and 500 for expected robustness and satisfaction
probability where we use 5000 trajectories for each run. Where not indicated
differently, each result is the mean over all experiments. Computational time is
fast: the whole process of sampling from µ0, computing the kernel, doing regres-
sion for training, test set of size 1000 and validation set of size 200, takes about
10 seconds on GPU. We use the following acronyms: RE = relative error, AE=
absolute error, MRE = mean relative error, MAE = mean absolute error, MSE
= mean square error.

5.1 Setting
To compute the kernel itself, we sampled 10 000 trajectories from µ0, using the
sampling method described in Section 4.2. As regression algorithm (for optimiz-
ing α of Sections 2.2 and 3) we use the Kernel Ridge Regression (KRR) [27].
KRR was as good as, or superior, to other regression techniques (a comparison
can be found in [10], Appendix D.1).

Training and test set are composed of M formulae sampled randomly accord-
ing to the measure F0 given by a syntax-tree random recursive growing scheme
(reported in detail in [10], Appendix D.1), where the root is always an operator
node and each node is an atomic predicate with probability pleaf (fixed in this
experiments to 0.5), or, otherwise, another operator node (sampling the type
using a uniform distribution). In these experiments, we fixed M = 1000.

Hyperparameters We vary several hyperparameters, testing their impact on
errors and accuracy. Here we briefly summarize the results.
- The impact of formula complexity : We vary the parameter pleaf in the formula
generating algorithm in the range [0.2, 0.3, 0.4, 0.5] (average formula size around
[100, 25, 10, 6] nodes in the syntax tree), but only a slight increase in the median
relative error is observed for more complex formulae: [0.045, 0.037, 0.031, 0.028].
- The addition of time bounds in the formulae has essentially no impact on the
performance in terms of errors.
- There is a very small improvement (< 10%) using integrating signals w.r.t.
time (timed kernel) vs using only robustness at time zero (untimed kernel), but
at the cost of a 5-fold increase in computational training time.

Fig. 2. MRE of predicted average ro-
bustness vs the size of the training set.

- Size of training set : The error in es-
timating robustness decreases as we in-
crease the amount of training formulae,
see Fig. 2. However, already for a few hun-
dred formulae, the predictions are quite
accurate.
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- Exponential kernel k gives a 3-fold improvement in accuracy w.r.t. normalized
kernel k0.
- Dimensionality of signals : Error tends to increase linearly with dimensionality.
For 1000 formulae in the training set, from dimension 1 to 5, MRE is [0.187,
0.248, 0.359, 0.396, 0.488] and MAE is [0.0537, 0.0735, 0.0886, 0.098, 0.112].

5.2 Robustness and Satisfaction on Single Trajectories

In this experiment, we predict the Boolean satisfiability of a formula using as
a discriminator the sign of the robustness. We generate the training and test
set of formulae using F0, and the function sampling trajectories from µ0 with
dimension n = 1, 2, 3, using an independent sample than the one for evaluating
the kernel. We evaluate the standard robustness ρ and the normalized one ρ̂ of
each trajectory for each formula in the training and test sets. We then predict ρ
and ρ̂ for the test set and check if the sign of the predicted robustness agrees with
that of the true one, which is a proxy for satisfiability, as discussed previously.
Accuracy and distribution of the log10 MRE over all experiments are reported
in Fig. 3. Results are good for both but the normalized robustness performs
always better. Accuracy is always greater than 0.96 and gets slightly worse when
increasing the dimension. We report the mean of quantiles of ρ and ρ̂ for RE
and AE for n=3 (the toughest case) in Table 1 (top two rows). Errors for the
normalized one are also always lower and slightly worsen when increasing the
dimension.

In Fig. 4 (left), we plot the true standard robustness for random test formulae
in contrast to their predicted values and the corresponding log RE. Here we

Fig. 3. Accuracy of satisfiability prediction (left) and log10 of the MRE (right) over
all 1000 experiments for standard and normalized robustness for samples from µ0 with
dimensionality of signals n = 1, 2, 3. (Note the logarithmic scale, with log value of -1
corresponding to 0.1 of the standard non-logarithmic scale.)
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Table 1. Mean of quantiles for RE and AE over all experiments for prediction of the
standard and normalized robustness (ρ, ρ̂), expected robustness (R, R̂), the satisfaction
probability (S) with trajectories sampled from µ0 and signals with dimensionality n=3,
and of the normalized expected robustness on trajectories sampled from Immigration
(1 dim), Isomerization (2 dim), and Transcription (3 dim)

relative error (RE) absolute error (AE)
5perc 1quart median 3quart 95perc 99perc 1quart median 3quart 99perc

