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SUMMARY

Denoising and onset time picking of signals are essential before extracting source informa-
tion from collected seismic/microseismic data. We proposed an advanced deep dual-tasking
network (DDTN) that integrates these two procedures sequentially to achieve the optimal per-
formance. Two homo-structured encoder—decoder networks with specially designed structures
and parameters are connected in series for handling the denoising and detection of microseis-
mic signals. Based on the similarity of data types, the output of the denoising network will be
imported into the detection network to obtain labels for the signal duration. The procedures of
denoising and duration detection can be completed in an integrated way, where the denoised
signals can improve the accuracy of onset time picking. Results show that the method has a
good performance for the denoising of microseismic signals that contain various types and
intensities of noise. Compared with existing methods, DDTN removes the noise with a minor
waveform distortion. It is ideal for recovering the microseismic signal while maintaining a
good capacity for onset time picking when the signal-to-noise ratio is low. Based on that, the
second network can detect a more accurate duration of microseismic signals and thus obtain
more accurate onset time. The method has great potential to be extended to the study of
exploration seismology and earthquakes.

Key words: Neural networks, fuzzy logic; Time-series analysis; Induced seismicity; Seismic
noise.

1 INTRODUCTION

Recorded microseismic data are often polluted by various types of noise due to complicated environmental situations, such as building
construction, mechanical, electrical, or traffic noise. Signal denoising and onset time picking are essential for the interpretation of microseismic
events (location, moment magnitude, and energy release). The accuracy and efficiency of these two procedures are deeply affected by the
properties of the noise, signal waveform, and sampling rate. For example, denoising becomes challenging if the frequency band of signal and
noises overlap, every frequency band of signal wavelet decomposition may contain noise. In such a case, it is difficult to distinguish the signal
from the noises in the frequency domain. The filtering of the noises often causes a slight or strong distortion of the signal waveforms, which
further reduces the accuracy of the onset time picking of signals. A severe loss of sampling points during the time—frequency transformation
also affects the accuracy of onset time picking. Data flow explosion is another challenge for practicing the signal denoising and onset time
picking efficiently in real-time microseismic monitoring that is demanded by modern tunnel engineering.

Many studies have been conducted to suppress the noise in microseismic/seismic data, which include the wave-packet transform (WPT;
Galiana-Merinoet ef al. 2003; Liu & Xun 2014), S-transform (Tselentis et al. 2012), short time Fourier transform (STFT; Mousavi et al.
2016a), the continuous wavelet transform (CWT; Mousavi & Langston 2016b, 2016c¢), empirical mode decomposition (EMD; Huang et al.
1998; Chen et al. 2017; Bekara & Baan 2009), variational mode decomposition (VMD; Ma et al. 2020), fuzzy methods (Hashemi et al. 2008),
singular spectrum analysis (Oropeza & Sacchi 2011), sparse transform-based denoising (Chen et al. 2016), mathematical morphology based
denoising approach (Li ef al. 2016) and the non-local means (NLM) algorithm (Bonar & Sacchi 2012). Although these methods can, in a
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Figure 1. (a) Scheme of a convolutional encoder—decoder architecture. (b) The architecture of DDTN. Two dotted boxes represent the denoising and detection
network, respectively. The circles of different colours represent neural network layers. Arrows represent different operations applied between two adjacent
layers. Batch normalization and concatenate are used to improve convergence during training. The dimension of each layer is presented above, which contains
‘features x filters’. The DDTN includes 24 convolution and 24 deconvolution layers, resulting in trainable parameters of about 2.04E + 07. Layers #1 and #2
correspond to the outputs of DDTN: the estimated mask Mpy(7) and label Lp(?), respectively. (c) Flow diagram of the DDTN: (1) The noisy signals in the
time domain are input into the DDTN; (2) the estimated mask Mp,(¢) and label Lp¢(¢) are produced as outputs by the network; (3) The Mpy(7) and Lp(z) are
applied for denoising and duration detection.

certain extension, suppress noise components in the data, choosing the optimal mapping function between the sets of the noisy and denoised
signal is still difficult.

