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Abstract

The thesis is about how perturbations in the initial value y0 or in the coefficient matrix
A propagate along the solutions of n-dimensional linear ordinary differential equations
(ODE) {

y′(t) = Ay(t), t ≥ 0,
y(0) = y0,

where A ∈ Rn×n and y0 ∈ Rn and y(t) = etAy0 is the solution of the equation.

The paper [59] considers a perturbation analysis when the initial value y0 is perturbed
to ỹ0 with relative error

ε =
∥ỹ0 − y0∥

∥y0∥
,

where ∥·∥ is a vector norm on Rn. Due to the perturbation in the initial value, the
solution y(t) = etAy0 is perturbed to ỹ(t) = etAỹ0 with relative error

δ(t) =

∥∥etAỹ0 − etAy0
∥∥

∥etAy0∥
.

In other words, the paper studies the (relative) conditioning of the problem

y0 7→ etAy0.

It describes the relation between the error ε and the error δ(t) by three condition num-
bers namely: the condition number with the direction of perturbation, the condition
number independent of the direction of perturbation and the condition number not only
independent of the specific direction of perturbation but also independent of the specific
initial value. How these condition numbers behave over a long period of time is an
important aspect of the study.

We remark that in literature any relative error perturbation analysis considers the
matrix exponential etA, not the matrix exponential as applied to y0, namely the vector
quantity etAy0. Moreover, it is missing a study of how the conditioning depends on the
time t.

In the thesis, we move towards perturbations in the matrix as well as component-
wise relative errors, rather than normwise relative errors, for perturbations of the initial
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value. The contents of the thesis have given rise to the two papers [27] and [26].

About the first topic of the thesis (whose contents are in [27]), we look over how
perturbations propagate along the solution of the ODE, when it is the coefficient matrix
A rather than the initial value that perturbs. In other words, the interest is to study
the conditioning of the problem

A 7→ etAy0.

In case when the matrix A perturbs to Ã, the relative error is given by

ϵ =

∣∣∣∣∣∣∣∣∣Ã−A
∣∣∣∣∣∣∣∣∣

|||A|||
,

where |||·||| is a matrix norm, and the relative error in the solution of the ODE is given
by

ξ(t) =

∥∥∥etÃy0 − etAy0

∥∥∥
∥etAy0∥

.

The aim is to describe the relation between ϵ and ξ(t). We introduce three condition
numbers similarly to [59]. The analysis of the condition numbers is done for a normal
matrix A and by making use of 2-norm . We give very useful upper and lower bounds on
these three condition numbers and we study their asymptotic behavior as time goes to
infinity. We quote here one of our results about the condition number K(t, A, y0) inde-
pendent of the direction of perturbation. The result is about the asymptotic behavior in
a generic situation for the initial value: if y0 has a nonzero projection on the eigenspaces
of the rightmost eigenvalues, then

K(t, A, y0) ∼ ∥A∥2 t, t → +∞.

In the paper [59], the conditioning of the problem y0 7→ etAy0 has been studied by
considering a normwise relative error. There could be cases when someone is interested
in the relative errors

δl(t) =
|ỹl(t)− yl(t)|

|yl(t)|
, l = 1, . . . , n,

of the perturbed solution components. These componentwise relative errors δl(t) could be
very different from the normwise relative error δ(t). Indeed we can have a small δ(t), but
some large componentwise relative error δl(t). Vice versa, when all the componentwise
relative errors δl(t) are small, δ(t) is also small.
With the motivation that componentwise relative errors give more information than the
normwise relative error, we make a componentwise relative error analysis, which is the
other topic of this thesis (whose contents are in [26]).

We consider perturbations in initial value y0 with normwise relative error ε and the
relative error in the components of the solution of the equation given by the δl(t). The
interest is to study, for the l-th component, the conditioning of the problem

y0 7→ yl(t) = eTl e
tAy0,
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where eTl is the l-th vector of the canonical basis of Rn. We make this analysis for a
diagonalizable matrix A, diagonalizability being a generic situation for the matrix A.
We give two condition numbers: a condition number with the direction of perturbation
and a condition number independent of the direction of perturbation.

We state here one of our results describing, in a generic situation for y0, the long-time
behavior of the condition number Kl(t, A, y0) independent of the direction of perturba-
tion. Suppose that A diagonalizable has a unique real eigenvalue λ1 of multiplicity one,
or a unique pair λ1 and λ2 = λ1 of complex conjugate eigenvalues of multiplicity one,
as rightmost eigenvalues. Let v be an eigenvector of λ1 and let w be the first row of
W = V −1, V being the matrix of the eigenvectors with v as first column. Assume vl ̸= 0.
If wy0 ̸= 0, then

Kl(t, A, y0) →
∥w∥ ∥y0∥
|wy0|

, t → +∞,

when the rightmost eigenvalue is the real eigenvalue and

Kl(t, A, y0) ∼

∥∥∥Re(e√−1ω1tvlw
)∥∥∥ ∥y0∥∣∣∣Re(e√−1ω1tvlw
)
y0

∣∣∣ , t → +∞,

when the rightmost eigenvalues are the complex conjugate pair.
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Chapter 1

Introduction

Numerical analysts have developed a large number of algorithms for solving problems
numerically, not having or difficult to compute analytic solutions. Execution of tedious
and cumbersome calculations have become possible with advancement of the digital com-
puters. However, due to the limited memory of computers it is only possible to store
a finite precision of real numbers i.e we can only give approximations. For example,
we can store 1

3 = 0.33333 . . . , up to a finite number of bits. Representation of floating
points by finite precision causes errors. Such errors pill up to a greater extend when a
large number of computations are made. Hence these errors concern serious attention
otherwise they can lead to irrelevant results.
This issue was initially considered by known mathematician Alan Turing in (1948) (see
[76]). Errors can be of different types like round off errors, truncation errors, discretiza-
tion errors, modeling errors and input errors. After being introduced with errors the
next important question arises in mind is “How to measure the error”? Is the measured
error “big” or “small”? Expressions like “big” or “small” error gives rise to the definition
of relative error since we can only declare a value big or small if we compare it with some
other quantity. This is exactly the definition of relative error, as it compares magnitude
of absolute error to the magnitude of true value.
Let x ∈ R with x ̸= 0 and let x̃ be the approximation of x, the relative error is given by

RelErr(x, x̃) =
AbsErr(x, x̃)

|x|
,

where
AbsErr(x, x̃) = |x̃− x|,

is the absolute error. We care much about the relative error rather than absolute error
since relative error being a dimensionless quantity conveys more meaning. For x ∈ Rn,
we can extend definition of relative error in two ways.
Componentwise relative error: For x ∈ Rn we consider the relative error of each compo-
nent of x. We define the relative error of x, where x is such that xi ̸= 0 for i = 1, . . . , n,
as

RelErr(x, x̃) = max
i=1,...,n

|x̃i − xi|
|xi|

. (1.0.1)

1



1.1. CONDITION NUMBERS 2

Normwise relative error: For a norm ∥.∥ defined on Rn we can mimic the definition for
the scalar case as

RelErr(x, x̃) =
∥x̃− x∥
∥x∥

.

The next question is how these errors affect the computation of a problem?
Suppose that a problem is describe by a function

g : Rm → Rn.

Further, suppose that the computation of the function g is affected by some input per-
turbation. In response to this input perturbation, does the output perturb a little or it
blow up? Studying these questions is known as sensitivity analysis.
In this thesis we are going to study the relation between the relative error in the input
data and the relative error in the output of the problem, when the problem is described
by a n-dimensional linear ordinary differential equation whose solution involves the ma-
trix exponential function.

The rest of this chapter presents succinct definitions which are fundamental for the
whole thesis.

1.1 Condition Numbers

Suppose that X and Y are normed spaces and consider a function

f : X 7→ Y, f(x) = y.

Let the input x be perturbed to x̃ (by finite precision or by some other reason) and let

RelErr(x, x̃) =
∥x̃− x∥
∥x∥

be the normwise relative error of the input.
In correspondence with the input data the output data also perturbs with the following
relative error

RelErr(y, ỹ) =
∥ỹ − y∥
∥y∥

.

How large the magnification of the error is? That is how the perturbation in input data
x affects the output y? We can provide an answer to this question by comparing both
relative errors, i.e by considering the ratio

RelErr(y, ỹ)

RelErr(x, x̃)
.

If this ratio is not large the problem is well conditioned. On the other hand, the bigger
this ratio, the more sensitive with respect to input perturbations the problem in hand
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is. To have more information we bound the error in input by a small number ϵ and
we consider the worst case among all such errors bounded by ϵ. Mathematically, we
consider

sup
RelErr(x,x̃)≤ϵ

RelErr(y, ỹ)

RelErr(x, x̃)
.

Taking one step further, we consider ϵ arbitrarily small by taking the limit as ϵ tending
to 0. This gives rise to the definition of condition number:

condabs(f, x) = lim
ϵ 7→0

sup
RelErr(x,x̃)≤ϵ

RelErr(y, ỹ)

RelErr(x, x̃)
.

The nature of the condition number was introduced by the Alan Turing [76] and
later on by John von Neumann and Herman H. Goldstine [79] in order to understand
the accuracy of the solution of linear systems when solved by some computing machine.
After these fundamental articles condition numbers have been vastly investigated. Peter
Bürgisser and Felipe Cucker mentioned in their book [11]:
A combined search by Mathscinet and Zentralblatt shows more than 800 articles with
expression “condition numbers”.
For a worth reading of this ubiquitous topic see ([15, 20, 36, 49, 53, 64, 65, 69, 85]).
Formal definitions of the absolute and relative condition number are

condabs(f, x) = lim
ϵ7→0

sup
∥∆x∥≤ϵ

∥f(x+∆x)− f(x)∥
∥∆x∥

and

condrel(f, x) = lim
ϵ7→0

sup
∥∆x∥≤ϵ∥x∥

∥f(x+∆x)− f(x)∥ ∥x∥
∥∆x∥ ∥f(x)∥

. (1.1.1)

Clearly, the condition number gives the worst possible magnification of error and quite
obviously it depends upon the norm used.
Observe that

condrel(f, x) = condabs(f, x)
∥x∥

∥f(x)∥
However, it is much more difficult to calculate relative condition number rather than
absolute condition number.
In [65], we find expressions of the condition numbers in terms of the norm of Fréchet
derivative:

condabs(f, x) =
∥∥f ′(x)

∥∥
and

condrel(f, x) =
∥f ′(x)∥ ∥x∥
∥f(x)∥

, (1.1.2)

where the linear map f ′(x) : X 7→ Y is the Fréchet derivative. In computing condition
numbers, either relative or absolute, the actual difficulty is to estimate ∥f ′(x)∥. In [41,
Ch. 3], Nicholas J.Higham has provided algorithms to estimate such quantities for ma-
trices. In general condition numbers are expensive to compute. Being a key concept
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in numerical linear algebra many numerical analysts focus on providing an inexpensive
estimate and bounds on condition numbers . In this thesis we will study condition num-
bers and their long term behavior for a problem modeled by linear ordinary differential
equations. However, our focus is a qualitative study of the condition numbers rather
than the computational aspects.

1.2 Matrix Exponential

A rigorous notion of a function of matrix can be given in several ways. For instance,
let f(x) be a polynomial function. We can define this function for a matrix argument
simply by replacing x by A in the expression for f(x). For a detailed study see [18, 29,
32, 41, 43, 56, 66].
Given a function f(x) that is expressed by a power series, i.e. f(x) =

∑∞
k=0 akx

k, we
can extend it to matrix arguments. In this aspect, much more attention is needed on
convergence issue. We can define f for a matrix input if the spectrum (set of eigenvalues)
of A lies within the radius of convergence of the power series. For example, the logarithm
function

log(I +A) = A− A2

2!
+

A3

3!
− . . .

is defined for ρ(A) < 1, where ρ(A) is the spectral radius of the matrix A. The condition
ρ(A) < 1 is analogous to |x| < 1 valid for the scalar version and it guarantees convergence
of the series. Another example is the matrix exponential function,

eA = I +A+
A2

2!
+

A3

3!
+ . . . , (1.2.1)

which is defined for any matrix A and it is our main focus because of its role in linear
differential equations. The matrix exponential function has attracted attention of many
authors in past few decades (see [3, 12, 35, 41, 47, 62, 70, 73, 77, 87]). Its computation
can be done by dozen of methods and a comprehensive overview of such efforts has been
given by [61]. See also [31].
The definition of the matrix exponential function given by (1.2.1) is equivalent to the
following one

eA = lim
n7→∞

(
I +

A

n

)n

, (1.2.2)

(see [74]).
For more interesting representations of matrix exponential see [41, Ch. 10].
Unlike the scalar version of the exponential, in general for two matrices A and B of the
same dimension we have eA+B ̸= eAeB. Indeed, the following theorem holds.

Theorem 1.2.1. For A,B ∈ Cn×n, eA+B = eAeB if and only if AB = BA.

For a proof see [41, Ch. 10].
The matrix exponential eA+B has been studied by a number of authors. For example
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Trotter in [75] gave a product formula for eA+B. Gantmacher [25] drives some useful
results for eA+B. We refer interesting readers to see [35, 57, 78, 83].

For a n× n diagonalizable matrix A with eigenvalues λ1, λ2, . . . , λn, any function of
matrix f as applied to A is given by

f(A) =
n∑

i=1

f(λi)Pi,

where Pi is the projection matrix on the eigenspace corresponding to the eigenvalue λi.
In particular, for the exponential matrix we have

eA =
n∑

i=1

eλiPi,

which is of our interest.

