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Abstract— We propose an event-triggered framework for
deciding the traffic light at each lane in a mixed autonomy
scenario. We deploy the decision after a suitable delay, and
events are triggered based on the satisfaction of a predefined
set of conditions. We design the trigger conditions and the
delay to increase the vehicles’ throughput. This way, we achieve
full exploitation of autonomous vehicles (AVs) potential. The
ultimate goal is to obtain vehicle-flows led by AVs at the head.
We formulate the decision process of the traffic intersection
controller as a deterministic delayed Markov decision process,
i.e., the action implementation and evaluation are delayed. We
propose a Reinforcement Learning based model-free algorithm
to obtain the optimal policy. We show - by simulations - that
our algorithm converges, and significantly reduces the average
wait-time and the queues length as the fraction of the AVs
increases. Our algorithm outperforms our previous work [1]
by a quite significant amount.

I. INTRODUCTION

With the introduction of autonomous vehicles (AVs), traf-
fic intersection control technologies can be completely re-
vamped. In an AVs-only scenario, the controller can properly
manage traffic, thus avoiding queues and collisions between
vehicles, without the use of traffic lights [2]. However, this
perspective is still quite far away, and, in the near future, AVs
and human-driven vehicles (HDVs) are expected to coexist,
resulting in the so-called mixed autonomy scenario. HDVs
are not directly controllable through the traffic intersection
controller, meaning that traffic lights still need to be used for
a proper traffic management. The primary research question
in a mixed-autonomy setting becomes: Can a traffic intersec-
tion controller be designed to minimize congestion by taking
advantage of AVs, when HDVs are also present?

Reinforcement Learning (RL), with its data-driven ability
to learn and adapt controllers, can be a useful solution for
this purpose.
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Dynamic programming-based, and optimization-based al-
gorithms are for example proposed in [3]–[7] to control the
traffic-light duration at urban intersection. In [8]–[11], RL-
based approaches have instead been used to address the same
problem. However, all the above works focus in AVs-only
scenarios, and do not care about the traffic management
problem in a mixed autonomy context. In [12], [13] decen-
tralized RL-based approaches are designed to control traffic
at intersections in presence of mixed autonomy.

In this paper, we consider an event-driven centralized
traffic-light controller, in which events occur when some
conditions (Section II-B) are met. The traffic controller
decides the traffic lights across the lanes based on the
number of vehicles when an event occurs. The time interval
between two consecutive controller decisions is not of fixed
duration, and depends on the distance, in time, between
two consecutive events. The decision is implemented after a
certain delay of da seconds. The da value changes depending
on the triggering condition of the event. In particular, the
trigger conditions are designed to bring AVs in leading each
queue in each lane. In such a condition, the intersection
controller can communicate to each AV leader the future
instance when the respective traffic light will be green again.
Each AV can adjust its dynamics by solving an optimal
control problem to minimize the fuel cost while entering the
intersection at the maximum speed. The dynamics of HDVs
is modeled, as in [1], following the Intelligent Driver Model
(IDM) [14].

The decision process of the traffic intersection controller is
modeled as a deterministic delayed Markov Decision Process
(DDMDP) due to the presence of the action delay (da).
Determining an optimal decision is computationally chal-
lenging. The decision affects the dynamics of the vehicles in
a non-linear and non-smooth manner. Further, the dynamics
of the vehicles vary based on whether they are AVs or HDVs.

We use a Reinforcement-Learning (RL) based model-free
algorithm to learn the optimal policy for the traffic intersec-
tion controller. Our approach stabilizes the cumulative reward
in a quite reasonable time, thereby obtaining a reduction in
queues and waiting time for vehicles. Empirical analysis
suggests that the average wait-time and the queues length
decrease as the fraction of the AVs increases. Experimental
results also show that the proposed solution outperforms our
recent work [1] on traffic-light control for mixed autonomy,
where, conversely, the traffic-light cycle is imposed of fixed
length.
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Fig. 1. Traffic-light controlled intersection in a mixed autonomy scenario

II. SYSTEM MODEL

In the following, we, first, describe the urban intersection
system which we consider (Section II-A). Subsequently, we
illustrate the event-driven intersection controller (Section II-
B), the dynamics of AVs, and how the decision of the
intersection controller impacts them (Section II-C).

