Supplementary Materials

Hydrogels from a Self-Assembling Tripeptide and Carbon Nanotubes (CNTs): Comparison between Single-Walled and Double-Walled CNTs

Petr Rozhin ¹, Slavko Kralj ^{2,3}, Brigitte Soula ⁴, Silvia Marchesan ^{1,*} and Emmanuel Flahaut ^{4,*}

- ¹ Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- ² Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- ³ Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
- ⁴ Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux, Université Paul Sabatier, UMR CNRS N°5085, 31062 Toulouse, France
- * Correspondence: smarchesan@units.it (S.M.); emmanuel.flahaut@univ-tlse3.fr (E.F.)

Table of Contents

1.	Vis-NIR spectra of SWCNTs	2
2.	Raman spectra of SWCNTs and diameter calculation	2
3.	TEM micrographs of SWCNTs	4
4.	TEM micrographs of composite gels	4

1. Vis-NIR spectra of SWCNTs

Figure S1. Vis-NIR absorbance spectra of pristine SWCNTs (p-SWCNTs, grey) and oxidized SWCNTs (ox-SWCNTs, light blue). No significant difference was found between the two simples.

2. Raman spectra of SWCNTs

Figure S2. Raman spectra of pristine (p-) SWCNTs (grey) and oxidized (ox-) SWCNTs (light blue).

Figure S3. RBM region of Raman spectra of pristine (p-) SWCNTs (grey) and oxidized (ox-) SWCNTs (light blue).

Table S1. SWCNT diameters (*d*) calculated from the RBM frequencies (ω), using the equation $\omega_{RBM} = A/dt + B$, where A is associated with the vibrational force constant of the sp² C–C bond, and B is related to environmental effects. For typical SWCNT bundles, A = 234 cm⁻¹·nm and B = 10 cm⁻¹ (see S. Costa et al., Materials Science-Poland 2008, 26, 433). The average calculated SWCNT diameter was 1.0 ± 0.1 for both pristine and oxidized SWCNTs.

p-SWC	CNTs	ox-SWCNTs	
ω (cm ⁻¹)	<i>d</i> (nm)	ω (cm ⁻¹)	<i>d</i> (nm)
208	1.2	208	1.2
217, 228	1.1	226	1.1
235, 247	1.0	235, 248	1.0
267	0.9	269	0.9

3. TEM micrographs of SWCNTs

Figure S4. TEM micrographs of (a) pristine SWCNTs and (b) oxidized SWCNTs.

4. TEM micrographs of composite gels

Figure S5. TEM micrograph of composite gel with 0.1 mg/mL ox-DWCNTs.

Figure S6. TEM micrograph of composite gel with 1.0 mg/mL ox-DWCNTs.

Figure S7. TEM micrograph of composite gel with 0.1 mg/mL ox-SWCNTs.

Figure S8. TEM micrograph of composite gel with 1.0 mg/mL ox-SWCNTs.