1.3 Linear Ordinary Differential Equations(ODEs)

Ordinary differential equations are a powerful tool to model real world problems ef-
fectively, see[6, 13, 14, 23, 44, 58, 60] . This thesis considers the following linear n-
dimensional ODE {

y′(t) = Ay(t), t ≥ 0,
y(0) = y0,

(1.3.1)

where A ∈ Rn×n, whose solution is y(t) = etAy0 and analyses the error in the solution
when the matrix A or the initial value y0 are perturbed.
The error analysis when the matrix is perturbed requires the knowledge of Fréchet
derivative of the map A 7→ etA. By the following explicit expression for et(A+B):

et(A+B) = etA +

∫ t

0
e(t−s)ABesAds+O(∥B∥2), (1.3.2)

found in [8], we see that such Fréchet derivative is the linear operator L(t, A, ·) : Rn×n →
Rn×n given by

L(t, A,B) =

∫ t

0
e(t−s)ABesAds. (1.3.3)

Suppose that the matrix A of the linear ODE is perturbed to Ã or the initial value
y0 is perturbed to ỹ0. Let ϵ be the relative error in the matrix perturbation:

ϵ = RelErr(A, Ã) =

∣∣∣∣∣∣∣∣∣Ã−A
∣∣∣∣∣∣∣∣∣

|||A|||
, (1.3.4)
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where |||.||| is a matrix norm and let

ε = RelErr(y0, ỹ0) =
∥ỹ0 − y0∥

∥y0∥
, (1.3.5)

be the relative error in the initial value, where ∥.∥ is a vector norm. In response to a
perturbation in matrix, the solution y(t) of the ODE perturbs to ỹ(t). The Relative
error in the solution is given by δ(t)

δ(t) = RelErr(y(t), ỹ(t)) =
∥ỹ(t)− y(t)∥

∥y(t)∥
, (1.3.6)

Our focus in this thesis is to explore the relation between ϵ or ε and δ(t).

This relative error analysis has not been considered in literature where some authors
only consider absolute errors of perturbed solution arising from perturbed initial value.
For example [45] gives the following bound for the absolute error:

∥ỹ(t)− y(t)∥ ≤ M(t)etα(A) ∥ỹ0 − y0∥ , t ≥ 0,

where α(A) is the spectral abscissa, i.e the maximum real part of eigenvalues of A, and
M(t) grows polynomially with t.
Another bound on the absolute error is the following one:

∥ỹ(t)− y(t)∥ ≤ etµ(A) ∥ỹ0 − y0∥ , t ≥ 0,

where µ(A) is logarithmic norm of A defined as

µ(A) = lim
h7→0+

|||I + hA||| − 1

h
,

where |||.||| is the matrix norm induced by the vector norm. Perturbation analysis of the
matrix exponential etA is also given by [4, 32, 41, 42]. However, these papers ignored
the role of initial value in their analysis, that is part of our study.

As mentioned by [11], one can consider relative error in two ways, componentwise
and normewise. The errors ϵ, ε, and δ(t) are normwise relative errors. In this thesis we
also consider the componentwise relative errors

δl(t) =
|ỹl(t)− yl(t)|

|yl(t)|
, l = 1, . . . , n, (1.3.7)

of the perturbed solution ỹ(t).
The norms play a central role in perturbation theory by associating a single number to
a m× n matrix. That conveys perturbation results immediately. Saying, without norm
the perturbation theory would not be as rich as it is today, is not wrong. Being such an
important tool we can not ignore the role of norm in perturbation theory but still there
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are a few failures of norms. We address one of them, since the norm provides an over-
all size of perturbation but it disregards how the size is allocated among each element.
However, this could be useful and required information in case when data is sparse or
badly-scaled. To overcome this drawback of norms “componentwise perturbation analy-
sis” has became popular among researchers (see [9, 17, 67, 84]). Nicholas J. Higham in
his survey of componentwise perturbation theory [40] provides a brief review of efforts
made for componentwise perturbation theory. In componentwise perturbation theory
we can consider two types of condition numbers mixed and componentwise condition
number, see [11] and for a linear system see [37, 85]. Mixed and the componentwise
condition number, for the structured matrices are given by [30, 84], for Moore-Penrose
inverse and the linear least square problem are given by [17] and for symmetric algebraic
Riccati equation are given by [86].

However, normwise and componentwise relative errors are related in the following
manner.

Remark 1.3.1. For a vector u ∈ Rn not having any zero component, perturbed to a
vector ũ ∈ Rn, we have

∥ũ− u∥
∥u∥

≤ max
i=1,··· ,n

|ũi − ui|
|ui|

and

|ũi − ui|
|ui|

≤ ∥u∥
|ui|

.
∥ũ− u∥
∥u∥

, i = 1, · · · , n.

Above bounds holds for a norm that satisfies

|vi| ≤ ∥v∥ , v ∈ Rn and i = 1, · · · , n,
∥v∥ = ∥(|v1|, · · · , |vn|)∥ , v ∈ Rn

∥v∥ ≤ ∥w∥ , v, w ∈ Rn such that |vi| ≤ |wi| and i = 1, · · · , n.

These conditions are satisfied by p−norms.

1.4 Contents the of Thesis

The thesis is arranged in the following manner.

The contents of the second chapter are based upon a paper by S.Maset [59], it sets
the stage for the rest of chapters. The chapter describes the relation between the error
ε in (1.3.5) on the initial value and the error δ(t) in (1.3.6) on the solution, by three
condition numbers namely: the condition number with direction of perturbation, the
condition number independent of direction of perturbation and the condition number
not only independent of the specific direction of perturbation but also independent of
the specific initial value. How these condition numbers behave in a long period of time
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is an important aspect of the chapter. The analysis of these three condition numbers is
done in case of an n-dimensional ODE (1.3.1) described by a normal matrix.
The novelty of the thesis is given in the third and fourth chapters: The third chapter is
devoted to study how perturbations propagate along the solution of linear ODE, when
these perturbations are considered in the matrix. In other words, it studies the relation
between the error ϵ in (1.3.4) on the matrix and the error δ(t) in (1.3.6) on the solution.
As in the previous chapter 2, the analysis is done for a normal matrix and we introduce
three similar condition numbers. We give very useful upper and lower bounds on these
three condition numbers and we study their asymptotic behavior as time goes to infinity.
To verify our analysis, a number of numerical tests are part of this chapter.

In the fourth chapter of this thesis we make a componentwise perturbation anal-
ysis for the ODE (1.3.1) by taking into account perturbations in the initial value.
In this componentwise perturbation analysis we study the relation between the errors
δl(t), l = 1, . . . , n, in (1.3.7) for the solution and the normwise relative error ε in (1.3.5)
for the initial value. Here the analysis is done for a diagonalizable matrix not only for
normal matrix.

Finally, we have the conclusion section. Which gives a brief summary of the whole
thesis and a few observations for possible arising queries.



Chapter 2

Perturbations in the initial value:
a normwise relative error analysis

This chapter is about the perturbation analysis of the linear ODE (1.3.1) when it is the
initial value that goes under perturbation. i.e we study the conditioning of the problem

y0 7→ etAy0. (2.0.1)

As mentioned in the introductory chapter, the contents of this chapter are based upon
the paper [59]. The chapter gives the error analysis of the linear ODE (1.3.1) defined
by a normal matrix A by introducing three condition numbers. Namely, a condition
number with a specific direction of perturbation of the initial value, a condition number
independent of the direction of perturbation and a condition number independent of the
specific initial value. Then it studies the asymptotic behavior of these three condition
numbers.

Conditioning studies concern relative errors rather than absolute errors. As already
mentioned in Chapter 1, the relative error is a dimensionless quantity and being a dimen-
sionless quantity it conveys more meaning. In order to illustrate the different behaviors
of the relative and the absolute errors, we consider the simple case of a scalar ODE:{

y′(t) = ay(t), t ≥ 0,
y(0) = y0

where a is any real number. The solution of the equation is given by y(t) = eaty0.
The vector y0 ∈ R is a non-zero initial value. Suppose that y0 is perturbed to ỹ0. The
perturbation in the initial value results in a perturbation in the solution y(t), which
takes the form ỹ(t) = eatỹ0. First, we measure the error in the solution by the absolute
error and we have

|ỹ(t)− y(t)| = |eatỹ0 − eaty0| = eat|ỹ0 − y0| (2.0.2)

9
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where |ỹ0 − y0| is the absolute error in the initial value.
By equation (2.0.2), we can observe that the absolute error can be increasing or decreas-
ing with time t, depending upon the sign of a .
Next, we measure the error in the solution by the relative error

δ(t) =
|ỹ(t)− y(t)|

|y(t)|

of this solution. The above expression makes sense because y(t) = eaty0 ̸= 0 since y0 ̸= 0.
On the other hand, let

ε =
|ỹ0 − y0|

|y0|
.

be the relative error in initial value. Now

δ(t) =
|eatỹ0 − eaty0|

|eaty0|
=

|ỹ0 − y0|
|y0|

= ε. (2.0.3)

Equation (2.0.3) shows that the relative error does not change with time for any coeffi-
cient a. By looking at the equation (2.0.2) and (2.0.3), we can conclude that the absolute
and the relative errors behave quite differently.
Next example illustrates the difference of behavior of the errors in case of a system of
ODEs rather than a scalar ODE.

Example 2.0.1. Consider the following linear ODE{
y′(t) = Ay(t), t ≥ 0,
y(0) = y0,

(2.0.4)

with the symmetric matrix

A =

[
−2.505 2.495
2.495 −2.505

]
,

and the initial value
y0 = (1,−1) ,

and the perturbed initial value

ỹ0 = y0 + (0.01, 0.01) .

Making use of the euclidean norm ∥.∥2, the relative error in the initial value is given by

ϵ =
∥ỹ0 − y0∥2

∥y0∥2
and the relative error in the solution is given by

δ(t) =
∥ỹ(t)− y(t)∥2

∥y(t)∥2
.
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The absolute error in ∥ỹ(t)− y(t)∥2 the solution satisfies

∥ỹ(t)− y(t)∥2 ≤ e−0.01t ∥ỹ0 − y0∥2 , (2.0.5)

where λ1 = −0.01 is the maximum eigenvalue of the matrix A. In figure 2.1 and 2.2, we
see the behavior of the relative error and the absolute error, respectively, for t ∈ [0, 3].
We use the MATLAB function expm to compute values of y(t) and ỹ(t). The figure 2.1
shows an explosion in time of the relative error. On the other hand, in the figure 2.2,
we can observe that the absolute error has a slow decrease in time as predicted by (2.0.5).

Even though the matrix A is considered stable because both its eigenvalues are nega-
tive, it is stable only in the sense of the absolute error, but at the same time it is unstable
for the relative error. This gives a better understanding of the difference of behaviors of
two errors. Thus, the propagation in time of the relative error in the initial data needs
to be explored.

Now, we introduce the three condition numbers for the problem (2.0.1). We consider
the more general situation of a linear problem

u 7→ v = Bu (2.0.6)

where B is n× n real matrix. Let ∥.∥ be a vector norm on Rn. With the same symbol
we denote the induced matrix norm on Rn×n. Suppose that the data u ̸= 0 is perturbed
to ũ. In response to this perturbation in the data the solution v ends up with ṽ = Bũ.
We specify the perturbed data in the following manner

ũ = u+ ε ∥u∥ ẑ0,

where the unit vector

ẑ0 =
ũ− u

∥ũ− u∥
,

is the direction of perturbation. The relative error in the data is given by

ε =
∥ũ− u∥
∥u∥

(2.0.7)

and the relative error in the solution is

δ =
∥ṽ − v∥
∥v∥

, (2.0.8)

assuming that v ̸= 0.
The relation between ε and δ is given by

δ =
∥Bẑ0∥ ∥u∥

∥Bu∥
ε =

∥Bẑ0∥
∥Bû∥

ε,
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Figure 2.1: Relative error in solution of equation.
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where û = u
∥u∥ .

We rewrite the above expression as

δ(t) = κ(B, u, ẑ0)ε, (2.0.9)

where

κ(B, u, ẑ0) =
∥Bẑ0∥
∥Bû∥

is called the condition number with direction of perturbation of the problem (2.0.6). It
is not always the case that we have information on the specific direction of perturbation.
In this scenario, we can specify the relation between δ and ε in the following manner

δ ≤ κ(B, u)ε, (2.0.10)

where

κ(A, u) = max
∥ẑ∥=1

κ(B, u, ẑ0) =
∥B∥
∥Bû∥

is called the condition number of the problem (2.0.6) (see[11] for the definition of the
condition number of a general problem). Note that the equality in (2.0.10) holds if the
specific direction of perturbation ẑ0 satisfies

∥B∥ = max
∥ẑ0∥=1

∥Bẑ0∥ = ∥Bẑ0∥ . (2.0.11)

Moreover, we also have
δ(t) ≤ κ(B)ε, (2.0.12)

where
κ(B) = max

∥u∥=1
κ(B, u) = ∥B∥

∥∥B−1
∥∥ .

is called the condition number independent of the data of the problem (2.0.6). We can
see that the equality in (2.0.12) holds if the data u satisfies u = bx, where x ∈ Rn is
such that ∥∥B−1

∥∥ =

∥∥B−1x
∥∥

∥x∥
and the direction of perturbation ẑ0 satisfies (2.0.11).

