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Abstract: This study investigates the potential of 36Cl in tracing young groundwater with 

residence times of up to ~50 years. Groundwater samples were obtained from 16 irrigation 

wells in paddy fields located within an upland–lowland system in the Yoro River basin, 

Central Japan. The 36Cl/Cl ratios were in the range of 17 to 362  10−15. Among the 

samples with higher Cl− concentrations (>10 mg/L), two samples showed high nitrate 

concentrations as well (>30 mg/L). Except for these samples, the distribution of 36Cl in 

groundwater was essentially consistent with previous tritium concentration data measured 

in 1982 and 1994, considering the time that has elapsed since these earlier measurements 
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were performed. 36Cl/Cl values were less than 30  10−15 in lowland areas, with higher 

values in and around upland areas. The results indicate longer residence times in the 

regional groundwater flow system (>50 years) than those estimated in previous studies, 

especially in the area west of the Yoro River. The results demonstrate the ability of 36Cl to 

trace young groundwater flow, particularly because high values of bomb-derived 36Cl/Cl 

are easily discriminated from pre-bomb water with low 36Cl/Cl values. Because of its very 

long half-life (3.01  105 years), 36Cl remains even after tritium is no longer available. 

Keywords: groundwater flow system; residence time; environmental tracer; 36Cl; 

accelerator mass spectrometry (AMS) 

 

1. Introduction 

In recent decades, groundwater has been extensively used for drinking, agricultural, and industrial 

purposes; consequently, its depletion has become a serious problem in many areas worldwide, such as 

the North China Plain [1] and the High Plains of the United States [2]. Because the mean residence 

time of groundwater reservoir is typically long (~1,400 years [3]), groundwater is highly vulnerable to 

excess use and contamination; in the case of groundwater depletion or contamination, aquifers require 

a long time for recovery and purification. 

Therefore, an understanding of groundwater flow systems and groundwater residence time is an 

important component of the sustainable management of water resources. The use of environmental 

tracers (see Figure 1) is one of the most effective approaches in visualizing the movement of 

groundwater (e.g., [4,5]). Tritium (3H) has been commonly used in hydrologic studies during the last 

several decades. However, due to its short half-life (12.32 years [6]), tritium concentration has largely 

returned to the pre-bomb (natural) background level. 

Bomb-produced 36Cl is an alternative to tritium [7,8], as it is a long-lived radioisotope of chlorine 

with a half-life of 3.01  105 years, decaying to 36Ar by  emission (98.10%) and to 36S by electron 

capture (1.90%) [9]. Natural 36Cl in the hydrologic cycle originates mainly from cosmic ray spallation 

of 40Ar in the stratosphere. The global mean production rate of 36Cl in the atmosphere is estimated to 

be 21.4 atoms m−2 s−1 [10], which is much lower than that of lighter long-lived radionuclides produced 

from nitrogen and oxygen (e.g., 10Be and 14C). 

After production, 36Cl leaves the stratosphere and enters the troposphere within about two 

years [11]. The 36Cl produced in the atmosphere is mixed with marine-derived stable chlorine (from 

sea spray), and falls rapidly as wet or dry deposition onto the earth’s surface. The mean residence time 

in the troposphere is expected to be in the order of weeks, according to estimates of residence times for 

atmospheric aerosols [12-14]. 

In addition to natural production, significant amounts of 36Cl were produced by thermonuclear 

testing on small islands or barges (mainly at Bikini and Eniwetok atolls in 1954, 1956, and 1958 [15]). 

Neutrons released from the testing activated 35Cl in seawater. Some of this bomb-produced 36Cl 

reached the stratosphere and spread over the globe. The fallout of bomb-produced 36Cl preserved in ice 

cores (e.g., [11]) shows a peak in the late 1950s. Due to the relatively low abundance of 35Cl in the 
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atmosphere, atmospheric tests have a negligible contribution to the production of 36Cl, resulting in the 

time lag between the 3H and 36Cl peaks (~7 years; see Figure 1) 

Chlorine has a high electron affinity and exists predominantly as the chloride anion (Cl−) in the 

environment [16]. It generally does not participate in redox reactions and biochemical processes, and is 

not absorbed onto mineral surfaces except under conditions of low pH [17,18]. Hence, it moves with 

water in the natural hydrological cycle without significant chemical interaction. Its simple 

geochemistry and conservative behavior make chloride an ideal tracer in hydrology [19]. In addition, it 

is straightforward to collect samples for analyses of chloride and chlorine isotopes. 