ρ 0.0035 0.018 0.045 0.141 0.870 4.28 0.016 0.039 0.105 0.689
ρ̂ 0.0008 0.001 0.006 0.019 0.564 2.86 0.004 0.012 0.039 0.286
R 0.0045 0.021 0.044 0.103 0.548 2.41 0.013 0.029 0.070 0.527
R̂ 0.0006 0.003 0.007 0.020 0.133 0.55 0.001 0.003 0.007 0.065
S 0.0005 0.003 0.008 0.030 0.586 81.8 0.001 0.003 0.007 0.072

R̂ imm 0.0053 0.0067 0.016 0.049 0.360 1.83 0.0037 0.008 0.019 0.151
R̂ iso 0.0030 0.0092 0.026 0.091 0.569 2.74 0.0081 0.021 0.057 0.460
R̂ trancr 0.0072 0.0229 0.071 0.240 1.490 7.55 0.018 0.049 0.12 0.680

Fig. 4. (left) True standard robustness vs predicted values and RE on single trajecto-
ries sampled from µ0. The misclassified formulae are the red crosses. (right) Satisfaction
probability vs predicted values and RE (again for a single experiment).

can clearly observe that the misclassified formulae (red crosses) tend to have a
robustness close to zero, where even tiny absolute errors unavoidably produce
large relative errors and frequent misclassification.

We test our method also on three specifications of the ARCH-COMP 2020
[16], to show that it works well even on real formulae. We obtain still good results,
with an accuracy equal to 1, median AE = 0.0229, and median RE = 0.0316 in
the worst case (the AT1 of the Automatic Transmission (AT) Benchmark, see
[10], Appendix D.2).

5.3 Expected Robustness and Satisfaction Probability

In these experiments, we approximate the expected standard R(ϕ) and normal-
ized R̂(ϕ) and the satisfaction probability S(φ) using a fixed set of 5000 tra-
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jectories sampled according to µ0, independent of the one used to compute the
kernel, evaluating it for each formula in the training and test sets, and predicting
R(ϕ), R̂(ϕ) and S(φ) for the test set.

For the robustness, the mean of quantiles of RE and AE shows good results
as can be seen in Table 1, rows 3–4. Values of MSE, MAE and MRE are smaller
than those achieved on single trajectories with medians for n=3 equal to 0.0015,
0.064, and 0.2 for R(ϕ) and 0.00021, 0.0067, and 0.048 for the R̂(ϕ). Normalized
robustness continues to outperform the standard one.

For the satisfaction probability, values of MSE and MAE errors are very low,
with a median for n=3 equal to 0.000247 for MSE and 0.0759 for MAE. MRE
instead is higher and equal to 3.21. The reason can be seen in Fig. 4 (right),
where we plot the satisfaction probability vs the relative error for a random ex-
periment. We can see that all large relative errors are concentrated on formulae
with satisfaction probability close to zero, for which even a small absolute devi-
ation can cause large errors. Indeed the 95th percentile of RE is still pretty low,
namely 0.586 (cf. Table 1, row 5), while we observe the 99th percentile of RE
blowing up to 81.8 (at points of near zero true probability). This heavy tailed
behaviour suggests to rely on median for a proper descriptor of typical errors,
which is 0.008 (hence the typical relative error is less than 1%).

5.4 Kernel Regression on Other Stochastic Processes

The last aspect that we investigate is whether the definition of our kernel w.r.t.
the fixed measure µ0 can be used for making predictions also for other stochastic
processes, i.e. without redefining and recomputing the kernel every time that we
change the distribution of interest on the trajectory space.

0.01 0.1 1
σ

1

10

M
SE

base kernel
custom kerenel

Immigration
Isomerization
Polymerase

Immigration
Isomerization
Polymerase

Fig. 5. Expected robustness prediction using the
kernel evaluated according to the base kernel, and
a custom kernel. We depict MSE as a function
of the bandwidth σ of the Gaussian kernel (with
both axes in logarithmic scale).