A. The Urban Intersection system

We consider a signalized urban intersection consisting of
4 lanes (Figure 1). We partition it in three main parts: 1) a
Merging Zone (MZ) of size LM × LM , delimiting the area
where vehicles of different lanes converge; 2) a Control Zone
(CZ) of length LC for each lane, where vehicles travel before
entering the MZ; 3) an Exiting Zone (EZ) of length LE for
each lane, where vehicles travel after crossing the MZ. A
vehicle is considered to exit the intersection when it covers
a distance of LC + LM + LE .

A traffic-light is placed at the junction between the CZ and
the MZ of each lane (4 traffic-lights in total). Each vehicle
enters the MZ when the respective traffic-light is green. The
vehicle stops to enter the MZ when the traffic-light is red.
Once the vehicles enter the MZ they cross the intersection
and do not stop.

We now introduce some notations which we use through-
out this paper. We denote by c(i, j) the i-th vehicle at lane
j, where i ∈ {1, 2, . . . , Nmax,j}, and Nmax,j is maximum
number of vehicles at the j-th lane, and j ∈ {1, 2, . . . , 4}
(cf. Figure 1).

We denote by C(tk) the set of N vehicles in all the
lanes of the intersection system at t = tk. The HDVs’
set and the AVs’ set, respectively are C(tk)

H and C
(tk)
A , and

C
(tk)
A , C

(tk)
H ⊆ C(tk) s.t. C(tk)

A ∩C(tk)
H = ∅, C(tk)

A ∪C(tk)
H =

C(tk). C(tk)
j denotes the set vehicles in the j-th lane of the

intersection system at t = tk.
We denote with pi,j(tk), vi,j(tk), and ui,j(tk) respectively

the position, the speed, and the acceleration of the c(i, j)-
th vehicle in the intersection at t = tk. Each i-th vehicle
entering the control zone of the j-th lane at t = t0i,j will
be initialized with an initial position pi,j(t

0
i,j) = 0. A new

vehicle c(i′, j) entering the CZ of the j-th lane right after
c(i, j) will have i′ = i+ 1, i.e., the more recent the vehicle
access to the intersection, the higher the index i associated
with it will be.

Definition 1. c(i, j) is behind c(k, j) if k < i. When k = i−
1, c(k, j) is the front vehicle of c(i, j), i.e., the immediately
preceding vehicle of c(i, j).

Definition 2. A vehicle c(i, j) ∈ CA in the CZ of the j-th
lane (pi,j(t) < LC) is the leader vehicle of the j-th lane if
@ c(k, j) ∈ C front vehicle of c(i, j) (cf. Definition 1) such
that pk,j(t) < LC .

Definition 3. A vehicle c(i, j) ∈ CA in the CZ of the j-
th lane (pi,j(t) < LC) is a follower vehicle of c(k, j) if
pk,j(t) < LC and k < i.

Definition 4. A pair of lanes (j, k) are non-conflicting if
there are no intersection points that can lead to vehicles
crashes. We denote by L the set of non-conflicting lane pairs.

In the proposed scenario (cf. Figure 1) the set of non-
conflicting lane pairs is L = {(1, 3), (2, 4)}. A traffic-
controller can only simultaneously assign green traffic-lights
for non-conflicting pair of lanes.

We assume the followings:

Assumption 1. A vehicle c(i, j) ∈ C can only go forward or
stay still; i.e., no turning, backward gears, or lane changing
are allowed.

Assumption 2. A vehicle c(i, j) ∈ CA is considered sensors
equipped. c(i, j) is able to estimate pi−1,j(t) and vi−1,j(t)
if c(i − 1, j) ∈ CH , while can access the actual values of
pi−1,j(t) and vi−1,j(t) if c(i− 1, j) ∈ CA.

The first assumption can be relaxed by considering more
complicated dynamics. The second assumption entails that
an AV can adapt to the motion of the preceding vehicle.

We denote by vfree the maximum allowable speed within
the intersection system. AVs are assumed to travel with a
constant speed vfree once they cross the MZ.