The advantage of bomb-produced 36Cl as a hydrological tracer is derived from the fact that the peak 

is well defined, and that the long half-life of 36Cl makes decay attenuation negligible on the time scale 

of several decades to centuries (e.g., [20,21]). In previous studies, the 36Cl bomb pulse has been used to 

trace water movement in the unsaturated zone, especially in arid and semi-arid regions (e.g., [22-24]); 

however, few studies have applied this method to tracing young groundwater [25,26]. In combination 

with 3H, bomb-produced 36Cl has been used to estimate the rate of groundwater recharge in a fractured 

rock aquifer [25] and to deduce the flow velocity and dispersivity in a sandy aquifer [26]. 

The aim of the present study is to investigate the potential of 36Cl in tracing a regional groundwater 

flow system with a time scale of ~50 years. This paper reports on the observed 36Cl distribution in 

groundwater beneath an upland–lowland topographic system, and compares the results with existing 

tritium data. The distribution of 36Cl observed in the present study has implications for the tracer 

properties of 36Cl, including the bomb-derived component. 

Figure 1. Atmospheric concentrations or fallout rates of bomb-derived environmental 

tracers (after [27]): 36Cl fallout rates at the Dye-3 site, Greenland [11]; 3H concentration in 

precipitation at Ottawa, Canada [28]; and atmospheric 14C record at Vermunt, Austria 

(1959–1983); and Schauinsland, Germany (1984–1996) [29]. 
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2. Study Site and Methods 

2.1. Topography, Geology, and Climate 

The study area is located in the lower part of the Yoro River basin, northern Boso Peninsula, 

Central Japan (Figure 2). The Yoro River runs northward through the central part of the area into 

Tokyo Bay. The area is characterized by fluvial terraces and alluvial lowlands along the river, and 

surrounding Pleistocene uplands and hills. The uplands and hills are part of the Shimosa Upland and 

Kazusa Hills, respectively. The upland surface slopes northwestward, at elevations ranging from 

~100 m in the south to ~40 m along Tokyo Bay in the north. 

Figure 2. Locations of sampled irrigation wells in the Yoro River basin. Open triangles 

indicate selected borehole locations from Kondoh (1985) [30] and Chiba Prefectural 

Research Institute for Environmental Pollution (1974) [31].  
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The following geological summary of the study area is based on Tokuhashi and Endo (1984) [32]. 

The area is dominated by (in ascending stratigraphic order) middle Pleistocene upper Kazusa Group 

sediments, middle–upper Pleistocene Shimosa Group sediments, upper Pleistocene terrace deposits 

with Kanto Loam, Holocene terrace deposits, and alluvial deposits. The Kazusa and Shimosa groups 

strike northeast–southwest, dipping gently northwest at 0.4–6.0. The alluvium is distributed mainly in 

the lowlands along the Yoro River, with lesser amounts in dissected valleys in the hills and uplands. 

The Kazusa Group occurs extensively throughout the Kazusa Hills in the middle to northern part of 

the Boso Peninsula. Of the 12 formations in this group, only the upper formations (i.e., the Kokumoto, 

Kakinokidai, Chonan, Kasamori, and Kongochi formations, in ascending stratigraphic order) are 

exposed in the study area. The Kazusa Group is composed mainly of alternating deep-water sand and 

mudstone, with lesser shallow-water sandy mudstone, sand, and cross-bedded gravelly sands.  
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The Shimosa Group, which overlies the Kazusa Group, is widely exposed in the Shimosa Uplands, 

in the northern part of Boso Peninsula. This group consists of seven formations (i.e., the Jizodo, Yabu, 

Kamiizumi, Kiyokawa, Yokota, Kioroshi, and Anesaki formations, in ascending stratigraphic order), 

with a maximum total thickness of over 250 m. The uppermost Anesaki Formation consists of 

fresh-water sediments. Other formations in the group are characterized by sedimentary cycles that start 

from fresh- or brackish-water muds and end with shallow-marine sands. 