Note that the problem (2.0.1) is the problem (2.0.6) with B = etA. Hence the three
condition numbers take the following form:

�

K(t, A, y0, ẑ0) = κ(etA, y0, ẑ) =

∥∥etAẑ0∥∥
∥eAtŷ0∥

(2.0.13)

is the condition number with direction of perturbation of the problem (2.0.1).
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�

K(t, A, y0) = κ(etA, y0) =

∥∥etA∥∥
∥etAŷ0∥

(2.0.14)

is the condition number the problem (2.0.1).

�

K(t, A) = κ(etA) =
∥∥etA∥∥∥∥e−tA

∥∥ (2.0.15)

is the condition number independent of the data of the problem (2.0.1).

Now our purpose is to analyze these condition numbers for a normal matrix. Before
starting the analysis it is useful to know some basic definitions and properties of a normal
matrix.

2.1 Normal matrices and their properties

There are several equivalent ways to define a normal matrix. A few comprehensive sur-
veys [22, 24, 34] on normal matrices show a large number of equivalent definitions. For
example, [34] gives a list of 70 conditions. Each condition is equivalent to the basic def-
inition (given below). Later [24] compiled a list of 20 more conditions. The best known
definition of a normal matrix is the following one.

Definition A matrix A ∈ Cn×n is normal if A∗A = AA∗, where A∗ is the conjugate
transpose of the matrix A. For A real, A is normal if ATA = AAT , where AT is the
transpose of A.

� A normal matrix has all eigenvalues non-defective (an eigenvalue is non-defective
if the algebraic and geometric multiplicities are the same), i.e the matrix is diago-
nalizable.

� Moreover, a normal matrix is unitary diagonalizable i.e there exist orthonormal
basis of Cn of eigenvectors of the matrix.

For a worth reading of the topic see [28, 34, 43, 72].
The class of the real normal matrices contains sub-classes of many important matrices
like the orthogonal matrices, symmetric matrices and shifted skew-symmetric matrices.
Remind that a shifted skew-symmetric matrix is a matrix A of the form

A = B + cIn

where c ∈ R and B is skew-symmetric i.e BT = −B. All eigenvalues of a shifted skew-
symmetric matrix have same real parts.
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Let A ∈ Rn×n be a diagonalizable matrix. The matrix A, whose distinct eigenvalues
are λ1, λ2, . . . , λp, can be written as

A =

p∑
i=1

λiPi (2.1.1)

where Pi = uiu
∗
i , i = 1, . . . , p, is the orthogonal projection on the eigenspace of the

eigenvalue λi, ui being the eigenvector relevant to the eigenvalue λi.
More generally, for any complex analytic function f , we have

f(A) =

p∑
i=1

f(λi)Pi. (2.1.2)

The next proposition gives the 2-norm of f(A)u, where u ∈ Rn, in the case where A is,
in addition a normal matrix.

Proposition 2.1.1. We have

∥f(A)u∥22 =
p∑

i=1

|f(λi)|2. ∥Piu∥22 , u ∈ Rn. (2.1.3)

Proof. For v ∈ Cn, we have
∥v∥22 = ⟨v, v⟩ = v∗v,

where ⟨·, ·⟩ is the scalar product on Cn.
Thus

∥f(A)u)∥22 = ⟨
p∑

i=1

f(λi)Piu,

p∑
k=1

f(λk)Pku⟩ =
p∑

i=1

p∑
k=1

f(λi)f(λk)⟨Piu, Pku⟩

Hence, by taking advantage of the fact that Piu and Pku with i ̸= k, i, k = 1, . . . , p, are
orthogonal when A is a normal matrix, we obtain

∥f(A)u)∥22 =
p∑

i=1

f(λi)f(λi)⟨Piu, Piu⟩ =
p∑

i=1

|f(λi)|2 ∥Piu∥22 .

2.2 Condition numbers for a normal matrix

Up to end of this chapter, we consider the matrix A as normal. We denote the spectrum
of the matrix A by Λ

Λ = {λ1, λ2, . . . , λp},
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Figure 2.3: Spectrum of A partitioned by decreasing real parts.

where λ1, . . . , λp are the distinct eigenvalues.
We partitioned the spectrum Λ by decreasing real parts, into subsets Λ1, . . .Λq,

Λj := {λij−1+1, λij−1+2, . . . , λij}, j = 1, . . . , q,

where 0 = i0 < i1 < · · · < iq = p, we have

Re(λij−1+1) = Re(λij−1+2) = · · · = Re(λij ) = rj , j = 1, . . . , q,

with
r1 > r2 > · · · > rq.

See the Figure 3.
For i = 1, . . . , p, as in the previous subsection, Pi denotes the projection on the

eigenspace of the eigenvalue λi. Observe that Pi is an orthogonal projection.
Moreover, for j = 1, . . . , q, let

Qj =
∑
λi∈Λj

Pi,

be the orthogonal projection on the sum of the eigenspces of eigenvalues in Λj .
Observe that, for u ∈ Rn,

∥Qju∥22 =
∑
λi∈Λj

∥Piu∥22 , j = 1, . . . , q (2.2.1)

and
q∑

j=1

∥Qju∥22 = ∥u∥22 . (2.2.2)

The next theorem gives the condition numbers K(t, A, y0, ẑ0),K(t, A, y0) and K(t, A)
for the 2−norm. Since we are using 2-norm, we denote the condition numbers as K2(.)
instead of K(.).
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Theorem 2.2.1. Suppose that the initial value y0 ∈ Rn of the ODE{
y′(t) = Ay(t), t ≥ 0,
y(0) = y0,

(2.2.3)

is not zero and it is perturbed to ỹ0 with the direction of perturbation ẑ0 and relative
error

ϵ =
∥ỹ0 − y0∥2

∥y0∥2
The three condition numbers of the problem (2.0.1) are given by

K2(t, A, y0, ẑ0) =

√
∥Q1ẑ0∥22 +

q∑
j=2

e2(rj−r1)t ∥Qj ẑ0∥22√
∥Q1ŷ0∥22 +

q∑
j=2

e2(rj−r1)t ∥Qj ŷ0∥22

, (2.2.4)

K2(t, A, y0) =
1√

∥Q1ŷ0∥22 +
q∑

j=2
e2(rj−r1)t ∥Qj ŷ0∥22

, (2.2.5)

K2(t, A) = e(r1−rq)t. (2.2.6)

Moreover,

� If ẑ0 lies in the sum of eigenspaces of eigenvalues in Λ1, then equality between
condition numbers (2.2.4) and (2.2.5) holds.

� If y0 lies in sum of eigenspaces of eigenvalues in Λq, then equality between condition
numbers (2.2.5) and (2.2.6) holds. In addition, if ẑ0 lies in the sum of eigenspaces
of eigenvalues in λ1, we have equality between all three condition numbers.

Proof. In case of the matrix exponential function, the equation (2.1.3) gives

∥∥etAu∥∥2
2
=

p∑
i=1

|eλit|2. ∥Piu∥22 =
p∑

i=1

e2Re(λi)t ∥Piu∥22 .

By making use of the equation (2.2.1), we get

∥∥etAu∥∥2
2
=

q∑
j=1

e2rjt
∑
λi∈Λj

∥Piu∥22 =
q∑

j=1

e2rjt ∥Qju∥22 .

Substituting the above expression in the equation (2.0.13), we get

K2(t, A, y0, ẑ0)
2 =

∥∥etAẑ0∥∥2
∥etAŷ0∥2

=

q∑
j=1

e2rjt ∥Qj ẑ0∥22
q∑

j=1
e2rjt ∥Qj ŷ0∥22
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or

K2(t, A, y0, ẑ0)
2 =

q∑
j=1

e2(rj−r1)t ∥Qj ẑ0∥22
q∑

j=1
e2(rj−r1)t ∥Qj ŷ0∥22

=

∥Q1ẑ0∥22 +
q∑

j=2
e2(rj−r1)t ∥Qj ẑ0∥22

∥Q1ŷ0∥22 +
q∑

j=2
e2(rj−r1)t ∥Qj ŷ0∥22

.

Now, we give an expression for K(t, A, y0)2. We have, for any direction of perturbation
ẑ0,

∥Q1ẑ0∥22 +
q∑

j=2

e2(rj−r1)t ∥Qj ẑ0∥22 ≤
q∑

j=1

∥Qj ẑ0∥22 = 1.

by (2.2.2). Hence

K2(t, A, y0)
2 ≤ 1

∥Q1ŷ0∥22 +
q∑

j=2
e2(rj−r1)t ∥Qj ŷ0∥22

.

In addition, if ẑ0 lies in the sum of eigenspaces of eigenvalues in Λ1, i.e Qj ẑ0 = 0 for all
j = 2, . . . , q, we have

∥Q1ẑ0∥22 +
q∑

j=2

e2(rj−r1)t ∥Qj ẑ0∥22 = ∥Q1ẑ0∥22 = 1.

So, we get

K2(t, A, y0)
2 =

1

∥Q1ŷ0∥22 +
q∑

j=2
e2(rj−r1)t ∥Qj ŷ0∥22

.

Now, to give the expression for K2(t, A), observe that, for any initial value y0,

∥Q1ŷ0∥22 +
q∑

j=2

e2(rj−r1)t ∥Qj ŷ0∥22 ≥ e2(rq−r1)t
q∑

j=1

∥Qj ŷ0∥22 = e2(rq−r1)t.

Hence,
K2(t, A)

2 ≤ e2(rq−r1)t.

In addition, if y0 lies in the sum of eigenspaces of eigenvalues in Λq. i.e Qj ŷ0 = 0 for all
j = 1, . . . , q − 1, we have

∥Q1ŷ0∥22 +
q∑

j=2

e2(rj−r1)t ∥Qj ŷ0∥22 = e2(rq−r1)t
q∑

j=1

∥Qj ŷ0∥22 = e2(rq−r1)t.

So, we get
K2(t, A)

2 = e2(rq−r1)t.
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2.3 Asymptotic behavior of condition numbers

We begin the asymptotic analysis by considering the condition number (2.2.5). Observe
that the condition numbers is an increasing function of t and K2(0, A, y0) = 1. Its
asymptotic behavior is given by

K2(t, A, y0) =
1√

∥Q1ŷ0∥22 +
q∑

j=2
e2(rj−r1)t ∥Qj ŷ0∥22

∼ e(r1−rj∗ )t

∥Qj∗ ŷ0∥2
, t → +∞,

where j∗ is the minimum index j = 1, . . . , q such that Qj ŷ0 ̸= 0 and the notation

a(t) ∼ b(t), t → +∞,

means

lim
t→+∞

a(t)

b(t)
= 1.

We can observe an exponential increase of the condition number in case of j∗ > 1.
Now, we give the asymptotic behavior of the condition number (2.2.4). We rewrite
K2(t, A, y0, ẑ0) in the following manner

K2(t, A, y0, ẑ0) = K2(t, A, y0).R2(t, A, ẑ0),

where

R(t, A, ẑ0) =

√√√√∥Q1ẑ0∥22 +
q∑

j=2

e2(rj−r1)t ∥Qj ẑ0∥22.

Observe that R(t, A, ẑ0) is a decreasing function of t with R(0, A, ẑ0) = 1. The asymp-
totic behavior of R(t, A, ẑ0) is given by

R(t, A, ẑ0) ∼ e(rj∗∗−r1)t ∥Qj∗∗ẑ0∥2 , t → +∞,

where, j∗∗ is the minimum index j = 1, . . . , q, such that Qj∗∗ ẑ0 ̸= 0. Ultimately, the
asymptotic behavior of K2(t, A, y0, ẑ0) is given by

K2(t, A, y0, ẑ0) ∼ e(rj∗∗−rj∗ )t
∥Qj∗∗ ẑ0∥2
∥Qj∗ ŷ0∥2

, t → ∞.

We can observe an exponential growth of the condition number in case j∗∗ < j∗ and an
exponential decay in case j∗∗ > j∗.
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2.4 The case q = 1

Observe that
K2(t, A, ŷ0, ẑ0) = 1,

when q = 1, in other words, when

Re(λ1) = Re(λ2) = · · · = Re(λp).

In this case, we have δ(t) = ε for all t ≥ 0. Such a scenario occurs in case of skew-
symmetric matrices. This is because of the fact that skew-symmetric matrices have pure
imaginary eigenvalues. In such a case, all the condition numbers are exactly equal to 1:

K2(t, A, y0, ẑ) = K2(t, A, y0) = K2(t, A) = 1.

It is quite straight forward that δ(t) = ε for all t ≥ 0, holds for a skew-symmetric matrix
A. In fact, in this case etA is an orthogonal matrix and then

δ(t) =

∥∥etA (ỹ0 − y0)
∥∥
2

∥etAy0∥2
=

∥ỹ0 − y0∥2
∥y0∥2

= ε.