To replace the manual operation, various adaptive algorithms have also been proposed for signal onset time picking. Especially the
short-term/long-term averaging (STA/LTA) algorithm (Allen 1978) is the most popular method. However, it tends to misjudge, or even totally
miss, the consecutive events in the data if the signal-to-noise ratio (SNR) is low. The Akaike information criterion (AIC) algorithm (Takanami
& Kitagawa 1991), alternatively, can better distinguish the boundary of a series of events based on autoregressive model assumptions. But the
method is error-prone since the local maximum and global maximum may not be separated. The fractal dimension method (Boschetti et al.
1996) identifies the onset time based on the change of the characteristics in the fractal dimension of signals, which also avoids the adjacent
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Table 1. Performance comparison of different depth of network structures on the val-
idation data set. The number in the name of the model indicates the total numbers of
convolution and deconvolution layers of the denoising network. The indeces Val_loss and
Val_accuracy are defined as the loss and accuracy of the validation data set, respectively.

Variables  FLOPs

Structure (x 107)  (x 107) Val_loss Val_accuracy
Denoising  Detection Denoising  Detection
DDTN-24 1.25 4.01 0.082 0.015 0.895 0.842
DDTN-32 2.04 6.23 0.051 0.009 0.945 0.895
DDTN-48 2.67 8.15 0.042 0.005 0.952 0.913

channel interference. However, these methods use the interpolation of the signal, which will generate large errors with the high sampling
and seismic trace frequency. Methods based on higher-order statistics have been developed to identify the transition from Gaussianity to
non-Gaussianity., which is consistent with the onset of the seismic event (Yung & Ikeller 1997; Saragiotis et al. 2004). Studies have tested
the onset time picking of traditional shallow neural networks based on the definition of different features (e.g. variance, the absolute value
of skewness, kurtosis, and a combination of skewness and kurtosis predicted based on sliding windows) (Mccomack et al. 1993; Gentili &
Michelini 2006). Also, some hybrid methods have been proposed to evaluate the performance of onset time picking (Zhang 2003; Diehl ef al.
2009; Zhao et al. 2012; Jia et al. 2015). Generally, studies have revealed that the accuracy of these methods has strongly dependent on the
selection of parameters, which are usually set empirically.

Deep-learning-based methods have been rapidly developed to deal with the existing deficiencies of signal processing methods. It can
learn extremely complex functions through the neural network. It has been proved to be a powerful tool for data processing (Goodfellow et
al. 2016; Perol et al. 2018; Ross et al. 2018; Yuan et al. 2018; Zheng et al. 2018; Zhu & Beroza 2018; Dong et al. 2019; Dong et al. 2020).
Inspired by the ability of the encoder—decoder network for image/signal processing (Mao et al. 2016), the goal of this work was approached
as a supervised learning problem in which a deep dual-tasking network (DDTN) for denoising and duration detection of microseismic
signals is built. Two optimized encoder—decoder networks in series, defined as denoising and detection networks, are integrated through
a convolutional operator layer to construct our DDTN. Given a noisy input signal, the DDTN can produce two individual outputs (sparse
representations). One is defined as a mask and map input to a clean signal; the other is defined as a label for labelling the duration of
microseismic signals. Microseismic data recorded in the Micang Mountain tunnel in Sichuan, China is used for network training, validation,
and testing. The performance is rigorously compared with existing methods on denoising and onset time picking of semisynthetic signals,
which is generated by superimposing microseismic signals and real noise. The proposed method has been also tested in other projects that
have different engineering situations.