The study area is located in a humid temperate climate, with an annual mean temperature of ~15 °C 

and average annual precipitation ranging from 1,294 mm at Chiba on the northwestern side of the 

study area, near the coast along Tokyo Bay, to 1,590 mm at Ushiku in the southern hilly area (average 

values for 1971–2000 [33]). The estimated annual evapotranspiration rate is ~700 mm at Chiba [30]. 

2.2. Hydrogeology 

In this area, the Kasamori Formation, which is dominated by muddy sandstone, probably acts as the 

hydraulic basement for the groundwater in the overlying Shimosa Group sediments. Mainly in the 

upland regions, groundwater is used extensively for irrigation and drinking water. The main aquifers 

supplying the groundwater located within the Jizodo and Yabu formations, which is composed by 

alternating sand and mud [30] (Figure 3). The depth to the water table is generally small, e.g., 3–5 m at 

Nakatakane area (near wells 3, 4, and 7), ~3 m at Ohtsubo area (near well 1), and ~3 m at Ohoke area 

(near well 16) [31] (see Figure 2 for the locations). Thus, the shape of the water table is expected to 

reflect the surface topography. Aquifer tests showed relatively high hydraulic conductivities  

(10−3–10−2 cm/s) in this area [30]. 

Figure 3. Cross-section showing the geology and the distribution of well screens projected 

onto the line A–B in Figure 2. The screen intervals or bottom depths of the wells are given 

in Table 1. Geological data is from Kondoh (1985) [30] and Chiba Prefectural Research 

Institute for Environmental Pollution (1974) [31] (see Figure 2 for the borehole locations). 
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Kondoh (1985) [30] performed a three-dimensional numerical simulation of regional groundwater 

flow in this area. The results revealed the importance of topographic controls on the groundwater flow, 

as well as the minor contribution of the northwestward dip of the geological structure. These findings 

were confirmed by the distribution of tritium concentrations in groundwater within the basin [30]: 

High tritium concentrations occur in the upland region, and low concentrations in the lowland region, 

along the Yoro River (Figure 4). This distribution indicates the occurrence of relatively young 

groundwater ages in the upland region, and older ages in the lowland area. It also shows that recharge 

occurs mainly in upland areas and that groundwater essentially flows into the lowland area, eventually 

discharging into the Yoro River. Because groundwater samples in the lowland area showed very low 

tritium concentrations at that time (1982), the regional groundwater flow system from the upland to 

lowland region appears to have a residence time greater than 30 years (recharged before 1953; see 

Figure 1). 

In 1994, Miyazawa (1995) [34] revisited the regional groundwater flow system in the Yoro River 

basin by measuring tritium concentrations in groundwater samples obtained from some of the locations 

sampled previously by Kondoh (1985) [30]. Even though 12 years had passed since the first study, 

groundwater in the lowland area still contained low tritium concentrations (Figure 4). This observation 

clearly indicates the presence of pre-bomb groundwater recharged before 1953 (age > 40 years). 

Figure 4. Tritium concentrations measured in 1982 [30] and 1994 [34]. Left and right 

values for each well are tritium data measured in 1982 and 1994, respectively. Wells 

without values indicate that tritium data are unavailable. NM: not measured. 
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2.3. Methodology 

Sites for groundwater sampling for 36Cl measurements were mainly irrigation wells for which 

tritium data are available [30,34]. Sampling was performed during the irrigation period for paddy 
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fields in the summer of 2004 (24 July and 13 August). Sixteen groundwater samples were collected 

from pumped irrigation wells located within the basin, ranging from lowland to upland areas (Figure 2). 