Chapter 3

Perturbations in the matrix

After the analysis of how perturbations in the initial value propagates along the solution
of linear ordinary differential equations, we are now interested to look over the same
question when it is the coefficient matrix A in{

y′(t) = Ay(t), t ≥ 0,

y(0) = y0,
(3.0.1)

where A ∈ Rn×n and y0 ∈ Rn, rather than the initial value that perturbs. This chapter
is devoted to give such a perturbation analysis. In short, the interest is to study the
conditioning of the problem

A 7→ etAy0. (3.0.2)

The main feature of the chapter is the perturbation analysis of the equation (3.0.1) when
the matrix A is normal. Moreover, the chapter deals with the asymptotic behavior of
this perturbation. Suppose that the matrix A ̸= 0 is perturbed to Ã. The relative error
is given by

ϵ =

∣∣∣∣∣∣∣∣∣Ã−A
∣∣∣∣∣∣∣∣∣

|||A|||
, (3.0.3)

where |||·||| is a generic matrix norm on Rn×n. The solution y(t) = etAy0 is perturbed to

ỹ(t) = etÃy0 with relative error

ξ(t) =

∥∥∥etÃy0 − etAy0

∥∥∥
∥etAy0∥

, (3.0.4)

where ∥·∥ is a generic vector norm. Observe that ξ(t) is well defined for y0 ̸= 0 since in
this case etAy0 ̸= 0. Moreover we have ξ(0) = 0.
Now, we want to explore the relation between ϵ and ξ(t). As already mentioned in the
first chapter, there are papers (see[2, 45, 51, 54, 81]) in the literature dealing with the
conditioning of the problem

A 7→ etA. (3.0.5)

21
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In other words, they deal with the effect in etA, which is a matrix quantity; of a pertur-
bation in A. These papers do not consider the role of the initial value, as they consider
the following relative error ∣∣∣∣∣∣∣∣∣etÃ − etA

∣∣∣∣∣∣∣∣∣
|||etA|||

,

rather then ξ(t). On the other hand, our focus is to study the conditioning of the
problem (3.0.2), that takes into account the role of the initial value as well. The con-
ditioning of the problem (3.0.2), attained less attention in the literature. To the best
of our knowledge there are two papers [1, 19] dealing with the problem (3.0.2), but the
focus of these papers is on computational aspects rather than a qualitative analysis. For
example, the paper [1], in order to analyze an algorithm for computing etAY0, where Y0
is a matrix, considered the conditioning of the problem (A, Y0) 7→ f(tA)Y0 (relevant to
Frobenius norms), where f is matrix function, and obtained a bound for it. The purpose
of the paper [19], is to develop algorithms for studying the conditioning of the problem
(t, A, y0) 7→ f(t, A)y0. In the present thesis, we are going to analyze the conditioning of
the problem (3.0.2) and to study how it depends upon time t and the initial value y0.
Similar to the case of perturbation in the initial value, we give three condition numbers.

The chapter is structured in following manner and it is substantially the contents
of the paper [27]. In section 3.1, we begin our analysis with the introduction of the
condition numbers of the problem (3.0.2), for a general matrix and for general vector
and matrix norms ∥ · ∥ and ||| · |||. These condition numbers are given in terms of the
Frechét derivative. Hence, to give an introduction of Frechét derivative to the readers, a
brief note on Frechét derivative appears at first. The section 3.2 gives the analysis of the
condition numbers for a normal matrix and for ∥ · ∥ = ∥ · ∥2 and ||| · ||| = ∥ · ∥2 (i.e |||·|||
is the spectral matrix norm, namely the matrix norm induced by the 2−vector norm).
The asymptotic behavior of the condition numbers is given in section 3.3. To testify our
analysis we give a few numerical tests in section 3.4. The conclusion of the chapter is
given in section 3.5.

3.0.1 The Fréchet Derivative

As we have seen in (1.1.2), the Fréchet derivative plays an important role in the definition
of condition numbers (see [3, 4, 38, 41, 46, 63]). The idea of Frechét derivative is to extend
the notion of derivative of a real valued function of a single variable to Banach spaces
(see [7, 33, 55] ). The definition of the Frechét derivative is the following one.
Definition Let U and V be two Banach spaces. The Fréchet derivative of f : U 7→ V
at X ∈ U is defined as a linear map L(X, ·) : U 7→ V such that

f(X + E)− f(X)− L(X,E) = o(∥E∥), E ∈ U and ∥E∥ → 0.

As an easy example of Fréchet derivative, we consider U = V = Rn×n and f(X) = X2.
We have

f(X + E)− f(X) = E2 +XE + EX



23

and we get L(X,E) = XE+EX. Note that it is not always straightforward to determine
the Fréchet derivative.
In the case where f is the exponential function, i.e f(X) = etX , X ∈ U = V = Rn×n,
the Fréchet derivative is given by

L(t,X,E) =

t∫
0

e(t−s)XEesXds. (3.0.6)

as we have seen in (1.3.3). Here is the proof of it.

Proof. Recall that y(t) = etA, if and only if y(t) satisfies the initial value problem (3.0.1).
Now suppose that

X(t) = etA +

t∫
0

e(t−s)AEes(A+E)ds (3.0.7)

Differentiation equation (3.0.7) reveals

X ′(t) = (A+ E)X(t).

Since X(0) = I, so

X(t) = et(A+E) = etA +

t∫
0

e(t−s)ABes(A+E)ds.

By using the above expression inside the integral gives

et(A+E) = etA +

t∫
0

eA(t−s)EesAds+ o(∥E∥2).

Hence, by the definition of the Fréchet derivative we get

L(t,X,E) =

t∫
0

e(t−s)XEesXds.

Since the Fréchet derivative (3.0.6) is a linear operator on Rn×n, we have the Kro-
necker form of this Fréchet derivative.

vec(L(t,X,E)) = M(t, A)vec(E) (3.0.8)

for some matrix M(t, A) ∈ Rn2×n2
, where vec(C), where C ∈ Rn×n, is the the vector of

Rn2
obtained by stacking the columns of C, starting from the first column to the last.

For more details on the Fréchet derivative see ([39, 41, 63]).
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3.0.2 Condition numbers

We specify the perturbed matrix in (3.0.1) as

Ã = A+ ϵ|||A|||B̂, (3.0.9)

where the matrix

B̂ =
Ã−A

|||A|||

is the direction of the perturbation and
∣∣∣∣∣∣∣∣∣B̂∣∣∣∣∣∣∣∣∣ = 1 holds.

We define

K(t, A, y0, B̂) := lim
ϵ→0

ξ(t)

ϵ
, (3.0.10)

where ξ(t) and ϵ are given in (3.0.4) and (3.0.3) respectively, as the condition number
with direction of perturbation of the problem (3.0.2).

The next Theorem gives an expression for such a condition number.

Theorem 3.0.1. We have

K
(
t, A, y0, B̂

)
=

∥∥∥L(t, A, B̂) ŷ0∥∥∥ |||A|||
∥etAŷ0∥

, (3.0.11)

where

L
(
t, A, B̂

)
=

t∫
0

e(t−s)AB̂esAds

is the Fréchet derivative (3.0.6) and

ŷ0 :=
y0
∥y0∥

.

Proof. We have

etÃy0 − etAy0 =
(
et(A+E) − etA

)
y0,

where
E = ϵ|||A|||B̂.

Since (see [41])
et(A+E) − etA = L (t, A,E) +O(|||E|||2), E → 0,

where

E 7→ L (t, A,E) =

t∫
0

e(t−s)AEesAds
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is the Frechét derivative of the map A 7→ etA, we obtain

ξ (t) =

∥∥∥L(t, A, B̂
)
y0

∥∥∥ |||A|||

∥etAy0∥
ϵ+O

(
ϵ2
)
, ε → 0,

and (3.0.11) follows.

We define
K(t, A, y0) := sup

B̂∈Rn×n

|||B̂|||=1

K
(
t, A, y0, B̂

)
(3.0.12)

as the condition number of the problem (3.0.2). We have

K(t, A, y0) =
∥L(t, A, y0)∥

∥etAy0∥
, (3.0.13)

where L(t, A, y0) : Rn×n 7→ Rn×n is the linear operator given by

L(t, A, y0)B̂ = L(t, A, B̂), B ∈ Rn×n

and ∥L(t, A, y0)∥ is the operator norm relevant to the norms ∥ · ∥ and Rn and ||| · ||| on Rn×n.
By using the Kronecker form (3.0.8) we get

L(t, A, B̂)y0 = (yT0 ⊗ In)vec(L(t, A, B̂)) = (yT0 ⊗ In)M(t, A)vec(B̂),

where ⊗ is the Kronecker product. So, we get

∥L(t, A, y0)∥ = ∥(yT0 ⊗ In)M(t, A)∥2 if ∥ · ∥ = ∥ · ∥2 and ||| · ||| = ∥ · ∥F

and

1√
n
∥(yT0 ⊗ In)M(t, A)∥2 ≤ ∥L(t, A, y0)∥ ≤

√
n∥(yT0 ⊗ In)M(t, A)∥2

∥(yT0 ⊗ In)M(t, A)∥1 ≤ ∥L(t, A, y0)∥ ≤ n∥(yT0 ⊗ In)M(t, A)∥1
if ∥ · ∥ = ∥ · ∥1 and ||| · ||| = ∥ · ∥1.

(3.0.14)

The condition number (3.0.13) corresponds to the standard definition of condition num-
ber of a general problem (see [11]) and it is the same condition number considered in the
papers [1] and [19]. The paper [19] used (3.0.14) for estimating the condition number.

Finally, we define
K(t, A) := sup

y0∈Rn

y0 ̸=0

K(t, A, y0) (3.0.15)

as the condition number independent of the data of the problem (3.0.2).
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3.1 Analysis for A normal

From now on, we consider A normal, ∥ · ∥ = ∥ · ∥2 and ||| · ||| = ∥ · ∥2. We write the
condition numbers K( · ) defined in the previous section as K2( · ).

We partition the spectrum Λ := {λ1, . . . λp} of A (see Figure 1) in the subsets Λj , j =
1, . . . , q, in the same manner as in chapter 2.
Recall that in chapter 2 we have introduced, for i = 1, . . . , p, the orthogonal projection
Pi on the eigenspace of the eigenvalue λi and, for j = 1, . . . , q, the orthogonal projection

Qj =
∑
λi∈Λj

Pi.

on the sum of the eigenspaces of eigenvalues in Λj .

3.1.1 The condition number K2

(
t, A, y0, B̂

)
with direction of perturba-

tion

The next theorem provides an expression for K2

(
t, A, y0, B̂

)
.

Theorem 3.1.1. We have

K2

(
t, A, y0, B̂

)
=

√√√√ q∑
j=1

(
e(rj−r1)t

∥∥∥∥Qj

(
t∫
0

e−sAB̂esAds

)
ŷ0

∥∥∥∥
2

)2

√
q∑

j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2 (3.1.1)

and for the numerator in (3.1.1) we have√√√√√ q∑
j=1

e(rj−r1)t

∥∥∥∥∥∥Qj

 t∫
0

e−sAB̂esAds

 ŷ0

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

,

(3.1.2)

where, for λi ∈ Λj, with j ∈ {1, . . . , q}, and λk ∈ Λ,

C(t, λi, λk) := e(rj−r1)t

t∫
0

e(λk−λi)sds. (3.1.3)
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Proof. By recalling (3.0.11), we write

K2

(
t, A, y0, B̂

)
=

∥∥∥∥etA t∫
0

e−sAB̂esAdsŷ0

∥∥∥∥
2

∥etAŷ0∥2
∥A∥2 .

Since A is normal, we have, for u ∈ Rn,

∥etAu∥2 =

∥∥∥∥∥∥
∑
λi∈Λ

etλiPiu

∥∥∥∥∥∥
2

=

√∑
λi∈Λ

(|etλi | ∥Piu∥2)
2
=

√√√√ q∑
j=1

(
erjt ∥Qju∥2

)2
.

Thus ∥∥∥∥∥∥etA
t∫

0

e−sAB̂esAdsŷ0

∥∥∥∥∥∥
2

=

√√√√√ q∑
j=1

erjt

∥∥∥∥∥∥Qj

 t∫
0

e−sAB̂esAds

 ŷ0

∥∥∥∥∥∥
2

2

and ∥∥etAŷ0∥∥2 =
√√√√ q∑

j=1

(
erjt ∥Qj ŷ0∥2

)2
Hence,

K2(t, A, y0, B̂) =

√√√√ q∑
j=1

(
e(rj−r1)t

∥∥∥∥Qj

(
t∫
0

e−sAB̂esAds

)
ŷ0

∥∥∥∥
2

)2

√
q∑

j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2 .

By the orthogonality of the projections Qj , j = 1, . . . , q, we get√√√√√ q∑
j=1

e(rj−r1)t

∥∥∥∥∥∥Qj

t∫
0

e−sAB̂esAdsŷ0

∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
q∑

j=1

e(rj−r1)tQj

t∫
0

e−sAB̂esAdsŷ0

∥∥∥∥∥∥
2

.

Now, by decomposing the matrices e−sA and esA as

e−sA =

p∑
i=1

e−λisPi and esA =

p∑
k=1

eλksPk, (3.1.4)

We obtain (3.1.2).
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The next proposition concerns the functions C(t, λi, λk) defined in (3.1.3).

Proposition 3.1.1. Let j, l ∈ {1, . . . , q}, let λi ∈ Λj and let λk ∈ Λl. Moreover, let

λi = rj +
√
−1ωi and λk = rl +

√
−1ωk

be the cartesian forms of the complex numbers λi and λk, where
√
−1 denotes the imag-

inary unit.
If j ≤ l, then

|C(t, λi, λk)| ≤ e(rj−r1)tt.

If j ≥ l, then
|C(t, λi, λk)| ≤ e(rl−r1)tt.

If λi ̸= λk, then

C(t, λi, λk) =
e(rl−r1)te

√
−1(ωk−ωi)t − e(rj−r1)t

λk − λi
.

If λi = λk, then
C(t, λi, λk) = e(rj−r1)tt.