2 METHODOLOGY AND TRAINING DATA
The noisy signal is defined as N S(¢), which represents a superposition of microseismic signal A/.S(¢) and noise N(¢) as written:
NSt =MS@t)+N(@) , (1)

where ¢ represents the sampling point and noise N(#) is instrumental or unknown noises. The purpose of denoising in DDTN is to minimize
the expected Error between the actual signal M S(¢) and the calculated signal M S(¢):

n

1 2
Error = - Z (MS(I),. — MS(t)l-) , (2)

i=1

where M S(t) = f(t)NS(t), f(¢) is the function that maps NS(¢) to the M S(¢), and n is the number of samples. We regard the process of
finding this mapping function as a supervised learning problem in which a deep neural network learns to extract a sparse representation of
input noisy waveform N S(#) and map it to the clean signal. The mapping function f(¢) is defined as a masking vector Mp,(#) for signal
denoising, which contains a series of values between 0 and 1 to attenuate the noisy signal:

[MS(1)]

IN(®)]
S ()= Mp, (t) = W 3)
IN@)I

A binary label vector Lp(?) is manually generated for labelling the signal duration, where the values are set equal to 1 corresponding to
the duration of microseismic signal and the rest to 0:

1 ¢ € Duration of signal

Lp () = .
o: (0) 0 ¢ ¢ Duration of signal

4)

Therefore, the onset time is the first sampling point with a value of 1 in Lp(¢). Both of these two vectors have the same sizes as the
noisy signal NS(#), and they are the targets for optimizing the performance of the neural network during training.
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Figure 2. The denoising performance of DDTN for different noisy signals in the synthetic test set. The noises in (a) and (b) are generated using cyclic noises;
(c) and (d) are further mixed with real-field noise; (e) is the real-field noise-only signal set. The first two rows of signals in each case are a noisy signal and a
denoised signal, respectively; the third signal is the estimated noise.
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Figure 4. The combined performance of denoising and duration detection for noisy signals, which is formed with a clean microseismic signal and Gauss noise.
The Gauss noise is generated by a standard normal distribution and the semisynthetic noisy signal with the SNR of 5 dB. The first two rows of signals are a
noisy signal and a denoised signal, respectively, the third row of the signal includes the manual and predicted duration of microseismic signals, and the fourth
row of the signal represents the estimated Gauss noise.

The convolutional neural network is applied for both signal denoising and duration detection. Its basic structure can be logically split
into three individual parts: encoder and decoder and representation (Fig. 1a). The encoder maps the input data X into a hidden representation
H through the function £ (i.e. H = E(X)), which is an extraction process for the features of input data; the decoder transforms H into an
estimation of the input by the function D, i.e. X = D(H), which generates outputs with a high-dimensional nonlinear mapping of the sparse
representation. The convolutional neural network has been proved to be a powerful tool for denoising and onset time picking of seismic
signals (Zhao et al. 2019; Zhu et al. 2019). To solve the denoising and detection of microseismic signals sequentially and effectively, the
DDTN is constructed by connecting two homo-structured encoder—decoder networks through convolutional operators.

The noisy signal (see Fig. 1b), as the input vector of the denoising network, is first reshaped from (30000, 1) into (32768, 1) by a
zero-padding procedure for the encoding process. It avoids a lack of noisy signal information in the encoding and decoding process. The
reshaped vector has then been transformed into new layers through a series of encoding operators that consist of one convolution, one batch
normalization (Ioffe & Szegedy 2015), and one ReL U (rectified linear unit) activation; a stride of 2 also performed alternatively to shrink the
feature space gradually and improve the computational efficiency during the encoding process. For the convolution calculation, a larger kernel
has a wilder receptive field, which obtains more non-local features of the signal. However, the large convolution kernel leads to a dramatic
increase in computational time. It would severely limit the depth of the neural network. Therefore, the kernel size of convolution layers is
set to be a constant three. The decoding operators also use a kernel size of three for the deconvolution to generate the estimated Mp,(#) and
Lpi(t) in the decoding process.