The samples were analyzed for dissolved inorganic ions, silica, stable isotopes of oxygen and 

hydrogen, and 36Cl, at the University of Tsukuba, Japan. Prior to chemical analyses, the samples were 

passed through 0.20 m filters (25HP020AN, Advantec, Tokyo, Japan). Concentrations of major 

dissolved cations (Na+, K+, Mg2+, and Ca2+) and silica (SiO2) were measured with an ICP–AES 

(inductively coupled plasma–atomic emission spectroscopy) system (ICAP-757, Nippon Jarrell-Ash, 

Kyoto, Japan). Bicarbonate (HCO3
−) concentrations were determined by titration with dilute H2SO4 

solution. Concentrations of major anions (Cl−, NO3
−, and SO4

2−) were measured by ion 

chromatography (QIC Analyzer, Dionex, Sunnyvale, CA, U.S.). Stable isotopic ratios of oxygen and 

hydrogen (18O and D) were determined with a mass spectrometer (MAT252, Thermo Finnigan, 

Bremen, Germany). The analytical errors were 0.1‰ and 1‰ for δ18O and δD, respectively. 

Figure 5 summarizes the preparation procedure used in this study. All samples for measurements of 
36Cl by AMS (36Cl-AMS) were passed through 0.45 m filters (JHWP04700, Millipore). The samples 

were then processed according to the preparation scheme shown in Figure 5. Water samples containing 

~1 mg of Cl were acidified with 1 mL of 13 M of HNO3. Chloride was then precipitated as silver 

chloride (AgCl) by adding excess AgNO3, and was separated by centrifugation. The AgCl precipitate 

was dissolved once in 3 M of NH4OH, and saturated Ba(NO3)2 solution was added to the solution. The 

solution was allowed to stand overnight in an oven at ~60 °C, to effectively precipitate SO4
2− as BaSO4. 

This precipitate was removed by filtration with a 0.20 m membrane filter (25HP020AN, Advantec), 

and the filtrate was acidified by the addition of 13 M of HNO3 to precipitate AgCl again. 

Figure 5. Summary of the sample preparation scheme for 36Cl-AMS. 
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Because the isobar 36S (natural abundance, 0.02% [9]) strongly interferes with 36Cl measurements 

by accelerator mass spectrometry (AMS), the chemical reduction of sulfur is of major importance in 

preparing AgCl samples. The removal of sulfur (in the form of SO4
2−) can be achieved by the 

precipitation of BaSO4 (e.g., [35]), by differential elution from an anion exchange resin [36], or by 

absorption onto a cation exchange resin (in the form of BaSO4) [37]. The main part of sample 

preparation, including sulfur reduction, was performed in an air-conditioned room to prevent 
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additional sulfur contamination and was performed under dark conditions to avoid the photolytic 

decomposition of AgCl. 

The sample was purified by repeated precipitation of AgCl with HNO3 and dissolution in NH4OH. 

To further exclude remaining impurities, the AgCl precipitate was washed with Milli-Q ultrapure 

water twice and with 99.5% C2H5OH twice using ultrasonic vibration. The overall chemical yield of 

chlorine was typically about 80%. For subsequent 36Cl-AMS, a benzene solution saturated with 

fullerene (C60) was added to each sample (~20 L per 1 mg of AgCl) and the sample was dried in an 

oven at 120 °C for more than 24 hours. Finally, the sample was pressed into the target holder for 36Cl-AMS. 
36Cl/Cl ratios were measured using the AMS system at the Tandem Accelerator Complex, Research 

Facility Center for Science and Technology, University of Tsukuba [38], along with diluted NIST 36Cl 

standards (36Cl/Cl = 1.60  10−12 [39]). The electric current of 35Cl− was measured by a Faraday cup 

located immediately after the ion source, whereas 36Cl ions were counted at the final detector, being 

distinguished from 36S. The 36Cl/35Cl− ratio (counts/C) derived from the measurements was 

normalized to that obtained for the standard sample. The obtained 36Cl/Cl ratio of the sample was 

subjected to a background correction using the measured ratio of a chemical blank prepared from a 

sample of Himalayan halite. The overall precision of the system was better than 2%, and the 

background level of 36Cl/Cl was ~1  10−15 [38]. The calculated 36Cl/Cl ratio of the sample includes 

the statistical error derived from the uncertainties (1σ) calculated for the sample, the standard, and 

the blank. 