Proof. We have ∣∣∣∣∣∣
t∫

0

e(λk−λi)sds

∣∣∣∣∣∣ ≤
t∫

0

e(rl−rj)sds

and then

|C(t, λi, λk)| ≤ e(rj−r1)t

t∫
0

e(rl−rj)sds ≤ e(rj−r1)tt

for j ≤ l and

|C(t, λi, λk)| ≤ e(rj−r1)t

t∫
0

e(rl−rj)sds ≤ e(rj−r1)te(rl−rj)tt ≤ e(rl−r1)tt.

for j ≥ l.
If λi ̸= λk, we have

t∫
0

e(λk−λi)sds =
e(λk−λi)t − 1

λk − λi

and then

C(t, λi, λk) = e(rj−r1)t e
(λk−λi)t − 1

λk − λi

= e(rj−r1)t e
(rl−rj)te

√
−1(ωk−ωi)t − 1

λk − λi

=
e(rl−r1)te

√
−1(ωk−ωi)t − e(rj−r1)t

λk − λi
.
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If λi = λk, we have
t∫

0

e(λk−λi)sds = t

and then
C(t, λi, λk) = e(rj−r1)tt.

Remark 3.1.1. Let j, l ∈ {1, . . . , q}, let λi ∈ Λj and let λk ∈ Λl. The previous proposi-
tion shows that:

� if j > 1 and l > 1, then C(t, λi, λk) vanishes as t → +∞ ;

� if (j = 1 or l = 1) and λi ̸= λk, then C(t, λi, λk) is a bounded function of t ≥ 0
and it does not vanish as t → +∞;

� if (j = 1 or l = 1) and λi = λk, i.e. j = l = 1 and λi = λk, then C(t, λi, λk) = t.

3.1.2 The condition number K2(t, A, y0)

The next theorem gives lower and upper bounds for K2(t, A, y0).

Theorem 3.1.2. We have the lower bounds

K2(t, A, y0) ≥ ∥A∥2 t (3.1.5)

and

K2(t, A, y0) ≥
max

λi,λk∈Λ
|D (t, λi, λk)| ∥Pkŷ0∥2√

q∑
j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2 , (3.1.6)

where

D (t, λi, λk) :=


C (t, λi, λk) if λk is real

√
2
2

(
C(t, λi, λk) + C(t, λi, λk)

)
if λk is not real.

Here λk denotes the complex conjugate of λk.
Moreover, we have the upper bound

K2(t, A, y0) ≤

√ ∑
λi∈Λ

∑
λk∈Λ

|C(t, λi, λk)|2 ∥Pkŷ0∥2√
q∑

j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2 . (3.1.7)
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Proof. For the first lower bound (3.1.5), consider numerator of (3.1.1),√√√√√ q∑
j=1

e(rj−r1)t

∥∥∥∥∥∥Qj

 t∫
0

e−sAB̂esAds

 ŷ0

∥∥∥∥∥∥
2

2

substitute B̂ = I and making use of (3.1.6), we get√√√√√ q∑
j=1

e(rj−r1)t
∑
λi∈Λ

∑
λk∈Λ

∥∥∥∥∥∥
 t∫

0

e(λi−λk)sdsPi.Pk

 ŷ0

∥∥∥∥∥∥
2

2

Since PiandPk are orthogonal, only surveying terms are where i = k. For i = k∫ t

0
e(λi−λk)sds = t.

We are left with √√√√ q∑
j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2 t

Substituting in (3.1.1), we get the result.

Now, we prove the second lower bound (3.1.6). We show that

sup
B̂∈Rn×n

∥B̂∥
2
=1

∥∥∥∥∥∥
∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

≥ max
λa,λb∈Λ

|D (t, λa, λb)| ∥Pbŷ0∥2 (3.1.8)

holds for (3.1.1)-(3.1.2). Fix λa, λb ∈ Λ with Pby0 ̸= 0. We consider the four cases:

A λa and λb are real;

B λa is not real and λb is real;

C λa is real and λb is not real;

D λa and λb are not real.

When λa is not real, let λa, where a ∈ {1, . . . , p} \ {a}, be the eigenvalue which is the
complex conjugate of λa. Similarly, when λb is not real, let λb, where b ∈ {1, . . . , p}\{b},
be the eigenvalue which is the complex conjugate of λb.

In the case A, consider a unit vector v̂ ∈ Rn (i.e. ∥v̂∥2 = 1) such that Pav̂ = v̂ and
consider the direction of perturbation

B̂ = v̂

(
Pbŷ0

∥Pbŷ0∥2

)H

.
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For λk ∈ Λ, we have

B̂Pkŷ0 = v̂

(
Pbŷ0

∥Pbŷ0∥2

)H

Pkŷ0 =
1

∥Pbŷ0∥2

(
(Pbŷ0)

H Pkŷ0

)
v̂

=

{
0 if k ̸= b
∥Pbŷ0∥2 v̂ if k = b.

Thus ∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0 = ∥Pbŷ0∥2
∑
λi∈Λ

C(t, λi, λb)Piv̂

= ∥Pbŷ0∥2C(t, λa, λb)v̂

and then ∥∥∥∥∥∥
∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

= ∥Pbŷ0∥2 |C(t, λa, λb)|

= ∥Pbŷ0∥2 |D(t, λa, λb)| .

In the case B, consider a unit vector v̂ ∈ Rn such that (Pa + Pa) v̂ = v̂ and consider the
direction of perturbation

B̂ = v̂

(
Pbŷ0

∥Pbŷ0∥2

)H

.

We have∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0 = ∥Pbŷ0∥2
∑
λi∈Λ

C(t, λi, λb)Piv̂

= ∥Pbŷ0∥2 (C(t, λa, λb)Pav̂ + C(t, λa, λb)Pav̂)

and then ∥∥∥∥∥∥
∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

= ∥Pbŷ0∥2 ∥C(t, λa, λb)Pav̂ + C(t, λa, λb)Pav̂∥2

= ∥Pbŷ0∥2
√

|C(t, λa, λb)|2 ∥Pav̂∥22 + |C(t, λa, λb)|2 ∥Pav̂∥22
= ∥Pbŷ0∥2 |C(t, λa, λb)| = ∥Pbŷ0∥2 |D(t, λa, λb)| ,

where the second last = follows since C(t, λa, λb) and C(t, λa, λb) are complex conjugate.
In the case C, consider a unit vector v̂ ∈ Rn such that Pav̂ = v̂ and consider the

direction of perturbation

B̂ = v̂

( (
Pb + Pb

)
ŷ0∥∥(Pb + Pb

)
ŷ0
∥∥
2

)H

.



3.1. ANALYSIS FOR A NORMAL 32

For λk ∈ Λ, we have

B̂Pkŷ0 =


0 if k ̸= b and k ̸= b

∥Pbŷ0∥22
∥(Pb+Pb)ŷ0∥2

v̂ if k = b

∥Pbŷ0∥
2

2

∥(Pb+Pb)ŷ0∥2

v̂ if k = b.

Since
∥Pbŷ0∥22 +

∥∥Pbŷ0
∥∥2
2
=
∥∥(Pb + Pb

)
ŷ0
∥∥2
2

and ∥Pbŷ0∥2 =
∥∥Pbŷ0

∥∥
2
,

we get

B̂Pkŷ0 =

{
0 if k ̸= b and k ̸= b√

2
2 ∥Pbŷ0∥ v̂ if k = b or k = b.

Thus ∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0

=

√
2

2
∥Pbŷ0∥

∑
λi∈Λ

(
C(t, λi, λb) + C(t, λi, λb)

)
Piv̂

=

√
2

2
∥Pbŷ0∥

(
C(t, λa, λb) + C(t, λa, λb)

)
v̂

and then∥∥∥∥∥∥
∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

=

√
2

2
∥Pbŷ0∥

∣∣C(t, λa, λb) + C(t, λa, λb)
∣∣

= ∥Pbŷ0∥2 |D(t, λa, λb)| .

In the case D, consider a unit vector v̂ ∈ Rn such that (Pa + Pa) v̂ = v̂ and consider the
direction of perturbation

B̂ = v̂

( (
Pb + Pb

)
ŷ0∥∥(Pb + Pb

)
ŷ0
∥∥
2

)H

.

We have ∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0

=

√
2

2
∥Pbŷ0∥2

∑
λi∈Λ

(
C(t, λi, λb) + C(t, λi, λb)

)
Piv̂

=

√
2

2
∥Pbŷ0∥2((

C(t, λa, λb) + C(t, λa, λb)
)
Pav̂ +

(
C(t, λa, λb) + C(t, λa, λb)

)
Pav̂

)
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and then∥∥∥∥∥∥
∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

=

√
2

2
∥Pbŷ0∥2

·
√∣∣C(t, λa, λb) + C(t, λa, λb)

∣∣2 ∥Pav̂∥22 +
∣∣C(t, λa, λb) + C(t, λa, λb)

∣∣2 ∥Pav̂∥22

=

√
2

2
∥Pbŷ0∥2

∣∣C(t, λa, λb) + C(t, λa, λb)
∣∣

= ∥Pbŷ0∥2 |D(t, λa, λb)| .

where the second last = follows since C(t, λa, λb)+C(t, λa, λb) and C(t, λa, λb)+C(t, λa, λb)
are complex conjugate.

Now, (3.1.8) and then the lower bound (3.1.6) follow.

The upper bound (3.1.7) follows by observing that∥∥∥∥∥∥
∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
λi∈Λ

PiB̂

∑
λk∈Λ

C(t, λi, λk)Pkŷ0

∥∥∥∥∥∥
2

=

√√√√√∑
λi∈Λ

∥∥∥∥∥∥PiB̂

∑
λk∈Λ

C(t, λi, λk)Pkŷ0

∥∥∥∥∥∥
2

2

≤

√√√√√∑
λi∈Λ

∥∥∥∥∥∥
∑
λk∈Λ

C(t, λi, λk)Pkŷ0

∥∥∥∥∥∥
2

2

=

√∑
λi∈Λ

∑
λk∈Λ

|C(t, λi, λk)|2 ∥Pkŷ0∥2.

Let j∗ be the minimum index j ∈ {1, . . . , q} such that Qjy0 ̸= 0. This index has been
introduced at page 19 when we have considered the initial value perturbations. The next
theorem gives neater bounds for K2(t, A, y0).

Theorem 3.1.3. We have

K2(t, A, y0) ≥

 max
λi∈Λ

λk∈
q⋃

j=j∗
Λj

|D (t, λi, λk)| ∥Pkŷ0∥2

 · ∥A∥2 e(
r1−rj∗)t

and

K2(t, A, y0) ≤
√
|Λ|

∥Qj∗ ŷ0∥2
∥A∥2 e

(r1−rj∗ )tt,
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where |Λ| is the cardinality of the spectrum Λ.
In the generic situation j∗ = 1 for y0, we have

∥A∥2 t ≤ K2(t, A, y0) ≤
√

|Λ|
∥Q1ŷ0∥2

∥A∥2 t.

Proof. By the lower bound (3.1.6), we obtain

K2(t, A, y0) ≥

max
λi∈Λ

λk∈
q⋃

j=j∗
Λj

|D (t, λi, λk)| ∥Pkŷ0∥2

√
q∑

j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2

≥ e(r1−rj∗)t max
λi∈Λ

λk∈
q⋃

j=j∗
Λj

|D (t, λi, λk)| ∥Pkŷ0∥2 ∥A∥2 .

By the upper bound (3.1.7) and

|C (t, λi, λk)| ≤ t for all λi, λk ∈ Λ (3.1.9)

(see Proposition 3.1.1), we obtain

K2(t, A, y0) ≤

√ ∑
λi∈Λ

∑
λk∈Λ

t2 ∥Pkŷ0∥2√
q∑

j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2
=

√
|Λ|√

q∑
j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2 t

≤
√

|Λ|
∥Qj∗ ŷ0∥2

∥A∥2 e
(r1−rj∗ )tt.

For j∗ = 1 use the lower bound (3.1.5).

The previous theorem shows a linear growth in t of K2(t, A, y0) for j∗ = 1 and an
exponential growth in t of K2(t, A, y0) for j

∗ > 1 (observe that

max
λi∈Λ

λk∈
q⋃

j=j∗
Λj

|D (t, λi, λk)| ∥Pkŷ0∥2

does not vanish as t → +∞: remind Remark 3.1.1).
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Remark 3.1.2. In the situation j∗ > 1, K2(t, A, y0) can be arbitrarily larger than the
lower bound (3.1.5), due to the exponential growth in t of the condition number. For
q > 1, K2(t, A, y0) can be arbitrarily larger than the lower bound (3.1.5) also in the
situation j∗ = 1.

In fact, for q > 1, the lower bound (3.1.6) gives

K2(t, A, y0) ≥

max
λi∈Λ1

λk∈Λ\Λ1

|D (t, λi, λk)| ∥Pkŷ0∥2√
q∑

j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2

and the right-hand side of this inequality is a continuous function of ∥Q1ŷ0∥2, whose
value for ∥Q1ŷ0∥2 = 0 is not smaller than

e(r1−r2)t max
λi∈Λ

λk∈Λ\Λ1

|D (t, λi, λk)| ∥Pkŷ0∥2 ∥A∥2 .

Hence, fixed t ≥ 0 we have, for any c ∈ (0, 1),

K2(t, A, y0) ≥ ce(r1−r2)t max
λi∈Λ

λk∈Λ\Λ1

|D (t, λi, λk)| ∥Pkŷ0∥2 ∥A∥2

for ∥Q1ŷ0∥2 sufficiently small.
This proves the following. Consider y0 with fixed projections Pkŷ0, λk ∈ Λ \Λ1. For

any M > 1, there exists t ≥ 0 such that,

K2(t, A, y0)

∥A∥2 t
≥ M

for ∥Q1ŷ0∥2 sufficiently small.