The corresponding feature maps in the encoding and decoding process are concatenated, which improve the convergence of training and
perform good reconstruction information of signal (Ronneberger ef al. 2015). In the penultimate layer of the denoising network, a sigmoid
binary activation function is used to produce Mp,(7) for signal denoising, and in the last layer the mask is reshaped into (30 000, 1). Apart from
the reshaping step at the beginning, the encoding and decoding operators in the detection network are similar to the denoising network; the
Lpy(t) for labelling signal duration is also produced by the sigmoid binary activation function. Fig. 1(c) shows the modulus flow for DDTN.
The noisy signal in the time domain inputs into the DDTN, which produce the mask Mp,(¢) and label Lp(¢) consecutively. The estimated
mask Mp,(t) is then applied to the noisy signal N S(¢) for obtaining the denoised signal, and the estimated L () labels the duration of the
microseismic signal. In the label vector Lp(7), the value for the real signal duration is set equal to 1 and the rest to 0. The duration denoted

120z aunr gz uo 1senb Aq 6101 219/ 1.2/€/9z¢/aone/B/wod dno dlwapese//:sdjy woly papeojumoq



2150  H. Zhang et al.

0.4 SNR=»3‘A38
) O 0O RARUE LEGEREEREY 0 OO0 O O f )4 Noisy signal
— 0 f f I [} fl LT i
> J \ Y (R \
T 04 LN R RN Fedniy L0 B { 1'ff ¥ { IRERR A
2 0 5000 10000 15000 20000 25000 30000
= 02
E‘ SNR=40.19 Denosied signal
< 0
-0.2
| 0 5000 10000 15000 20000 25000 0000
E] ; Manual duration
= : Prediction
(a) 0 | - - W—
0 5000 10000 15000 20000 25000 30000
Sampling point
0.2 . .
SNR=5.55 Noisy signal
0 ) . O
s i
= -0.15
3 0 5000 15000 20000 25000 30000
E 02 . .
s SNR=25.11 Denosied signal
2 0
0.15
] 0 5000 10000 __ 15000 20000 25000 30000
8 : Manual duration
= i Prediction
=
b ] p—
0 5000 10000 15000 20000 25000 30000
Sampling point
0.35 . .
| Noisy signal
0 MR W Wi ‘ i 0
& I
o 04
2 0 5000 10000 15000 20000 25000 30000
= 03 . .
Téx SNR=28.58 Denosied signal
< 0
-0.4 —_—
. 0 5000 10000 15000 20000 25000 30000
3 Manual duration
= Prediction
>
(C) 0 e il i R R R
0 5000 10000 15000 20000 25000 30000
Sampling point
0.2 . .
i SNR=20.45 Noisy signal
0 § o H . — S
s [l
5 02 |
3 0 5000 10000 15000 20000 25000 30000
= 02 . .
& SNR=26.93 Denosied signal
20
-0.2 . . .
| 0 5000 10000 15000 20000 25000 30000
o Manual duration
Ti Prediction
>
) J T, DU S —
0 5000 10000 15000 20000 25000 30000

Sampling point

Figure 5. The combined performance of denoising and duration detection for various noisy signals in the test data set. The first two signals are a noisy signal
and a denoised signal, respectively; the third signal includes the manual and predicted duration of microseismic signals. (a) SNR = —3.38; (b) SNR = 5.5; (c)
SNR = 10.54; (d) SNR = 20.45.

by the blue curve in Fig. 1(c) is determined manually based on sampling point difference d between the first arrival and maximum amplitude
of signals. The length from the first arrival point to the endpoint of the microseismic signal is set to 8d to represent the signal duration, which
can well cover most of the microseismic waveforms and capture the main characteristics of signals.

One of the biggest advantages of DDTN is that instead of manually defining different features and thresholds to improve the SNR in
microseismic signals, DDTN can automatically learn the richer features from the semisynthetic noisy signals to obtain the denoised signals and
the duration of the microseismic signals. Two homo-structured encoder—decoder networks (denoising and detection networks) are integrated
to form the structure of the DDTN. An input can produce two outputs in succession by DDTN. The structure is designed sequentially because
the denoising output, as the input of the second training network, can facilitate the learning process and benefit the accuracy of the subsequent
detection output. We can see that the first output Mp,(#) comes from the last layer of the denoising network, and it is seamlessly connected
for feature extraction for the next detection network. Eventually, the second output Lp(¢) produced by the last layer of the detection network.