We interchangeably also use the notation (i, j) for c(i, j).
We denote by tmi,j the time at which the vehicle (i, j) enters
the MZ (i.e., leaves the CZ). Formally,

Definition 5. tmi,j = inf{t|pi,j(t) > LC}.
B. Event-driven Traffic-Intersection controller

We assume that the traffic-intersection controller con-
stantly observes and receives information about the current
traffic condition in the intersection, and triggers the decision-
making process of a RL-based traffic-light controller when
certain conditions are met:

(C1) at time tk the CZ of the j-th lane is empty (C(tk)
j = ∅)

and the traffic-light status is green at the j-th lane;
(C2) at time tk a vehicle c(i, j) ∈ CA enters the intersection

and the traffic-light status is green at lane j;
(C3) a trigger did not occur for a Tsilence time interval.
With condition (C1) we are enabling the traffic-light con-
troller to possibly close empty lanes. Condition (C3), instead,
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is particularly useful in traffic intersections with a low
percentage of AVs, and highly congested traffic. Specifically,
if the traffic-light status has not been changed for a long-time,
the condition (C3) will ensure that the controller would try
to see whether it is required to change the status.

The motivation behind condition (C2) is less intuitive and
needs the introduction of other notations and assumptions,
provided in the following.

We denote by φj(t) the traffic-light status at time t for
the j-th lane imposed by a traffic-light controller. φj(t) =
1 indicates that the traffic-light is green, while φj(t) = 0
means that the traffic-light is red. We impose a φj(t) = −1
condition, corresponding to a yellow traffic-light, of fixed
duration Talert each time that a traffic-light switch occurs.

Whenever the traffic-light controller is triggered, it selects
the future traffic-light status φjnew for each lane j, and
enables a sleep mode of Tsleep during which no triggers can
occur. Tsilence is counted after each trigger occurrence.

In general, we assume that φjnew will be applied only
da seconds later φj(tk + da) = φjnew, with da ≤ Tsleep.
The motivation behind this choice is to provide AVs with
future traffic-light information in advance, thus allowing their
dynamic optimization, and ensuring their immediate access
with the maximum allowed speed to the MZ, when granted.

However, a different da delay is considered in the follow-
ing:

Assumption 3. If condition (C2) is met and φjnew = 0, then
the traffic-light becomes red when the front vehicle of the
c(i, j) enters the MZ.

This last assumption forces the AV to be the leader in that
lane. When the traffic-controller again informs the c(i, j) AV
of a future green traffic-light, the vehicle can schedule an
optimal acceleration profile, approaching the MZ as soon as
the traffic-light turns green, thus increasing the throughput.

The ultimate goal of the RL-based traffic-light controller
is to minimize the total number of vehicles queuing at the
intersection, thus maximizing the rate of vehicles outflow.

We assume that the behavior of HDVs is modeled ac-
cording to the Intelligent Driver Model (IDM) [14]. For a
detailed description of the HDVs dynamics according to the
scheduled traffic light choices see [1].

In the followings, we describe the dynamics of the AVs
based on the decision of the traffic-intersection controller.

C. Autonomous vehicle

We assign to the generic c(i, j) ∈ CA the following
dynamics:

v̇i,j(t) = ui,j(t), ṗi,j(t) = vi,j(t). (1)

When c(i, j) ∈ CA enters the intersection at t0i,j with an
initial speed vi,j(t0i,j) = v0 and an initial position pi,j(t0i,j) =
0, it can assume the role of leader or follower according to
Definition 2 and 3.

If the AV c(i, j) is the leader at the CZ, the traffic-
intersection controller would communicate with the AV.

If at t = tk the traffic intersection controller selects φjnew =
0, the leader AV schedules a uniform deceleration profile
ui,j(t) leading to stop its cruise δ distance away from LC .
We will refer to δ as stopping distance.

Conversely, if at t = tk the traffic intersection controller
selects φjnew = 1, the leader AV solves the following
optimization problem:

P1 : min
ui,j(·)

1

2

∫ tmi,j

tk

u2i,j(t)dt,

subject to: (1), pi,j(tk) = pk, vi,j(tk) = vk,

vi,j(t) ≤ vfree, vi,j(t) ≥ 0 ∀ t ∈
[
tk, t

m
i,j

]
,

tmi,j ≥ tk + da + Talert,

tmi,j ≤ tk + 2da + Talert,

pi,j(t
m
i,j) = LC , vi,j(t

m
i,j) = vfree.