The next results concerns the case q = 1, namely the case of shifted skew-symmetric
matrices.

Theorem 3.1.4. If q = 1, i.e. A is a shifted skew-symmetric matrix, then

K2(t, A, y0) = ∥A∥2 t.

Proof. For A shifted skew-symmetric, i.e. A = αI + S for some α ∈ R and S ∈ Rn×n

skew-symmetric, by (3.1.1) we get

K2(t, A, y0, B̂) =

∥∥∥∥∥∥
t∫

0

e−sAB̂esAdsŷ0

∥∥∥∥∥∥
2

∥A∥2 ≤

∥∥∥∥∥∥
t∫

0

e−sAB̂esAds

∥∥∥∥∥∥
2

∥A∥2 .

Now,
t∫

0

e−sAB̂esAds =

t∫
0

e−sαe−sSB̂esαesSds =

t∫
0

e−sSB̂esSds
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and then ∥∥∥∥∥∥
t∫

0

e−sAB̂esAds

∥∥∥∥∥∥
2

≤
t∫

0

∥∥e−sS
∥∥
2

∥∥∥B̂∥∥∥
2

∥∥esS∥∥
2
ds = t

since e−sS and esS are orthogonal matrices. Thus

K2(t, A, y0, B̂) ≤ ∥A∥2 t.

We conclude that
K2(t, A, y0) ≤ ∥A∥2 t.

The thesis follows by recalling the lower bound (3.1.5).

When y0 stays in the rightmost eigenspace, we have the same situation of the case
q = 1, namely the condition number is equal to ∥A∥2t.

Theorem 3.1.5. If Q1y0 = y0, then

K2(t, A, y0) = ∥A∥2 t.

Proof. Assume Q1y0 = y0.
In our discussion we are assuming that A is a normal real matrix, but (3.1.1)-(3.1.2)

also holds when A is a normal complex matrix.
So, now, we consider the case where A is a normal complex matrix with a unique

complex eigenvalue λ1 as rightmost eigenvalue. We have, for the numerator (3.1.2) in
the right-hand side of (3.1.1),∥∥∥∥∥∥

∑
λi∈Λ

∑
λk∈Λ

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
λi∈Λ

C(t, λi, λ1)PiB̂ŷ0

∥∥∥∥∥∥
2

=

√∑
λi∈Λ

|C(t, λi, λ1)|2
∥∥∥PiB̂ŷ0

∥∥∥2
2
≤ t

∥∥∥B̂ŷ0

∥∥∥
2
≤ t

by recalling (3.1.9). Thus, since the denominator in the right-hand side of (3.1.1) is 1,
we obtain

K2(t, A, y0, B̂) ≤ ∥A∥2 t.

Now, we pass to consider the case where A is a normal real matrix. Fix a direction
of perturbation B̂. For any ε > 0, there exists a normal complex matrix Aε such that
Aε has a unique complex eigenvalue λ1 as rightmost eigenvalue,∣∣∣K2(t, A, y0, B̂)−K2(t, Aε, y0, B̂)

∣∣∣ ≤ ε

and
∥A−Aε∥2 ≤ ε.
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Thus

K2(t, A, y0, B̂) = K2(t, A, y0, B̂)−K2(t, Aε, y0, B̂) +K2(t, Aε, y0, B̂)

≤ ε+ ∥Aε∥2t
≤ ε+ εt+ ∥A∥2t.

Since ε is arbitrarily small, we obtain

K2(t, A, y0, B̂) ≤ ∥A∥2t.

By using the lower bound (3.1.5), K2(t, A, y0) = ∥A∥2t follows. This is also true when
A is a normal complex matrix.

Observe that now Theorem 3.1.4 becomes a corollary of Theorem 3.1.5.

3.1.3 The condition number K2(t, A) independent of the data

The next theorem gives lower and upper bounds for K2(t, A).

Theorem 3.1.6. We have the lower bound

K2(t, A) ≥ max
λi∈Λ
λk∈Λq

|D(t, λi, λk)| ∥A∥2 e
(r1−rq)t. (3.1.10)

Moreover, we have the upper bound

K2(t, A) ≤
√

max
λk∈Λ

∑
λi∈Λ

|C(t, λi, λk)|2 ∥A∥2 e
(r1−rq)t. (3.1.11)

Proof. First, we prove the lower bound. For any λk ∈ Λq, consider y0 ̸= 0 such that
Pky0 = y0. By (3.1.6) we have

K2(t, A) ≥ K2(t, A, y0) ≥
max
λi∈Λ

|D (t, λi, λk) |

e(rq−r1)t
∥A∥2 .

Now, we prove the upper bound. For the numerator in (3.1.7), we have√∑
λi∈Λ

∑
λk∈Λ

|C(t, λi, λk)|2 ∥Pkŷ0∥2 ≤
√

max
λk∈Λ

∑
λi∈Λ

|C(t, λi, λk)|2

and for the denominator we have√√√√ q∑
j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ≥ e(rq−r1)t.
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The previous theorem shows that K2(t, A) grows exponentially in t for q > 1.
Since (3.1.9) holds, the upper bound (3.1.11) gives this other neater upper bound.

Theorem 3.1.7. We have

K2(t, A) ≤
√

|Λ| ∥A∥2 e
(rq−r1)tt.

Proof. By using (3.1.9) in (3.1.11) we get the result.

3.2 Asymptotic analysis

In this section, we study the asymptotic behavior of the three condition numbersK2(t, A, y0, B̂),
K2(t, A, y0) and K2(t, A), as t → +∞.

We use the following notations.

� Let j∗ be the minimum index j ∈ {1, . . . , q} such that Qjy0 ̸= 0. This index has
been already introduced in subsection 3.1, just before the Theorem 3.1.3 as well
as at page 19.

� Let j∗∗ be the minimum index j ∈ {1, . . . , q} such that QjB̂Pky0 ̸= 0 for some
k ∈ {1, . . . , p}.

� For λi ∈ Λj and λk ∈ Λl, where j, l ∈ {1, . . . , q} with j < l, let

C∞ (λi, λk) :=
1

λi − λk
.

� For λi ∈ Λj and λk ∈ Λl, where j, l ∈ {1, . . . , q} with j > l, let

C∞ (t, λi, λk) :=
e
√
−1(ωk−ωi)t

λk − λi
,

where ωi and ωk are the imaginary parts of λi and λk, respectively, and
√
−1 is

the imaginary unit.

� For λi ∈ Λj and λk ∈ Λl, where j, l ∈ {1, . . . , q} with j < l, let

D∞ (λi, λk) :=


C∞ (λi, λk) if λk is real

√
2
2

(
C∞ (λi, λk) + C∞

(
λi, λk

))
if λk is not real.

� f(t) ∼ g(t), t → +∞, stands for

lim
t→+∞

f(t)

g(t)
= 1.

This notation has been already introduced at page 19.
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� f(t) ≲ g(t), t → +∞, stands for

f(t) ≤ h(t), for t sufficiently large,

and
h(t) ∼ g(t), t → +∞,

for some function h(t). Similarly, f(t) ≳ g(t), t → +∞, stands for

f(t) ≥ h(t), for t sufficiently large,

and
h(t) ∼ g(t), t → +∞,

for some function h(t).

The next proposition, which is a trivial consequence of Proposition 3.1.1, describes
the asymptotic behavior, as t → +∞, of the functions C(t, λi, λk) defined in (3.1.3).

Proposition 3.2.1. Let j, l ∈ {1, . . . , q}, let λi ∈ Λj and let λk ∈ Λl.
If j < l, then

C(t, λi, λk) ∼ e(rj−r1)tC∞(λi, λk), t → +∞.

If j > l, then

C(t, λi, λk) ∼ e(rl−r1)tC∞(t, λi, λk), t → +∞.

If j = l and λi ̸= λk, then

C(t, λi, λk) = e(rj−r1)t e
√
−1(ωk−ωi)t − 1

λk − λi
, t ≥ 0.

If j = l and λi = λk, then

C(t, λi, λk) = e(rj−r1)tt, t ≥ 0.

3.2.1 Asymptotic analysis of the condition number K2(t, A, y0, B̂) with
direction of perturbation

The next theorem describes the asymptotic behavior of K2(t, A, y0, B̂), as t → +∞.

Theorem 3.2.1.
If j∗∗ < j∗, then

K2(t, A, y0, B̂) =

∥∥∥∥∥ ∑
λi∈Λj∗∗

q∑
l=j∗

∑
λk∈Λl

C∞ (λi, λk)PiB̂Pkŷ0

∥∥∥∥∥
2

∥Qj∗ ŷ0∥2
∥A∥2 e

(rj∗∗−rj∗ )t

+o(e(rj∗∗−rj∗ )t), t → +∞.
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If j∗∗ = j∗, then

K2(t, A, y0, B̂) =

∥∥∥∥∥ ∑
λi∈Λj∗

PiB̂Piŷ0

∥∥∥∥∥
2

∥Qj∗ ŷ0∥2
∥A∥2 t+ o(t), t → +∞.

If j∗∗ > j∗, then

K2(t, A, y0, B̂) =

∥∥∥∥∥ q∑
j=j∗∗

∑
λi∈Λj

∑
λk∈Λj∗

C∞ (t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥
2

∥Qj∗ ŷ0∥2
∥A∥2

+o(1), t → +∞.

Proof. We write (3.1.1)-(3.1.2) as

K2(t, A, y0, B) =

∥∥∥∥∥ q∑
j=j∗∗

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λl

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥
2√

q∑
j=j∗

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2 . (3.2.1)

Consider the numerator in (3.2.1). If j∗∗ < j∗, then, by Proposition 3.2.1, the major
contributory terms C(t, λi, λk) as t → +∞ are obtained for j = j∗∗ and then∥∥∥∥∥∥

q∑
j=j∗∗

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λl

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

= e(rj∗∗−r1)t

∥∥∥∥∥∥
∑

λi∈Λj∗∗

q∑
l=j∗

∑
λk∈Λl

C∞ (λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

+o(e(rj∗∗−rj∗ )t), t → +∞.

If j∗∗ = j∗, then the major contributory terms C(t, λi, λk) as t → +∞ are obtained for
j = l = j∗ and λi = λk and then∥∥∥∥∥∥

q∑
j=j∗∗

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λl

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

= e(rj∗−r1)tt

∥∥∥∥∥∥
∑

λi∈Λj∗

PiB̂Piŷ0

∥∥∥∥∥∥
2

+ o
(
e(rj∗−r1)tt

)
, t → +∞.
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If j∗∗ > j∗, the major contributory terms C(t, λi, λk) as t → +∞ are obtained for l = j∗

and then ∥∥∥∥∥∥
q∑

j=j∗∗

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λl

C(t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

= e(rj∗−r1)t

∥∥∥∥∥∥
q∑

j=j∗∗

∑
λi∈Λj

∑
λk∈Λj∗

C∞ (t, λi, λk)PiB̂Pkŷ0

∥∥∥∥∥∥
2

+ o
(
e(rj∗−r1)t

)
t → +∞.

Consider the denominator in (3.2.1). The major contributory term as t → +∞ is
e(rj∗−r1)t ∥Qj∗ ŷ0∥2 and then√√√√ q∑

j=j∗

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∼ e(rj∗−r1)t ∥Qj∗ ŷ0∥2 , t → +∞.

Now, the theorem follows.

Remark 3.2.1. Observe that the generic situation for the initial value y0 and the di-
rection of the perturbation B̂ is j∗ = 1, j∗∗ = 1 and∑

λi∈Λ1

PiB̂Piŷ0 ̸= 0,

where we have

K2(t, A, y0, B̂) ∼

∥∥∥∥∥ ∑λi∈Λ1

PiB̂Piŷ0

∥∥∥∥∥
2

∥Q1ŷ0∥2
∥A∥2 t, t → +∞.

In the non-generic situation j∗ > 1 or j∗∗ > 1, the previous theorem shows that:

� if j∗∗ < j∗ and ∑
λi∈Λj∗∗

q∑
l=j∗

∑
λk∈Λl

C∞ (λi, λk)PiB̂Pkŷ0 ̸= 0,

then K2(t, A, y0, B̂) grows exponentially in t as t → +∞:

K2(t, A, y0, B̂) ∼

∥∥∥∥∥ ∑
λi∈Λj∗∗

q∑
l=j∗

∑
λk∈Λl

C∞ (λi, λk)PiB̂Pkŷ0

∥∥∥∥∥
2

∥Qj∗ ŷ0∥2
∥A∥2 e

(rj∗∗−rj∗ )t

t → +∞;
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� if j∗∗ = j∗ and ∑
λi∈Λj∗

PiB̂Piŷ0 ̸= 0,

then K2(t, A, y0, B̂) grows linearly in t as t → +∞:

K2(t, A, y0, B̂) ∼

∥∥∥∥∥ ∑
λi∈Λj∗

PiB̂Piŷ0

∥∥∥∥∥
2

∥Qj∗ ŷ0∥2
∥A∥2 t, t → +∞;

� if j∗∗ > j∗, then K2(t, A, y0, B̂) oscillates (due to the terms C∞(t, λi, λk) in
(3.2.1)), but it remains bounded as t → +∞.

3.2.2 Asymptotic analysis of the condition number K2(t, A, y0)

The next theorem describes the asymptotic behavior of K2(t, A, y0), as t → +∞.