This structure ensures that it is possible to train the two outputs in an integrative way. Thus, DDTN has a great potential to provide more
efficient and accurate performance on denoising and duration detection of microseismic signals after sufficient training. Unlike existing
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Figure 6. The combined performance of denoising and duration detection for noisy signals in Zijing tunnel (China). The first two signals are a noisy signal
and a denoised signal, respectively, the third signal includes the manual and predicted duration of microseismic signals, and the fourth signal represents the
estimated noise. (a) SNR = 1.21; (b) SNR = 8.57; (¢) SNR = 19.55.

denoising methods, which involve the conversion between the time domain and other domains, the DDTN can directly perform the denoising
and duration detection of microseismic signals in the time domain.

In this paper, the amplitude of the recorded microseismic signal is in voltage, and the response frequency ranges from 50 Hz to 5 kHz.
The data acquisition station worked at a sampling frequency of 20 kHz and a sampling window of 1.5 s, which results in all signals having
the size of 30 000 sampling points. 7500 microseismic signals with high SNR levels and 15 000 noises are selected to form a data set of
35000 semisynthetic samples, which is randomly split into training (80 per cent), validation (10 per cent), and test (10 per cent) data sets.
The validation set acts to fine-tune the hyperparameters and prevent overfitting of the network to achieve the best results, and the test set is
primarily used to document network performance. To generate the input ‘noisy signal’ for training, we iterate through the training data set
and generate the noisy signal with different SNR levels by superimposing the selected microseismic signals with randomly selected noise
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samples on each iteration. The network is trained using NVIDIA GTX 2080Ti GPU, and Adam optimizer with the learning rate of 0.001, in
batches of 32 noisy signals.

To obtain the optimal neural network structure, the influence of network depth (24, 32 and 48) is comprehensively examined using the
validation data set and the results are presented in Table 1. Since it is the core of the whole integrated network, the changes of depth are only
made in the denoising network for simplicity, which would help to clarify the variation of its performance and the influence on the final result
after processing of the detection network. Results show that the increase of depth of layers and complexity will enhance the performance of
the denoising and detection network yet bring more training variables and computational cost (i.e. high FLOPS, Floating-point-operations-
per-second). It can be observed in Table 1 that the numbers of variables and FLOPs almost linearly increased from depth 24 to 32 and 32 to
48. However, the increase of accuracy is relatively large from 24 to 32 (0.050 in denoising) but becomes marginal from 32 to 48 (0.007 in
denoising). Considering the computational complexity, memory consumption, and the performance of the two components (denoising and
detection networks), the depth of 32 for DDTN (i.e. DDTN-32, as shown in Fig. 1) is adopted in this study.
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Figure 9. Denoising performance comparison between denoised signal by DDTN and microseismic signal of Fig. 8(i). SNR value represents the SNR of the
noisy signal before denoising in (a)—(c).

3 RESULTS

3.1 Test results

Denoising results produced by the output mask Mp,(¢) on signals with an increased SNR are shown in Fig. 2. The value of SNR is calculated
by eq. (5) (Mousavi et al. 2019):

SNR = 20xlog,, (S4/N4),

®)

where S, and N4 are peak amplitudes of microseismic signal and noise, respectively. The noise components used to generate the synthetic
signal in each case are collected from the real field. In Figs 2(a) and (b) are microseismic signals with a different frequency of cyclic noise;
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Figure 10. Performance comparison between VMD and DnCNN combined with STA/LTA and DDTN. (a—c) Comparison of SNR improvements, correlation
coefficient and max amplitude change between the noisy microseismic signal and that processed by VMD, DnCNN and DDTN. (d) Onset time errors between
STA/LTA (applied to noisy signal and that after denoising by VMD and DnCNN) and DDTN. Values in (b) are calculated by the Pearson product-moment
correlation coefficient (Mantovani et al. 1986) between the signals (noisy signal and that denoised by VMD, DnCNN and DDTN) and the microseismic signal
in Fig. 8(i). Values in (c) and (d) are differences between signals (noisy signal and that processed by VMD, DnCNN and DDTN) and the microseismic signal
in Fig. 8(i).