Standardization. To use the
same kernel of µ0 we need to
standardize the trajectories so
that they have the same scale
as our base measure. Standard-
ization, by subtracting to each
variable its sample mean and di-
viding by its sample standard
deviation, will result in a sim-
ilar range of values as that of
trajectories sampled from µ0,
thus removing distortions due to
the presence of different scales
and allowing us to reason on
the trajectories using thresholds
like those generated by the STL
sampling algorithm.
Performance of base and custom kernel.We consider three different stochas-
tic models: Immigration (1 dim), Isomerization (2 dim) and Polymerise (2 dim),
simulated using the Python library StochPy [22] (see also [10], Appendix D.5).
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We compare the performance using the kernel evaluated according to the base
measure µ0 (base kernel), and a custom kernel computed replacing µ0 with the
measure on trajectories given by the stochastic model itself. Results show that
the base kernel is still the best performing one, see Fig. 5. This can be explained
by the fact that the measure µ0 is broad in terms of coverage of the trajectory
space, so even if two formulae are very similar, there will be, with a high prob-
ability, a set of trajectories for which the robustnesses of the two formulae are
very different. This allows us to better distinguish among STL formulae, com-
pared to models that tend to focus the probability mass on narrower regions of
T as, for example, the Isomerization model, which is the model with the most
homogeneous trajectory space and has indeed the worst performance.
Expected Robustness Setting is the same as for the corresponding experi-
ment on µ0. Instead of the Polymerase model, we consider here a Transcription
model [22] (see also [10], Appendix D.5), to have also a 3-dimensional model.
Results of quantile for RE and AE for the normalized robustness are reported
in Table 1, bottom three rows. The results on the different models are remark-
ably promising, with the Transcription model (median RE 7%) performing a bit
worse than Immigration and Isomerization (1.6% and 2.6% median RE). Similar
experiments have been done also on single trajectories, where we obtain similar
results as for the Expected Robustness [10], Appendix D.5.

6 Conclusions

To enable any learning over formulae, their features must be defined. We circum-
vented the typically manual and dubious process by adopting a more canonic,
infinite-dimensional feature space, relying on the quantitative semantics of STL.
To effectively work with such a space, we defined a kernel for STL. To further
overcome artefacts of the quantitative semantics, we proposed several normaliza-
tions of the kernel. Interestingly, we can use exactly the same kernel with a fixed
base measure over trajectories across different stochastic models, not requiring
any access to the model. We evaluated the approach on realistic biological mod-
els from the stochpy library as well as on realistic formulae from Arch-Comp
and concluded a good accuracy already with a few hundred training formulae.

Yet smaller training sets are possible through a wiser choice of the training
formulae: one can incrementally pick formulae significantly different (now that
we have a similarity measure on formulae) from those already added. Such active
learning results in a better coverage of the formula space, allowing for a more
parsimonious training set. Besides estimating robustness of concrete formulae,
one can lift the technique to computing STL-based distances between stochastic
models, given by differences of robustness over all formulae, similarly to [14]. To
this end, it suffices to resort to a dual kernel construction, and build non-linear
embeddings of formulae into finite-dimensional real spaces using the kernel-PCA
techniques [27]. Our STL kernel, however, can be used for many other tasks, some
of which we sketched in Introduction. Finally, to further improve its properties,
another direction for future work is to refine the quantitative semantics so that
equivalent formulae have the same robustness, e.g. using ideas like in [23].
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(eds.) QEST. Lecture Notes in Computer Science, vol. 11024, pp. 323–338.
Springer (2018). https://doi.org/10.1007/978-3-319-99154-2 20, https://doi.org/
10.1007/978-3-319-99154-2 20

29. Pallara, D Ambrosio, L., Fusco, N.: Functions of bounded variation and free dis-
continuity problems. Oxford University Press, Oxford (2000)

30. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In: NIPS
2017 Workshop on Autodiff (2017), https://openreview.net/forum?id=BJJsrmfCZ

31. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press (2006)

Learning Model Checking 299

https://doi.org/10.29007/trr1
https://easychair.org/publications/paper/ps5t
https://easychair.org/publications/paper/ps5t
https://doi.org/10.1007/978-3-030-32079-9_3
https://doi.org/10.1007/978-3-030-32079-9_3
https://doi.org/10.1007/978-3-030-32079-9_3
https://doi.org/10.1109/CDC40024.2019.9029429
https://doi.org/10.1109/CDC40024.2019.9029429
https://doi.org/10.1109/CDC40024.2019.9029429
https://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-319-99154-2_20
https://openreview.net/forum?id=BJJsrmfCZ


32. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge
Univ Pr (2004)

33. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: CAV. Lecture Notes in Computer Science, vol. 2404,
pp. 223–235. Springer (2002)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

L. Bortolussi et al.300

http://creativecommons.org/licenses/by/4.0/