Theorem 3.2.2. If j∗ = 1, we have

K(t, A, y0) ∼ ∥A∥2 t, t → +∞. (3.2.2)

If j∗ > 1, we have the asymptotic lower bound

K(t, A, y0) ≳

max
λi∈Λ1

λk∈
q⋃

j=j∗
Λj

|D∞ (λi, λk)| ∥Pky0∥2

∥Qj∗ ŷ0∥2
∥A∥2 e(

r1−rj∗)t

t → +∞
(3.2.3)

and the asymptotic upper bound

K(t, A, y0) ≲

√√√√ q∑
l=j∗

∑
λk∈Λl

( ∑
λi∈Λ1

|C∞ (λi, λk)|2
)
∥Pkŷ0∥2

∥Qj∗ ŷ0∥2
∥A∥2 e(

r1−rj∗)t

t → +∞.

(3.2.4)

Proof. We write the right-hand side of the upper bound (3.1.7) as√
q∑

j=1

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λ

|C(t, λi, λk)|2 ∥Pkŷ0∥2√
q∑

j=j∗

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2 .
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Suppose j∗ = 1. The major contributory terms C(t, λi, λk) as t → +∞ in the
numerator are obtained for j = l = 1 and λi = λk and then√√√√ q∑

j=1

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λl

|C(t, λi, λk)|2 ∥Pkŷ0∥22

∼ t ∥Q1ŷ0∥2 , t → +∞.

The major contributory term in the numerator is ∥Q1ŷ0∥2 and then√√√√ q∑
j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∼ ∥Q1ŷ0∥2 , t → +∞.

Thus
K(t, A, y0) ≲ ∥A∥2 t, t → +∞.

Now, (3.2.2) follows by the lower bound (3.1.5).
Suppose j∗ > 1. The major contributory terms C(t, λi, λk) as t → +∞ in the

numerator are obtained for j = 1 and then√√√√ q∑
j=1

∑
λi∈Λj

q∑
l=j∗

∑
λk∈Λl

|C(t, λi, λk)|2 ∥Pkŷ0∥22

∼

√√√√√ q∑
l=j∗

∑
λk∈Λl

 ∑
λi∈Λ1

|C∞(λi, λk)|2
 ∥Pkŷ0∥2, t → +∞.

The major contributory term in the denumerator is e(rj∗−r1)t ∥Qj∗ ŷ0∥2 and then√√√√ q∑
j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∼ e(rj∗−r1)t ∥Qj∗ ŷ0∥2 , t → +∞.

Now, the asymptotic upper bound (3.2.4) follows.
Finally, we prove the asymptotic lower bound (3.2.3). By the lower bound (3.1.6),

we have

K2(t, A, y0) ≥

max
λi∈Λ

λk∈
q⋃

j=j∗
Λj

|D (t, λi, λk)| ∥Pky0∥2

√
q∑

j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2 .

By Proposition 3.2.1, we obtain

max
λi∈Λ

λk∈
q⋃

j=j∗
Λj

|D (t, λi, λk)| ∥Pky0∥2 ∼ max
λi∈Λ1

λk∈
q⋃

j=j∗
Λj

|D∞ (λi, λk)| ∥Pky0∥2 , t → +∞.
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Thus

max
λi∈Λ

λk∈
q⋃

j=j∗
Λj

|D (t, λi, λk)| ∥Pky0∥2

√
q∑

j=1

(
e(rj−r1)t ∥Qj ŷ0∥2

)2 ∥A∥2

∼

max
λi∈Λ1

λk∈
q⋃

j=j∗
Λj

|D∞ (λi, λk)| ∥Pky0∥2

e(rj∗−r1)t ∥Qj∗ ŷ0∥2
∥A∥2 , t → +∞,

and the asymptotic lower bound follows.

Remark 3.2.2. The generic situation for the initial value y0 is j∗ = 1, where we have
the asymptotic behavior (3.2.2) which is independent of y0.

It is interesting to observe that, for the problem (3.0.5), the condition number relevant
to the spectral norm of matrices is ∥A∥2 t in case of a normal matrix A (see [54]). So,
asymptotically as t → +∞, the condition numbers of the problems (3.0.2) and (3.0.5)
are equal for a normal matrix in the generic situation j∗ = 1 for y0.

Remark 3.2.3. In the non-generic situation j∗ > 1 for y0, the previous theorem says
that

K2(t, A, y0) = O
(
e(r1−rj∗)t

)
, t → +∞

1

K2(t, A, y0)
= O

(
e−(r1−rj∗)t

)
, t → +∞.

We also have
logK2(t, A, y0) ∼ (r1 − rj∗) t, t → +∞.

3.2.3 Asymptotic analysis of the condition number K2(t, A) indepen-
dent of the data

The next theorem describes the asymptotic behavior of K2(t, A), as t → +∞.

Theorem 3.2.3. We have the asymptotic lower bound

K(t, A) ≳ max
λi∈Λ1
λk∈Λq

|D∞(λi, λk)| ∥A∥2 e
(r1−rq)t, t → +∞,

and the asymptotic upper bound

K(t, A) ≲ ∥A∥2 e
(r1−rq)tt, t → +∞.
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Proof. By the lower bound (3.1.10), we have

K2(t, A) ≥ max
λi∈Λ
λk∈Λq

|D(t, λi, λk)| ∥A∥2 e
(r1−rq)t

∼ max
λi∈Λ1
λk∈Λq

|D∞(λi, λk)| ∥A∥2 e
(r1−rq)t, t → +∞.

By the upper bound (3.1.11), we have

K2(t, A) ≤
√

max
λk∈Λ

∑
λi∈Λ

|C(t, λi, λk)|2 ∥A∥2 e
(r1−rq)t

∼ ∥A∥2 e
(r1−rq)tt, t → +∞.

Remark 3.2.4. The previous theorem says that

K2(t, A) = O
(
e(r1−rq)tt

)
, t → +∞

1

K2(t, A)
= O

(
e−(r1−rq)t

)
, t → +∞.

We also have
logK2(t, A) ∼ (r1 − rq) t, t → +∞.

3.3 Numerical tests

The numerical tests involve the condition number K2(t, A, y0). We consider skew sym-
metric matrices in the Example 3.3.1, with the aim to confirming Theorem 3.1.4, and
symmetric matrices in the Example 3.3.2, with the aim of confirming Theorem 3.2.2.

Example 3.3.1. Consider the following two cases of a skew symmetric matrix A in
(3.0.1):

� the 2× 2 matrix

A =

[
0 3

−3 0

]
,

which has the pair of pure imaginary eigenvalues ±3
√
−1;

� the 4× 4 matrix

A =


0 2 −1 3

−2 0 −4 1
1 4 0 2

−3 −1 −2 0


which has the two pairs of pure imaginary eigenvalues ±5.7913

√
−1 and

±1.2087
√
−1.
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In Figure 3.1 , for both the skew symmetric matrices and for t in a uniform mesh
over the interval [0, 50], we plot the maximum of the values

ξ(t)
ε

∥A∥2 t
=

K2(t, A, y0, B̂)

∥A∥2 t
+ o(1), ϵ → 0, (3.3.1)

over 10000 random selections of the unit matrix B̂. We consider the initial values
y0 = (1, 2) for the 2 × 2 matrix and y0 = (1, 2, 3, 4) for the 4 × 4 matrix. We take
ϵ = 10−4.

For both matrices, as t varies, the maximum of the values (3.3.1) is always close to
1, confirming Theorem 3.1.4.

For the matrix 2× 2, we observe a slight deviation from 1 as t increases. This is due
to the error o(1), as ϵ → 0, in (3.3.1).

The maximum values for the 2× 2 matrix are closer to 1 than the maximum values
for the matrix 4×4. This is due to the fact that much more than 10000 random selections
of the matrix B̂ are necessary for having maximum values very close to 1, in case of the
matrix 4× 4.

Example 3.3.2. Consider the following two cases of a symmetric matrix A in (3.0.1):

� the 2× 2 matrix

A =

[
−2 1
1 −2

]
,

which has the eigenvalues −1 and −3;

� the 4× 4 matrix

A = 1/2


−1 2 1 0
2 −1 0 −1
1 0 −1 −2
0 −1 −2 −1

 ,

which has the eigenvalues 1, 0, −1 and −2.

In Figure 3.2, for both the symmetric matrices and for t in a uniform mesh over the
interval [0, 15], we plot the maximum of the values (3.3.1) over 10000 random selections
of the unit matrix B̂. We consider the initial values y0 = (1, 2) for the 2× 2 matrix and
y0 = (1, 2, 3, 4) for the 4 × 4 matrix. For such initial values we have j∗ = 1 (the index
j∗ is defined at the beginning of Section 3.2). We take ϵ = 10−4.

For both matrices, as t varies, the maximum of the values (3.3.1) tends asymptotically
to 1, after an initial hump. This confirms Theorem 3.2.2, case j∗ = 1. About the initial
hump, see Remark 3.1.2.

In Figure 3.3, for the 2×2 matrix and for t in a uniform mesh over the interval [0, 15],
we plot the maximum of the values (3.3.1) in 10000 random selections of matrix B̂, when
the initial values are y0 = (1, 1), which is eigenvector of the rightmost eigenvalue −1,
and y0 = (1,−1), which is eigenvector of the other eigenvalue −3. We take ϵ = 10−4.
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Figure 3.1: For the skew symmetric matrices of Example 3.3.1, maximum value of
δ(t)
ϵ

∥A∥2t
in 10000 random selections the matrix B̂, for t varying from 0 to 50 with step 0.5.

The maximum values are the red points. The blue line is the constant value 1. Upper
part: 2× 2 matrix. Lower part: 4× 4 matrix.
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Figure 3.2: For the symmetric matrices of Example 3.3.2, maximum value of
δ(t)
ϵ

∥A∥2t
in

10000 random selections the matrix B̂, for t varying from 0 to 15 with step 0.15. The
maximum values are the red points. The blue line is the constant value 1. Upper part:
2× 2 matrix. Lower part: 4× 4 matrix.
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For the initial value y0 = (1, 1), as t varies, the maximum of the values (3.3.1) is
always close to 1. Since y0 stays in the rightmost eigenspace, we have the same situation
of the case q = 1, namely the condition number is equal to ∥A∥2t (see Theorem 3.1.5).

For the initial value y0 = (1,−1), as t varies, the maximum of the values (3.3.1) does
not tend asymptotically to 1, but it grows indefinitely, by confirming Theorem 3.2.2, case
j∗ > 1.

In Figure 3.4, for the 4 × 4 matrix and for t in a uniform mesh over the interval
[0, 15], we plot the maximum of the values

log δ(t)
ε

(r1 − rj∗)t
=

logK2(t, A, y0, B̂)

(r1 − rj∗)t
+ o(1), ϵ → 0, (3.3.2)

over 10000 random selections of matrix B̂. We consider the initial values y0 = (1, 1,−1, 1),
which is eigenvector of the eigenvalue 0, y0 = (−1, 1,−1,−1), which is eigenvector of
the eigenvalue −1, and y0 = (1,−1,−1,−1), which is eigenvector of the eigenvalue −2.
For these three initial values, we have j∗ = 2, 3, 4, respectively.

For all initial values, as t varies, the maximum of the values (3.3.2) tends asymptot-
ically to 1, by confirming Remark 3.2.3.

3.3.1 Behavior of the condition number for a non-normal matrix

Example 3.3.3. This example shows the behavior of the ration δ(t)
ϵ for two non-normal

matrices A. The matrices are taken from MATLAB gallery test in the following manner

� A = gallery(′lesp′, n) with dimension n = 10.

� A = −gallery(′parter′, n) with dimension n = 10.

We take ϵ = 10−4. In figure 3.5 for both these matrices and for t in a uniform mesh
over the interval [0, 15], we plot the maximum of the values given by (3.3.1) in 10000
random selection of the unit matrix B̂. We consider the initial value y0=(1 2 4 5 6 7 2
4 6 3) for the matrix ’lesp’ and y0=(9 10 2 10 7 1 3 6 10 10) for the matrix ’parter’. In
both cases we observe the maximum of the values (3.3.1) remain close to 1 as t varies.

We conclude this section by illustrating the procedure of the random selection of the
unit matrix B̂, namely the random selection of the direction of perturbation.

Fixed the order n of the matrix, we construct the Singular Value Decomposition

B̂ = UTV

of the matrix B̂, where U and V are n×n randomly selected orthonormal matrices and T
is a n×n diagonal matrix with diagonal (σ1, σ2, . . . , σn), where σ1 = 1 and σ2, . . . , σn ∈
[0, 1] are randomly selected. Our computations are implemented in MATLAB and, for
the random selections of U , V and T , we use:

U = orth(rand(n))

V = orth(rand(n))

T = diag([1, rand(1, n− 1)]),
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Figure 3.3: For the 2× 2 symmetric matrix of Example 3.3.2, maximum value of
δ(t)
ϵ

∥A∥2t

in 10000 random selections the matrix B̂, for t varying from 0 to 15 with step 0.15. The
maximum values are the red points. The blue line is the constant value 1. Upper part:
y0 = (1, 1). Lower part: y0 = (1,−1).
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Figure 3.4: For the 4 × 4 matrix of Example 3.3.2, maximum value of
log

δ(t)
ϵ

(rj−rj∗ )t
in

10000 random selections the matrix B̂, for t varying from 0 to 15 with step 0.15. The
maximum values are the red points. The blue line is the constant value 1. Upper part:
y0 = (1, 1,−1, 1) and j∗ = 2. Middle part: y0 = (−1, 1,−1,−1) and j∗ = 3. Lower part:
y0 = (1,−1,−1,−1) and j∗ = 4.