Table 2. The comparison of onset time picking between different

methods.

Methods Precision Recall Fl-score
VMD 0.444 1.000 0.615
DnCNN 0.522 1.000 0.686
DDTN 1.000 1.000 1.000

Figs 2(c) and (d) contain a mixture of different cyclic and other noises caused by unknown sources. Especially, the noisy signal in Fig. 2(d)
includes more than one microseismic waveform to represent a more challenging situation for the denoising network of DDTN. These types
of synthetic signals well represent most of the polluted data collected from the real engineering field. Results show that the improvement of
the SNR and the performance of denoising are significant for all four tests; even noisy signal in Fig. 2(d) includes multiple microseismic
waveforms. The noisy signals with different characteristics can be successfully separated into denoised signals and estimated noise. Moreover,
the denoised signal leakage is minimal, and the shape and amplitude characteristics of the denoised signal are well preserved. These above
characteristics are also useful for estimating the noise.

To further examine the limitation of the integrated network, DDTN is applied to denoise 15 776 real noise-only samples. Fig. 2(e) fully
demonstrates the robustness of the denoising network when a pure periodic noise presents in the data. No denoised signals are predicted; and
the estimated noise is almost equivalent to the input noise sample. Therefore, the DDTN has good denoising performance for microseismic
signals containing various types of noise.

After processing the total noise samples of various types (including cyclic noise, unknown noise, and their combination), Fig. 3 shows the
distribution of max amplitude difference between the noise sample and estimated noise. The results show that the max amplitude difference
of more than 50 per cent noise samples is smaller than 0.005, and 90.59 per cent is smaller than 0.035, which means the proposed method
only causes minor waveform distortion.

DDTN can be well applied in actual microseismic signals with non-Gauss noise (including cyclic noise, unknown noise, and their
mixture) based on the previous test results. To further examine the ability of the algorithm for Gauss noise, DDTN is tested with noisy signals
generated by superpositioning the clean microseismic signal and Gauss noise in Fig. 4. The results show that the improvement of the SNRs,
shape recovery, the amplitude characteristics of the denoised signal, and the high accuracy of duration detection are well performed. And, the
shape and amplitude characteristics of the estimated Gauss noise are also properly preserved.
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The full performance produced by the integrated network of DDTN is provided in Fig. 5, which includes the results of denoising
and duration detection of microseismic signals with different values of SNR and intensities of noise. The full result further proves that the
duration of the microseismic signals can be detected with high accuracy. It removes the need for manual picking from the workflow of the
microseismic data processing. This high accuracy is guaranteed by the denoising network, which provides the input of the second part of the
DDTN (duration packing). Therefore, this integration design of the structure maximizes the advantages of using the neural network.

3.2 Application in real projects

The DDTN is tested with 3118 real-field noisy signals recorded in Zijing tunnel (China). These noisy signals included various types and
intensities of noise so that the SNR levels ranged from 0 to 20 dB. The test results in Section 3.1 show that the proposed method only
causes less waveform distortion, which means the peak amplitude of microseismic signal after denoising is approximately equal to the clean
microseismic signal. Therefore, the value of the S, in eq. (5) is set to the peak amplitude of the real microseismic signal after denoising, and
the N, is the peak amplitudes of the noise in SNR calculation. Figs 6(a)—(c) show that the DDTN has a much better performance on denoising
and duration detection of noisy microseismic signals, which is reflected in the improvement of the SNRs, good shape recovery, preserved the
amplitude of the denoised signal, and the high accuracy of duration detection. The shape and amplitude characteristics of the estimated noise
are also well preserved. Also, the DDTN has a good ability to detect the duration of a highly polluted signal duration that often difficult to be
determined manually. For example, in Fig. 6 (b), the accuracy of duration detection is improved for nearly an entire duration band comparing
to the manually picked duration.