(2)

Note that the latter constraint enforces that at the time where
the vehicle enters the intersection, it would enter at the
maximum speed. For t > tmi,j the vehicles are assumed to
travel with the maximum speed vi,j(t) = vfree. In general,
we impose da = Tsleep, the duration after which the action
is implemented. However, when condition (C2) is met for
the vehicle (q, h), in the lane h conflicting with the lane
j, and the traffic-controller decides to enforce a red-light
after all the vehicles preceding the AV (q, h) cross the
MZ, the vehicle (i, j) can only enter the intersection after
tmq−1,h+Talert. Note that the traffic-intersection controller may
not compute the exact time tmq−1,h, but an estimation of the
above would be sufficient.

The existence of a solution of (2) depends on da. Specif-
ically, by properly setting da and LC , we can ensure the
feasibility of P1.

Note that an already scheduled AV will not update its
profile if it receives a new traffic light controller action equal
to the one of the previous scheduling.

The AV c(i, j) ∈ CA decelerates uniformly, such that it
will stop δ distance away from LC , when the condition (C2)
is met and the traffic-intersection controller decides to switch
on a red-light after all the vehicles in front of c(i, j) enter the
intersection. In this case, the AV c(i, j) will be subsequently
promoted to leader. If at tk it is informed of a future green
light status φj(tk + da) = 1, it will solve the optimization
problem P1 (Equation (2)).

In all the remaining scenarios, the dynamics of AVs follow
the IDM model behavior presented in [1]. This assumption
takes place also when the sleep mode of Tsleep duration is
active due to a previous trigger occurrence.

III. TRAFFIC-LIGHT’S DECISION PROCESS

We now characterize how the traffic-light controller takes
its decision using a RL-based algorithm. Henceforth, we
assume that the dynamics of the vehicles are discretized
with a sampling time TS , while the traffic-light controller
is triggered by the events described in Section II-B, thus
resulting in an event-driven discrete time controller.

We model the decision process for the urban intersection
traffic-light controller as a discrete-time DDMDP [14] with
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Fig. 2. Schematic of the proposed event-driven DDMDP model.

action delays. We denote by tk−1 and tk two successive time
at which two different events occur. The DDMDP is a tuple
〈S,A, p, g, da, dc〉 where S is the state set, A is the control
input (action) set, p is the transition probability, g : S ×
A× S → R the reward function, da is the action delay, and
dc = da the delay to observe the reward. Here we consider a
constant da except in the case in which Assumption 3 occurs.
In this later case, da depends on the time at which the front
vehicle of the AV meeting condition (2) enters the MZ.

Throughout the rest of the paper we use the following
notations:
• s(tk) ∈ S the state of the RL system at tk;
• a(tk) ∈ A the RL control input (action) at tk;
• A

(tk)
T the set of action applied in [tk−1 + da; tk];

• I(tk) =
(
s(tk), A

(tk)
T

)
∈ I the information needed for

optimal action selection at tk;
• ga

(
I(tk), a(tk)

)
= g

(
s(tk), a(tk−1)

)
the reward function.

Note that the reward function evaluated at tk + da does not
depend on the action chosen at tk, but rather on the action
decided at the preceding trigger instant tk−1, and applied at
tk−1 + da (Figure 2). We assume that the action chosen at
tk is applied at tk + da, only after the reward of the action
decided at tk−1 is evaluated. Moreover, in our setting, no
event is triggered within Tsleep time interval.

A. State, Action, and Reward

We now characterize the state, the action and the reward
in our setting. First, we introduce some general notations.

Hereinafter we will refer to N ∪ {0} as N+, and to B =
{0; 1} as the Boolean domain. We denote by nl the total
number of lanes at the intersection.

1) State: The state s(tk) ∈ S at tk is equal to X(tk), where
X(tk) ∈ N+

nl+1 is a vector in which the first nl elements
x
(tk)
1 , . . . , x

(tk)
nl represent the number of vehicles in the CZ

of each lane, while the nl + 1-th element is a counter of
the number of triggers corresponding to a same consecutive
choice of traffic-light controller.