3. Results and Discussions 

Table 1 lists the stable isotopic compositions and 36Cl data for the analyzed samples, along with 

existing data for tritium [30,34]. Major dissolved ions and SiO2 concentrations are given in Table 2. 

Samples 2, 3, 7, and 16, show much higher Cl− concentrations than the other samples (Table 2). 

Samples 2 and 16, which were taken from shallow wells (<30 m; Table 1) located far from the Yoro 

River, have high NO3
− concentrations (>30 mg/L), indicating the influence of agricultural fertilizers. 

This trend of nitrate contamination is confirmed by a Piper diagram (Figure 6). These two samples 

(Samples 2 and 16) may contain anthropogenic chloride derived from fertilizer, which would lower 

their original 36Cl/Cl values to some extent; consequently, these samples were excluded from the 

discussion on the distribution of 36Cl/Cl values. Although the 36Cl/Cl values obtained for Sample 2 are 

not considered in the interpretations presented below, the low SiO2 concentration obtained for this 

sample (Table 2) suggests a young groundwater age. 

The stable isotopic compositions showed a relatively small variation mostly in the range of −7.1‰ 

to −6.8‰ and −43‰ to −40‰ for 18O and D, respectively, although the bottom depth (or screen 

depth) of the wells varies from ~10 m to ~100 m. This range of variation is almost consistent with the 

results of a 18O–D mapping study of surface waters and shallow groundwaters in Japan [40]. The 

small variation may indicate that the investigated aquifers of the study area are recharged at almost 

similar elevation, probably in upland areas. Shallow wells tend to show slightly higher stable isotopic 

ratios, while deeper wells have lower 18O and D values (Table 1; Figure 6). This may suggest an 

influence of a local recharge from the surface, which can possess higher 18O and D values. Among 

the samples with high Cl− concentrations, Samples 2, 3, and 7 show relatively low d-excess values 
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(Table 1; Figure 6), as defined by d = 818O − D, that may indicate the influence of evaporation. 

Because evaporation does not affect 36Cl/Cl values, Samples 3 and 7 are considered in the 

following discussion. 

Figure 6. 18O and d-excess values for groundwater plotted against the Cl− concentrations. 
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Table 1. 36Cl and isotopic data for groundwater samples from the Yoro River basin. 

Sample Depth 36Cl/Cl 36Cl 3Ha 
3Hb δ18O δD d-excess 

No. (m) (10−15) (106 atoms/L) (TU) (TU) (‰) (‰) (‰) 