After detecting the microseismic signal duration, the onset time can be picked, which is essential for microseismic source location. The
error distribution of onset time picking of 3118 noisy signals in Fig. 7(a) shows that the average error is 1.39 ms, and 70.82 per cent of these
noisy signals have an error smaller than 1.5 ms; and 93.07 per cent smaller than 2.5 ms. Fig. 7(b) reveals that the average SNR of the 3118
noisy signals increases by 7.54 dB, and the maximum improvement reaches 34.09 dB. The 3118 noisy signals are also divided into 20 types
in Fig. 7(c) with SNRs ranging from 0 to 20 dB to study the relationship between SNR levels and errors of onset time picking. The maximum
of the average error of the low SNR noisy signal is 2.04 ms, as shown in Fig. 7(c), which is not much different from the minimum error
1.2 ms of the high SNR signal. It means the DDTN has a good tolerance for noisy signals with low SNRs, and the accuracy of onset time
picking can be better guaranteed. The higher the average SNR of the noisy signals, the lower the onset time picking error (Fig. 7d). Although
the DDTN is trained on semisynthetic data, it could be well extended to real noisy signals and can be directly applied to actual engineering
for denoising and onset time picking.

4 COMPARISON STUDIES

The influence of the denoising network on the waveform is first examined in this section, denoising performance in the time domain of the
proposed method, a noisy signal with the same size of DDTN inputs is constructed using a clean microseismic signal and recorded cyclic
noise (Fig. 8). Fig. 9 shows the comparison between the denoised signal by DDTN and the clean microseismic signal in Fig. 8(i). It can be
found that the signal denoised by DDTN still keeps the waveform similar to the clean microseismic signal. When the noisy signals are at
low SNRs before denoising, the shape and amplitude characters of the denoised signal are still mostly preserved. It indicates that the DDTN
conduct the signal denoising in the time domain without distortion of waveform information.

To further demonstrate the superiority of the proposed method, noisy signals with different SNRs are formed by scaling the noise to
vary its amplitude in Fig. 8. The VMD, DnCNN (Denoising convolutional neural network), and STA/LTA methods are used to compare the
performance of the denoising and onset time picking of the method proposed in this paper. For the VMD method, the setting of parameters is
tested based on the semisynthetic signals (Fig. 8) to achieve the good performance of denoising by monitoring the SNR improvement. The
DnCNN was well trained based on the same training samples of the DDTN by evaluating the metrics on loss and accuracy of the model, and
the SNR improvement was used to test the performance of denoising. Meanwhile, the threshold of the STA/LTA method was determined by
minimizing the errors of onset time picking of the semisynthetic signals (Fig. 8).

Compared with the VMD and DnCNN, the improvements of SNR provided by the DDTN are the largest with a maximum SNR
improvement of 64.85 dB (Fig. 10a). The highest correlation coefficient of denoised signals indicates that the DDTN causes less waveform
distortion. In contrast, the VMD method introduces relatively high distortion of the waveform during denoising, so that the maximum
correlation coefficient only reached 0.79 (Fig. 10b). Fig. 10(c) shows that the max amplitude changes of the denoised signals by the DnCNN
are better than the DDTN when the SNR is less than 3 dB. However, the DDTN is superior to DnCNN in terms of the max amplitude changes
of noisy signals with the increase of SNR levels, indicating that the amplitude characteristics of the denoised signal calculated by DDTN
are closer to the clean microseismic signal in Fig. 8(i). The STA/LTA method is applied to pick the onset time of the noisy signal and that
denoised by the VMD and DnCNN. It can also be found that the accuracy of the onset time picking is significantly improved after denoising
by the three methods (VMD, DnCNN, and DDTN). The accuracy becomes higher as the SNR level increases and the DDTN has the best
performance (Fig. 10d). The DDTN can also achieve sufficient accuracy regarding the onset time picking even when the SNR level is low,
which also represents an improvement compared with the STA/LTA method.
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The hit-rate and average deviation are also used to evaluate the performance of onset time picking. One hit is defined as one successful
onset time picking if the absolute error of onset time picking between the DDTN and manual results is less than 2.5 ms, which is set based
on the sampling frequency (20 kHz). A higher hit-rate represents a more successful onset time picking. The average deviation reflects the
accuracy of onset time picking, i.e. the lower average deviation brings the smaller error of onset time picking. The hit-rate and average
deviation are calculated by eqs (6) and (7):