2) Action: The action a(tk) ∈ A at tk is a vector having
the number of elements equal to the number of lanes A :=
Bnl . At tk, the traffic controller decides which lane to be
open, i.e., for which lane the traffic-light will be green at the
tk + da. Obviously, tk arises as as the trigger instant of an
event. If a(tk)j = 1, the traffic-light will be green, if a(tk)j =
0, the traffic-light will be red for lane j at tk + da. Note
that only those lanes which are non-conflicting can be open
simultaneously. Therefore, we reduce the problem imposing

that the actions of non-conflicting lanes are equal. Hence,
a
(tk)
j = a

(tk)
l if the pair (j, l) are non-conflicting. Thus, the

action space can be reduced to only choosing elements for
the set L, i.e., the non-conflicting lanes.

3) Reward function: The traffic-intersection controller
wants to minimize the queues length at each lane, thus
maximizing the outflow of vehicles at a given instance.
Hence, we consider the reward-function g(s(tk), a(tk−1)) =‖
W �X(tk−1+da)

[1:nl]
‖1 − ‖W �X(tk+da)

[1:nl]
‖1, where W ∈ Rnl

is a weight vector, X(·)
[1:nl]

the former nl elements of X(·), and
� denotes the element wise multiplication of two vectors.
The weights vector W allows to assign to each lane a relative
priority. If we want to impose a higher priority for the j-
th lane, we will assign to the j-th element of W (wj) a
higher value than the others (wi < wj , ∀i 6= j). Imposing
W = [1, 1, . . . , 1] implies that there is the same relevance
for each lane in the optimization.

B. Optimal Policy and Q-Learning

The traffic-intersection controller needs to compute an
optimal policy π : I → A, i.e., the policy able to maximize
the expected value of the discounted cumulative reward

E

[
H∑

k=0

γkg
(
s(tk), a(tk−1)

)]
, (3)

where γ ∈ [0, 1] is a discounted factor (a constant real
value quantifying how much important the future reward is
compared to the immediate one), H is the horizon of the
optimization problem to be solved, and tk is the k-th trigger
time instant.

We use a tabular Q-Learning algorithm [15] in a non-
episodic framework: an off-policy value function approach.
Since we performed only simulations, off-policy evaluation
is not costly.

Note that in order to find the optimal policy π∗ relying on
the Q-Learning, we need to evaluate the Q-function for the
modified DDMDP. Hence, we will compute Q(I(tk), a(tk))
for all (I(tk), a(tk)) and then finding the optimal policy as
π∗ = argmaxa(tk) Q(I(tk), a(tk)).

The reward inherently depends on the dynamics of each
vehicle at the intersection, described in II-C, which in turn
depends on the decision of the traffic intersection controller.
The global dynamics is non-linear and discontinuous.

Being a model-free approach, our proposed method learns
the optimal decision without using the model explicitly.

IV. IMPLEMENTATION

A. Set Up

To evaluate the proposed approach we design a MATLAB
framework. We consider a merging zone of size LM = 30m,
the length of the CZ and the EZ are both equal to 200m.
The maximum speed limit is set to vfree = 13m s−1. The
vehicles’ arrivals follow a Poisson process where we vary the
arrival rates. Each vehicle’s initial speed vi,j(t0) is randomly
sampled from [9m s−1, 11m s−1], and an initial acceleration
ui,j(t0) is randomly sampled from [0m s−2, 0.5m s−2]. We
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Fig. 3. Averaged cumulative reward during simulations with a vehicles
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Fig. 4. Moving average of the vehicles waiting time (top), and of queues
length in the intersection lanes (bottom) during simulations with a vehicles
arrival rates of 1125 veh h−1 per lane.

set the capacity of the intersection equal to Nmax = 100. We
investigate four different scenarios, where the fraction of the
two categories of vehicles are: 1) 10% of AVs and 90% of
HDVs; 2) 25% of AVs and 75% of HDVs; 3) 50% of AVs
and 50% of HDVs; 4) 75% of AVs and 25% of HDVs.

We perform the experiments in all scenarios with a fixed
arrival rate of 1125 veh h−1 at each lane. For the scenario
(4), we evaluate our algorithm for two different arrival rates
settings (1800 veh h−1, and 1125 veh h−1) at each lane. The
jam-distance, and the safety time-gap are set at 2m and
5 s respectively for the IDM model, with ξ = 1.6m. The
complete equations governing the HDVs dynamics are in [1].
Recall that when the traffic-intersection controller informs
the AV of a next red traffic-state, the AV stops at a δ-distance
away from the intersection. We set δ = 20m, dfollow = 50m,
Tsilence = 30 s, Tsleep = 15 s, and Talert = 3 s.