1 48–60 25 ± 3 2.7 ± 0.3 0.3 ± 0.3 NM −6.8  −42  12.6 

2 10 61 ± 5 20.6 ± 1.8 NM NM −6.7  −43  10.8 

3 14–27 140 ± 9 27.9 ± 1.8 22.8 ± 0.5 10.0 ± 1.3 −6.5  −40  12.1 

4 24–27 150 ± 9 19.9 ± 1.2 23.2 ± 0.5 7.2 ± 1.2 −7.0  −42  14.5 

5 NK 29 ± 20 2.8 ± 1.9 NM NM −6.9  −43  12.5 

6 80–105 17 ± 3 1.8 ± 0.3 0.8 ± 0.3 0.3 ± 0.5 −7.0  −41  14.4 

7 18–32 117 ± 10 23.1 ± 2.0 0.0 ± 0.4 2.0 ± 1.1 −6.3  −38  11.7 

8 54–78 258 ± 11 33.2 ± 1.5 5.8 ± 0.8 5.8 ± 0.8 −7.1  −41  15.3 

9 100 161 ± 14 21.2 ± 1.9 NM NM −6.9  −42  13.6 

10 NK 65 ± 13 7.8 ± 1.6 NM NM −7.0  −41  14.8 

11 56–100 128 ± 8 15.4 ± 1.0 13.3 ± 0.5 1.0 ± 0.6 −6.9  −40  15.4 

12 56–100 216 ± 13 27.5 ± 1.7 4.1 ± 0.3 NM −6.9  −42  13.7 

13 95–150 362 ± 20 43.2 ± 2.4 0.5 ± 0.5 5.5 ± 1.0 −7.1  −42  15.3 

14 50–72 225 ± 15 28.2 ± 1.9 2.9 ± 0.6 2.6 ± 0.9 −6.9  −41  14.2 

15 32–54 345 ± 17 39.4 ± 2.0 6.9 ± 0.6 NM −7.0  −40  16.2 

16 25 243 ± 18 65.1 ± 4.8 4.0 ± 0.4 11.8 ± 1.4 −6.8  −40  14.8 

NK: not known. 
NM: not measured. 
3Ha: tritium concentration measured in 1982 [30]. 
3Hb: tritium concentration measured in 1994 [34]. 
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Table 2. Dissolved major ions and silica concentrations in groundwater from the Yoro River basin. 

Sample Na+ K+ Mg2+ Ca2+ Cl− NO3
− SO4

2− HCO3
− SiO2 

No. (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 

1 7.7 7.3 7.9 30.6 6.3 0.2 4.0 143.4 45.6
2 8.9 5.2 11.6 15.9 19.9 93.3 0.1 6.1 18.8
3 9.5 7.1 9.2 48.2 11.8 0.8 29.3 163.5 55.6
4 10.4 10.7 8.7 28.3 7.8 0.3 7.1 142.7 43.1
5 9.3 8.1 7.2 25.1 5.6 0.2 8.1 118.3 55.5
6 19.4 7.7 7.5 24.3 6.0 0.2 8.2 151.3 57.3
7 10.6 5.9 14.4 42.1 11.6 0.2 2.7 280.6 47.6
8 9.4 7.5 11.2 42.6 7.6 0.2 25.5 160.4 57.9
9 9.5 7.8 10.0 36.3 7.7 0.2 16.2 150.7 62.0

10 8.0 6.4 7.8 25.4 7.0 0.3 10.6 111.0 60.3
11 8.8 7.0 9.5 32.2 7.1 2.2 15.1 133.6 63.1
12 7.6 7.2 6.4 25.3 7.5 0.2 13.3 100.0 54.9
13 8.4 5.6 9.0 22.6 7.0 0.2 15.8 103.7 60.5
14 8.6 7.3 7.5 39.2 7.4 0.2 14.6 145.8 52.5
15 7.2 6.2 7.1 13.6 6.7 3.4 10.4 68.9 65.6
16 11.3 7.5 16.8 35.4 15.7 32.0 10.3 143.4 61.2

Figure 7. Chemical compositions of groundwater shown in a Piper diagram. 

0%
100%

0%

100%
0%

100%

100%

100%

0%

0%
100%

100%

100%
0%

0%

0%

Cl−

HCO3
−

SO4
2− + NO3

−

Cl− + SO4
2− + NO3

−

Ca2+

Mg2+

Ca2+ + Mg2+

Na+ + K+

1

3

4
5

12
14 15

9

16

8

10

1311

6

7

2

Shallow (<30 m)

Others

Nitrate
contamination

Cation exchange?

Silicate dissolution?

 

Figure 8 shows the distribution of 36Cl/Cl values projected onto the line A–B in Figure 2. Although 

Sample 1 is located relatively far from the projection line, it was also included because it represents 

groundwater in the discharge area. The overall distribution shows low 36Cl/Cl values in the lowland 

area along the river, and higher values toward upland areas, except for nitrate-contaminated samples. 
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The observed distribution is basically consistent with the groundwater flow system traced by tritium in 

1982 and 1994 (Figure 4), which showed relatively high concentrations in upland areas and low 

concentrations in lowland areas. One difference in this regard is that relatively high 36Cl/Cl values are 

found near the upland area on the eastern side of the Yoro River. This result is expected if we consider 

the time that has passed since tritium concentrations were measured, as the groundwater could have 

flowed further toward the lowland area during this time. 