N .
hit-rate = —1- x 100 per cent, (6)
pick
S d;
avgd = =——, 7
T N ™

where Ny and Ny represent the number of hit and onset time picking, and d, represents the absolute error of onset time picking. The
calculated hit-rates for noisy signals, noisy signals by VMD and DnCNN, and by DDTN are 36.2, 44.4, 52.2 and 100 per cent, respectively.
The average deviations of that are 2.36, 1.59, 1.63 and 0.45 ms, respectively. High hit-rate and low average deviation indicate that the DDTN
provides the best accuracy for the onset picking.
Indexes of Precision, Recall, and F1-score are used to evaluate the performances of the model (Mousavi et al. 2019):
TP

Precision = ——, ®)
TP + FP
TP
Recall = —, )
TP + FN
Fl-score — 2 x Precision x Recall’ (10)

Precision + Recall

where TP, FP and FN denote true positives, false positives and false negatives, respectively. The value of Precision is defined as the ratio
of true positives and total of predicted positives; Recall is defined as the ratio of true positive and total real positives; F1-score combines
the above two variables to eliminate the effects of unbalanced sample size. In our test, a pick is considered as a true positive when the onset
time picking within & 0.25 ms of the true arrival. All the tested signals have distinctively different SNR and contain various types of noise.
Results in Table 2 show that the DDTN increases the both of the three indexes for the onset time picking, which means the denoised signal
can be detected by the methods with 100 per cent correction. The combination of VMD or DnCNN, adaptive methods, with STA/LTA fails
to achieve such a good accuracy.

The DDTN shows its robustness by maintaining an optimal accuracy under the training of complicated semisynthetic data, and generally
reach much higher accuracy of duration detection and onset time picking compared to the manually picked duration. However, in some case,
the accuracy of onset time picking cannot be guaranteed (see Fig. 5b), and about 6.93 per cent of the samples have the onset time error greater
than 2.5 ms in the data set of a real project (Section 3.2), which did not meet a successful hit. For untrained new samples of noise or seismic
signals, the method may not achieve performance as good as the presented results in the paper, which needs to be further studied with the
enlargement of the real-field database in the future. The current estimation of the microseismic signal is based on the output of masks and
non-mask prediction may be the direction of the next research (Zhu et al. 2019). The increase of denoising and training data can continuously
improve the accuracy of onset time picking, which will be the goal of the next research. Furthermore, it is also possible to combine traditional
methods and neural networks. For example, a neural network could be used to determine the possible range of onset time picking, and then
the specific onset time can be picked up by using AIC, Kurtosis methods, etc. (Zhao et al. 2019).

5 CONCLUSION

This paper developed an advanced processing method based on the deep neural network for microseismic signals with optimized efficiency
and accuracy. The method integrated two homo-structured encoder—decoder networks to solve the denoising and duration detection of the
microseismic signal in the time domain. The signal and noise components in the data are properly recognized and separated, even if the signal
is heavily polluted by noise. Denoising further improves the accuracy of duration detection of signals to meet the engineering requirements
of magnitude estimation and onset time picking. Compared with the existing methods, this method significantly improves the SNRs and
introduces less distortion in the waveform which allows better recovery of the real waveform. The method maintains a good ability for onset
time picking even noisy signals at low SNR levels, which perform high hit-rate and low average deviation. While this study is motivated by
the need for efficient and automated microseismic signal processing, it should be noted that the proposed method can be seamlessly extended
to signal analysis for disaster estimation in geophysical and geotechnical fields; such as hydraulic fracturing, mining industry, shale-gas
exploitation, and earthquake.
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