The RL controller is trained according to an infinite hori-
zon Q-Learning problem (H =∞ in Equation (3)), and starts
with an intersection having zero vehicles. Each simulation
stops when the 2000-th vehicle enters the intersection.

For those events in which Assumption 3 doesn’t occur, we
consider da = Tsleep = 15 s. For simplicity, we consider a
framework in which if an event occurs at tk, the next event
shall occur only at tk+1 ≥ tk+Tsleep. We assume an ε-greedy
policy with an exploration decays of 1/k, with k number of
performed decision steps (or events). Moreover, following
the definition provided in [16], we set γk = c1/(k + c2),
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Fig. 5. Comparison between the moving average of vehicles waiting time
(top), and of averaged queues length in the intersection lanes (bottom) using
(a) the proposed approach, and (b) the approach described in [1], with a
vehicles arrival rates of 1125 veh h−1 per lane.

where c1 and c2 both equal to 1.

B. Results

In Figure 3 we compare the averaged cumulative reward
in the performed experiments with a constant arrival rate
of 1125 veh h−1 per lane. We can observe that a scenario
with an higher value of AVs leads to a faster convergence
and to an higher averaged cumulative reward. In Figure 4,
we can also observe that both the moving average of the
vehicles waiting time and of the queues length, at the reward
convergence, is lower in a scenario with 75% of AVs than
in the remaining scenarios. The average waiting time and
queue lengths of vehicles decreases as the fraction of the AVs
increases. However, note that reduction of the average queue
length is the highest when the AV penetration rate increases
from 10% to 25%. The reduction is very small when the
penetration rate increases from 50% to 75%. Hence, lower
is the percentage of AVs at intersection, higher is the queue
reduction as the fraction of AVs increases.

In Figure 5, we compare the results obtained applying the
proposed approach in the scenarios (2) and (4), with those
obtained performing the approach of [1] in the same settings.
The proposed approach appears to be more effective in the
management of both the waiting time and the queues length.
The reason is that, here, the traffic-light cycle duration can
be adapted based on the nature of the vehicle. For example,
when the event is triggered because of the condition (C2),
and the traffic-controller decides to select the red-light,
the red-light will be switched only after all the vehicles
preceding to the newly entered AV cross the MZ. Thus, the
traffic-light cycle duration is adapted based on the nature
of the vehicle, and can be of variable length unlike in
[1]. Further, in the above scenario, the traffic-intersection
controller coordinates with that AV as it becomes the leader.
Such a provision was not there in [1].

In Figure 6 we show the averaged cumulative reward
of two simulations performed with a fixed percentage of
AVs (75%) and two different values of vehicles arrival
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1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500 2,600 2,700

26

28

30

av
er

ag
ed

w
ai

tin
g

tim
e

[s
ec

]

1125 veh h−1

1800 veh h−1

1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500 2,600 2,700
3.5

4

4.5

5

5.5

Time [sec]

av
er

ag
ed

qu
eu

e
le

ng
th

Fig. 7. Moving average of vehicles waiting time (top), and of queues
length in the intersection lanes (bottom) during simulations having 75% of
AVs.

rate (1125 veh h−1, and 1800 veh h−1per lane). Results show
that, with a higher vehicles arrival rate, we observe a lower
average cumulative reward than in a scenario with a lower
vehicles arrival rate. However, the settling time is compara-
ble, thus highlighting the ability of our approach to converge
even with a more congested traffic at the intersection. This
is confirmed in Figure 7, where both the moving average
of the queues length, and of the vehicles waiting time are
reported at the reward convergence of both traffic congestion
scenarios. Again, with a higher vehicles arrival rate, queues
length and variations in waiting time are at slightly higher
values. This is expected. However, the difference is not
significant, and still provides evidence of the approach’s
ability to properly manage traffic as the rate of vehicle flow
through the intersection increases.

