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Abstract—A new Fourier Transform (NFT) approach is de-
veloped for the synthesis of shaped patterns radiated by linear
antenna arrays. The proposed method exploits in an innovative
way the FT relation between the source distribution and the
radiated pattern. Precisely, the finite dimension of real sources
is firstly taken into account by using the sampling theorem to
approximate the desired pattern as a band-limited function. It is
this step that allows one to obtain an important performance
improvement. Then, a continuous source is evaluated from
the approximate desired pattern to finally obtain the element
excitations. Numerical examples validate the method.

I. INTRODUCTION

The synthesis of shaped patterns by linear antenna arrays
(LAAs) has been a canonical problem since many decades
and still arises in many modern applications [1]–[3]. A great
variety of synthesis algorithms have been developed in the
literature, deterministic [4]–[6], stochastic [7], [8] or hybrid
[9], [10]. Among the deterministic algorithms, the Fourier
Transform (FT) approach [11] has received great considera-
tion. This method is based on the FT relation between the
excitation distribution a(z) of a linear source and the radiated
far-field space factor SF (u):

SF (u) =

∫ ∞
−∞

a(z) exp(jzu) dz, (1)

a(z) =
1

2π

∫ ∞
−∞

SF (u) exp(−jzu) du, (2)

where u = k sin θ, being k = 2π/λ the wavenumber (λ is the
wavelength), θ the angle from broadside, and j =

√
−1. In

the above relations, (1) can be viewed as an analysis equation,
whereas (2) can be regarded as a synthesis equation. Precisely,
given a desired shaped pattern SFd(u), (2) provides the excita-
tion distribution a(z) which exactly yields the desired pattern.
Of course, the relation is exact only for infinite sources, while
real cases only deal with distributions of finite dimensions. So,
the excitation provided by (2) is truncated:

a(z) = 0 if |z| ≥ L/2, (3)

where L is the source length. Truncation (3) yields an
approximate space factor, which indeed is proved to have
the minimum least-mean-square error from the desired space
factor over the entire u–domain [11] (this is not true when
only the visible region is considered, i.e., [−k, k]).

The new FT (NFT) method proposed in this paper still ex-
ploits the synthesis equation (2) for the shaped beam synthesis
of LAAs. However, importantly, the finite dimension of the
source is firstly taken into account, as it is described in details
in the next section (Section II), with special attention on its

novel aspects. Then, Section III proposes two numerical ex-
amples that show how the NFT method improves the results of
the original FT approach. Finally, Section IV summarizes the
main conclusions and proposes possible future developments.

II. PROBLEM AND NEW FOURIER TRANSFORM APPROACH

In a Cartesian system O(x, y, z), consider a LAA composed
by N elements arranged on the z–axis at the positions zn, n =
1, . . . , N . Let z = [z1, . . . , zN ]T and a = [a1, . . . , aN ]T be
the column vector of the element positions and of the com-
plex excitations, respectively (superscript T denotes transpose
operator). The array pattern can be expressed as:

F (a; z;u) =
N∑

n=1

an exp(jznu), (4)

which can be viewed as the discretized form of a space factor
in (1), when:

a(z) =
N∑

n=1

anδ(z − zn), (5)

where δ is the Dirac delta function. Importantly, the distribu-
tion in (5) satisfies condition (3), thus its space factor is band-
limited and, by the sampling theorem it can be expressed in
terms of its samples fm, and approximated as:

Fa(u) =

M∑
m=−M

fm sinc

[
ωs

2

(
u− 2πm

ωs

)]
, (6)

being ωs(> L) the sampling rate. Starting by this considera-
tion, the NFT approach firstly solves the following problem:
given a desired (complex) radiation pattern Fd(u), defined and
non-zero in the visible region [−k, k], the 2M +1 coefficients
fm of the approximate pattern Fa(u) of the form (6) are
searched, in such a way as to minimize the mean-square-error:∫ k

−k

∣∣∣∣∣Fd(u)−
M∑

m=−M
fmsinc

[
ωs

2

(
u− 2πm

ωs

)]∣∣∣∣∣
2

du. (7)

Manipulating (7), after some algebra, the vector f of 2M + 1
coefficients fm,m = −M, . . . ,M is obtained as:

f = S†s, (8)

where the superscript † denotes the pseudo-inverse, S is the
square matrix whose elements are:

Smp =

∫ k

−k
vm(u) vp(u) du, m, p = −M, . . . ,M (9)

vm(u) = sinc

[
ωs

2

(
u− 2πm

ωs

)]
, (10)
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Fig. 1. (a): Example 1: flat-top pattern, N = 13, ωs = 18.9λ. (b):
Example 2: squared cosecant pattern, N = 101, ωs = 58.0λ. (M = 400 is
assumed for the approximate patterns of both examples.)

and s is the vector whose elements are:

sm =

∫ k

−k
vm(u) Fd(u) du, m = −M, . . . ,M. (11)

Once the coefficients fm are evaluated using (8), the band-
limited approximate desired pattern is obtained by (6). This
latter pattern is used in the synthesis equation (2) to obtain
the continuous source distribution a(z), which gives by (5)
the element excitations, an. In the next section two numerical
examples are provided.

III. NUMERICAL EXAMPLES

The first example deals with a LAA of N = 13 equally
spaced elements at the positions zn = [−(N+1)/2+n]d, n =
1, . . . , N , with d = λ/2. The desired pattern is the flat-top
shown in Fig. 1(a). The NFT approach is applied with ωs =
18.9λ, providing the excitations in Table I and the pattern
in Fig. 1(a). For comparison purpose, the same problem is
also solved with the original FT approach. As it can be seen,
the NFT provides slightly lower maximum sidelobe level (–
20.2 dB vs –19.7 dB) and narrower beam.

TABLE I
EXAMPLE 1: NORMALIZED ELEMENT EXCITATIONS (an/a7).

n {6,8} {5,9} {4,10} {3,11} {2,12} {1,13}
original
FT 0.6927 0.3148 -0.0399 -0.1848 -0.1103 0.0393
NFT 0.6937 0.3413 -0.0190 -0.1810 -0.1373 0.0190

In the second example, the desired pattern is a squared
cosecant (see Fig. 1(b)), and a larger LAA is used, which is
composed by N = 101 equally spaced elements with d = λ/2.
The patterns obtained by the original FT approach and the
NFT (with ωs = 58.0λ) are shown in Fig. 1(b). As it can
be seen, the desired pattern is satisfactorily approximated, and
the NFT provides a considerably lower maximum sidelobe
level (–27.5 dB vs –21.4 dB, the element excitations an are
not listed for space reasons.) Both numerical examples are
obtained using Matlab R2019b on a commercial laptop and
require only 0.1 s and 0.8 s, respectively.

IV. CONCLUSION

The canonical problem of synthesis of shaped beams by
LAAs is solved by a novel FT approach. First, the pro-
posed method exploits the finite dimension of the source to
approximate the desired pattern as a band-limited function.
Then, the approximate version of the desired pattern is used
in the synthesis equation to evaluate a continuous source
distribution, which is finally sampled to obtain the element
excitations. Current efforts aim to extend the method, which
is computationally simple and provides improved results with
respect to the original FT approach, by considering planar
array geometries and the geometrical synthesis by a density
tapering approach [12].
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