Figure 8. Cross-sectional distribution of 36Cl/Cl values in the Yoro River basin. 

Parentheses indicate samples with high NO3
− concentrations. 
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To further examine the nature of hydrological processes operating in the basin, Figure 9 shows 
36Cl/Cl values plotted against the reciprocal of Cl− concentrations. Samples obtained from shallow 

wells (<30 m) show higher Cl− concentrations than do the other samples, which again suggests the 

influence of non-meteoric chloride and/or evaporation. Among the remaining samples (i.e., samples 

from deeper wells, including two samples from unknown depths), two samples from the upland area 

(Samples 14 and 15) have high 36Cl/Cl values (Figure 8). The 36Cl/Cl values has a roughly decreasing 

trend northwestward from well 15 to well 10, except for wells 8 and 9 (Figures 2 and 8). Because these 

wells are located slightly north of the Tsuchiu area (Figure 2), they are possibly on a different flow line 

from the other samples. Conversely, three representative samples of the lowland area (Samples 1, 5, 

and 6), show markedly low 36Cl/Cl values (<30  10−15). This difference demonstrates that pre-bomb 

(i.e., ages > 50 years) groundwater remains in the lowland area, suggesting residence times in excess 

of 50 years for the regional groundwater flow system, which is longer than that estimated previously 

(up to 40 years) [30,34]. Because most of the other samples, except for the lowland samples, show 

elevated 36Cl/Cl values, their ages are likely to be in the range of 25–50 years (see Figure 1).  
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Figure 9. 36Cl/Cl values for groundwater plotted against the reciprocal of Cl− concentrations. 
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The Na/Cl molar ratios of the three lowland samples (Samples 1, 5, and 6) tend to have higher 

values (1.9, 2.5, and 5.0, respectively) than those of the other samples (0.7–2.1), as calculated from 

Table 2. This result may reflect a cation exchange reaction between Ca2+ in groundwater and Na+ in 

the matrix materials of the aquifer, or silicate dissolution (see Figure 7). Because the content of TDS 

(total dissolved solids) in Sample 6 shows no significant increase compared with that in other samples, 

the high Na/Cl value may have been derived mainly from a cation exchange reaction. 

Considering the slightly lower Cl− concentrations in lowland samples compared with upland 

samples (Figure 9), it is possible that human activity (anthropogenic chloride derived from the 

application of agricultural fertilizer) has had an increasing influence on recharging groundwater 

(mainly in the upland area). However, this would not lead to a significant contribution on the observed 
36Cl/Cl ratios, as indicated by the slight increase in chloride concentrations (~20%). The remarkably 

high Na/Cl value for Sample 6 suggests it has a relatively old age, which in turn supports the 

interpretations based on the distribution of 36Cl throughout the basin. 

4. Conclusions 

We investigated the potential of 36Cl in tracing young groundwater with residence times of up to 

~50 years. The 36Cl/Cl values of groundwater within the Yoro River basin ranged from 17 to  

362  10−15. The cross-sectional distribution of 36Cl in groundwater is essentially consistent with 

previous tritium data measured in 1982 and 1994, given the time that has elapsed since these earlier 

measurements were performed. Low 36Cl/Cl values, of the order of 10−14, were found only in lowland 

areas, whereas the upland area was dominated by higher values. This finding suggests longer residence 

times in the regional groundwater flow system than those estimated previously, especially in the area 

west of the Yoro River. 

The present results show the ability of 36Cl to trace young groundwater flow, because relatively 

high values of bomb-derived 36Cl/Cl are easily discriminated from the low values of pre-bomb water. 
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The long half-life of bomb-produced 36Cl (3.01  105 years) enables its use as an environmental tracer 

over a long period even after tritium is no longer available for use. Therefore, 36Cl is an important 

alternative to tritium as a groundwater tracer for young groundwater. 
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