V. CONCLUSIONS AND FUTURE WORK

We consider an event-driven decision process for a traffic-
intersection controller. When an event occurs, the traffic-
intersection controller decides whether the traffic-light will
be green or red. The action is deployed after a delay which
depends on the nature of the event. Specifically, if the event
is triggered because an AV enters at a lane where the traffic-
light is green, and the traffic-intersection controller decides to
put a red-light after all the vehicles in front of the AV enters
the intersection, the traffic-controller conveys the decision
to the AV. The AV then adapts its dynamics based on

the decision. The traffic-intersection controller also informs
the AV when the traffic-light will be again green which
helps the AV to enter the intersection at the highest speed.
We model the decision framework of a traffic intersection
controller as a DDMDP, and propose a model-free RL-based
algorithm to compute the optimal policy to decide whether
the traffic-light will be green or red. Numerical results show
that our algorithm outperforms the approach proposed in
[1], and is able to properly adapt its policy with different
traffic congestion. The investigation of the impact of different
reward functions on the policies, along with comparison with
other state-of-the art solutions, has been left for future works.

REFERENCES

[1] E. Salvato, A. Ghosh, G. Fenu, and T. Parisini, “Control of a
mixed autonomy signalised urban intersection: An action-delayed rein-
forcement learning approach,” in 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC). IEEE, 2021, pp. 2042–
2047.

[2] Y. Zhang, C. G. Cassandras, W. Li, and P. J. Mosterman, “A discrete-
event and hybrid traffic simulation model based on simevents for
intelligent transportation system analysis in mcity,” Discrete Event
Dynamic Systems, vol. 29, no. 3, pp. 265–295, 2019.

[3] T. Tettamanti, T. Luspay, B. Kulcsar, T. Peni, and I. Varga, “Robust
Control for Urban Road Traffic Networks,” IEEE Transactions on
Intelligent Transportation Systems, vol. 15, no. 1, pp. 385–398, 2014.

[4] J. L. Fleck, C. G. Cassandras, and Y. Geng, “Adaptive Quasi-Dynamic
Traffic Light Control,” IEEE Transactions on Control Systems Tech-
nology, vol. 24, no. 3, pp. 830–842, 2016.

[5] S.-W. Chiou, “A robust signal control system for equilibrium flow
under uncertain travel demand and traffic delay,” Automatica, vol. 96,
pp. 240–252, 2018.

[6] G. Nilsson and G. Como, “A Micro-Simulation Study of the Gener-
alized Proportional Allocation Traffic Signal Control,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 21, no. 4, pp. 1705–
1715, 2020.

[7] D. Liu, W. Yu, S. Baldi, J. Cao, and W. Huang, “A Switching-
Based Adaptive Dynamic Programming Method to Optimal Traffic
Signaling,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 50, no. 11, pp. 4160–4170, 2020.

[8] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement
learning approach for intelligent traffic light control,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, ser. KDD ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 2496–2505. [Online].
Available: https://doi.org/10.1145/3219819.3220096

[9] M. A. Wiering, “Multi-agent reinforcement learning for traffic light
control,” in Machine Learning: Proceedings of the Seventeenth Inter-
national Conference (ICML’2000), 2000, pp. 1151–1158.

[10] M. Abdoos, N. Mozayani, and A. L. C. Bazzan, “Traffic light control in
non-stationary environments based on multi agent q-learning,” in 2011
14th International IEEE Conference on Intelligent Transportation
Systems (ITSC), 2011, pp. 1580–1585.

[11] T. Chu and J. Wang, “Traffic signal control by distributed Rein-
forcement Learning with min-sum communication,” in 2017 American
Control Conference (ACC), 2017, pp. 5095–5100.

[12] E. Vinitsky, N. Lichtle, K. Parvate, and A. Bayen, “Optimizing mixed
autonomy traffic flow with decentralized autonomous vehicles and
multi-agent rl,” 2020.

[13] E. Vinitsky, A. Kreidieh, L. Le Flem, N. Kheterpal, K. Jang, C. Wu,
F. Wu, R. Liaw, E. Liang, and A. M. Bayen, “Benchmarks for
reinforcement learning in mixed-autonomy traffic,” in Conference on
Robot Learning. PMLR, 2018, pp. 399–409.

[14] K. V. Katsikopoulos and S. E. Engelbrecht, “Markov decision pro-
cesses with delays and asynchronous cost collection,” IEEE Transac-
tions on Automatic Control, vol. 48, no. 4, pp. 568–574, 2003.

[15] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[16] D. Bertsekas, Reinforcement learning and optimal control. Athena
Scientific, 2019.

6