3.3. NUMERICAL TESTS 52

0 5 10 15

t

0

0.5

1

1.5

2

2.5

0 5 10 15

t

0

0.5

1

1.5

2

2.5

Figure 3.5: For the non normal matrices of Example 3.3.3, maximum value of
δ(t)
ϵ

∥A∥2t

in 10000 random selections the matrix B̂, for t varying from 0 to 15 with step 0.1. The
maximum values are the red points. The blue line is the constant value 1. Upper part:
10× 10 matrix constructed by using A = gallery(′lesp′, 10). Lower part: 10× 10 matrix
constructed by using A = −gallery(′parter′, 10).
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where the MATLAB function orth(C) computes a matrix whose columns are an or-
thonormal basis of the range of C, and the MATLAB function rand(p, q) computes a
p× q matrix of uniformly distributed elements in [0, 1] (rand(p) is rand(p,p)).

By constructing the matrix B̂ as

B̂ =
B

∥B∥2
,

where B is obtained in MATLAB by

B = rand(n),

does not give good results, since this procedure misses some directions of perturbation.

3.4 Conclusion

In this chapter, we have studied the conditioning of the problem

A 7→ etAy0,

namely how a perturbation in the matrix A ∈ Rn×n propagates to etAy0. We considered
the case of a normal matrix A, perturbed to a possibly non-normal matrix, and three
condition numbers have been analyzed:

� the condition number K2(t, A, y0, B̂) with direction of perturbation defined in
(3.0.10);

� the condition number K2(t, A, y0) defined in (3.0.12);

� the condition number K2(t, A) independent of the data defined in (3.0.15).

The euclidean norm is used as vector norm ∥·∥ and the spectral norm ∥·∥2 is used as
matrix norm. The spectrum of the normal matrix A has been partitioned by decreasing
real parts in the subsets Λ1, . . . ,Λq, where the eigenvalues in Λj , j = 1, . . . , q, have real
part rj , and r1 > · · · > rq holds. We denoted by j∗ the minimum index in {1, . . . , q}
such that y0 has a non-zero component on the sum of the eigenspaces relevant to the
eigenvalues in Λj . The generic situation for y0 is j∗ = 1.

Regarding the condition number K2(t, A, y0), we have obtained the following results:

� if A is shifted skew-symmetric, then K2(t, A, y0) is equal to ∥A∥2t .

� If A is not shifted skew-symmetric and j∗ = 1, then K2(t, A, y0) is asymptotically,
as t → +∞, equal to ∥A∥2t.

� IfA is not shifted skew symmetric and j∗ > 1, thenK2(t, A, y0) grows exponentially
in t and logK2(t, A, y0) is asymptotically, as t → +∞, equal to (r1 − rj∗)t.

Regarding the condition number K2(t, A) independent of the data, we obtained the
following result:

� K2(t, A) grows exponentially in t and logK2(t, A) is asymptotically, as t → +∞,
equal to (r1 − rq)t.



Chapter 4

Perturbations in the initial value:
a componentwise relative error
analysis

In chapter 2, we have studied the conditioning of the problem

y0 7→ etAy0,

i.e how the error

ε =
∥ỹ0 − y0∥

∥y0∥
is magnified in the error

δ(t) =
∥ỹ(t)− y(t)∥

∥y(t)∥
,

where ỹ0 is the perturbation of y0 and ỹ(t) is the perturbed solution.
In some cases, we can be interested in the relative errors

δl(t) =
|ỹl(t)− yl(t)|

|yl(t)|
, l = 1, . . . , n (4.0.1)

of the perturbed solution components.
These componentwise relative errors can be very different from the normwise relative
error δ(t). Indeed, we can have a small δ(t), but some large componentwise relative error
δl(t). Viceversa, if all the componentwise relative errors δl(t) are small, δ(t) is also small
(see Remark 1.3.1).
Measuring relative errors by means of the norm has a few drawbacks. One of its draw-
backs is that normwise errors cannot exactly convey the effect of perturbation in small
parts of the data, (either input or output). Since the norm measures the global size of
perturbation. It does not take into account the structure of the data in sense of scaling
and/or sparsity.

54
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To handle the problem arising by the use of a norm in the relative error, two types
of condition numbers, namely mixed condition numbers and componentwise condition
numbers, are emerging in the field of numerical linear algebra. For the mixed condition
numbers, we use the normwise relative error δ(t) for the output data and the following
componentwise relative error

RelErr(y, ỹ) = max
i=1,...,n

|ỹi − yi|
|yi|

given in (1.0.1) for the intput data. At first, a few authors such as Skeel [68], Rohn [67]
has given explicit expression for such condition numbers. Later the subject has been
studied by many other authors for instance see [16, 21, 52, 71, 80]. For the componen-
twise condition numbers, we use componentwise relative errors both for the input and
output data.
In this chapter, we consider yet an other approach where we use the normwise relative
error ε for the input data and the componentwise relative errors given by (4.0.1) rather
than the relative error given by (1.0.1) for the output. We comment that a componen-
twise relative errors δl(t) can give more information than the normwise relative error
δ(t). However the error δl(t) has the drawback to become infinite when the component
yl(t) becomes zero. Note that the normwise relative error δ(t) remains finite if some
component (but not all) of the solution becomes zero.

In this chapter, we assume that the matrix A is diagonalizable, that is a generic
situation for the matrix A. We study the (relative) conditioning of the problem

y0 7→ yl(t) = eTl e
tAy0, (4.0.2)

where eTl is the l-th vector of the canonical basis of Rn, for a given arbitrary component
index l = 1, . . . , n.
The content of this chapter is substantially the paper [26].

The chapter is organized in the following manner. Section 4.1 is devoted to define
two condition numbers. Section 4.2 of the chapter gives the condition numbers for the
diagonalizable matrices. The asymptotic behavior of these condition numbers is given
by section 4.4. To testify our analysis we make a few numerical tests that are given in
section 4.5 of the chapter. Finally, the conclusion is given in section 4.6.

Remark 4.0.1. Since y0 ̸= 0, the error ε is well-defined. On the other hand, it could
happen to have yl(t1) = 0 for some t1 ≥ 0. We could consider the error δl(t1) not defined,
or equal to +∞ and indeterminate for ỹl(t1) ̸= 0 and ỹl(t1) = 0, respectively. However,
we are not interested in studying δl(t) for t close to t1, because the relative error loses
its importance in favor of the absolute error when yl(t) is close to be zero.
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4.1 Condition numbers

By substituting the expression
yl(t) = eTl e

tAy0

in the equation (4.0.1), we get

δl(t) =
|eTl etAỹ0 − eTl e

tAy0|
|eTl etAy0|

,

and by writing the perturbation in y0 as ỹ0 = y0 + ε ∥y0∥ ẑ0, where ẑ0 ∈ Rn is a unit
vector, i.e. ∥ẑ0∥ = 1, we obtain

δl(t) = Kl(t, A, y0, ẑ0)ε, t ≥ 0, (4.1.1)

where

Kl(t, A, y0, ẑ0) =
|eTl etAẑ0|
|eTl etAŷ0|

(4.1.2)

with ŷ0 = y0
∥y0∥ . We define Kl(t, A, y0, ẑ0) as the condition number with direction of

perturbation of the problem (4.0.2). The formula (4.1.1) is of theoretical interest and,
from the practical point of view when there is no information about the direction of
perturbation, we can write

δl(t) ≤ Kl(t, A, y0)ε, t ≥ 0,

where

Kl (t, A, y0) := sup
ẑ∈Rn

∥ẑ∥=1

Kl (t, A, y0, ẑ0) =

∥∥eTl etA∥∥
|eTl etAŷ0|

(4.1.3)

with
∥∥eTl etA∥∥ the matrix norm of the row vector eTl e

tA relevant to the vector norm ∥ · ∥.
We define Kl (t, A, y0) as the condition number of the problem (4.0.2).

In the next section, we analyze the conditions numbers (4.1.2) and (4.1.3) by assum-
ing that A is diagonalizable. This is a generic situation for the matrix A. A generic
situation for A or y0 or ẑ0, means that A satisfy a property which is generic according to
measure theory definition (the complementary property corresponds to a zero measure
subset) or the topological definition (the property corresponds to a dense open subset)
given for example in [10, ch.2] see also [5, 48, 50, 82]. Roughly speaking, a generic
situation considers ” typical” not ”exceptional” cases.

4.2 Condition numbers for a diagonalizable matrix

Let A be a diagonalizable matrix. We partition the spectrum Λ of A in the same manner
as in Chapters 2 and 3.
For i = 1, . . . , p, let v(i,1), . . . , v(i,νi) be a basis for the eigenspace of the eigenvalue λi,
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where νi is the multiplicity of λi. Let V ∈ Cn×n be the matrix of columns v(i,1), . . . , v(i,νi),
i = 1, . . . , p, and let W = V −1. We denote the rows of W by w(i,1), . . . , w(i,νi), i =
1, . . . , p, correspondly to the columns of V . Of course, we have A = V DV −1, where D
is the diagonal matrix with the eigenvalues of A on the diagonal.
Observe that the transposes of rows of W are eigenvectors of AT . In fact, we have

A = V DV −1 = V DW

AT = W TD(W−1)T

AT = W TD(W T )−1.

For i = 1, . . . , p, the projection Pi ∈ Cn×n on the eigenspace of λi is given by

Pi = V (i)W (i), (4.2.1)

where V (i) ∈ Cn×νi is the matrix of columns v(i,1), . . . , v(i,νi) and W (i) ∈ Cνi×n is the
matrix of rows w(i,1), . . . , w(i,νi).
Finally, for i = 1, . . . , p, let ωi be the imaginary part of the eigenvalue λi.

The next theorem gives expressions for the condition numbers Kl(t, A, y0, ẑ0) and
Kl(t, A, y0), l = 1, . . . , p. Here and in the following,

√
−1 denotes the imaginary unit.

Theorem 4.2.1. We have

Kl(t, A, y0, ẑ0) =

∣∣∣∣∣ q∑
j=1

e(rj−r1)t
∑

λi∈Λj

e
√
−1ωiteTl Piẑ0

∣∣∣∣∣∣∣∣∣∣ q∑
j=1

e(rj−r1)t
∑

λi∈Λj

e
√
−1ωiteTl Piŷ0

∣∣∣∣∣
(4.2.2)

and

Kl(t, A, y0) =

∥∥∥∥∥ q∑
j=1

e(rj−r1)t
∑

λi∈Λj

e
√
−1ωiteTl Pi

∥∥∥∥∥∣∣∣∣∣ q∑
j=1

e(rj−r1)t
∑

λi∈Λj

e
√
−1ωiteTl Piŷ0

∣∣∣∣∣
. (4.2.3)

Proof. Since A is diagonalizable, we have

etA =
∑
λi∈Λ

eλitPi =

q∑
j=1

erjt
∑
λi∈Λj

e
√
−1ωitPi (4.2.4)

Substituting (4.2.4), in equation (4.1.2), we obtain

Kl(t, A, y0, ẑ0) =

∣∣∣∣∣ q∑
j=1

erjt
∑

λi∈Λj

e
√
−1ωiteTl Piẑ0

∣∣∣∣∣∣∣∣∣∣ q∑
j=1

erjt
∑

λi∈Λj

e
√
−1ωiteTl Piŷ0

∣∣∣∣∣
=

∣∣∣∣∣ q∑
j=1

e(rj−r1)t
∑

λi∈Λj

e
√
−1ωiteTl Piẑ0

∣∣∣∣∣∣∣∣∣∣ q∑
j=1

e(rj−r1)t
∑

λi∈Λj

e
√
−1ωiteTl Piŷ0

∣∣∣∣∣
.
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Now, to obtain the condition number independent of direction of perturbation, we sub-
stitute expression given by (4.2.4) in (4.1.3) and we get

Kl(t, A, y0) =

∥∥∥∥∥ q∑
j=1

erjt
∑

λi∈Λj

e
√
−1ωiteTl Pi

∥∥∥∥∥∣∣∣∣∣ q∑
j=1

erjt
∑

λi∈Λj

e
√
−1ωiteTl Piŷ0

∣∣∣∣∣
=

∥∥∥∥∥ q∑
j=1

e(rj−r1)t
∑

λi∈Λj

e
√
−1ωiteTl Pi

∥∥∥∥∥∣∣∣∣∣ q∑
j=1

e(rj−r1)t
∑

λi∈Λj

e
√
−1ωiteTl Piŷ0

∣∣∣∣∣
.

Remark 4.2.1.

1. In (4.2.2) and (4.2.3) all the exponentials e(rj−r1)t, j = 2, . . . , q, have rj − r1 < 0 so they
are vanishing functions of t.

2. For a pair of complex conjugate eigenvalues λi and λk = λi, we obtain (since Pk = Pi,
where Pi is the matrix whose elements are the complex conjugates of the elements of Pi)

e
√
−1ωiteTl Pi + e

√
−1ωkteTl Pk = e

√
−1ωiteTl Pi + e

√
−1ωiteTl Pi = 2Re

(
e
√
−1ωiteTl Pi

)
.

Then, in (4.2.2) and (4.2.3) we have, for j = 1, . . . , q and λi ∈ Λj,∑
λi∈Λj

e
√
−1ωiteTl Pi =

∑
λi∈Λj

λi∈R

eTl Pi + 2
∑

λi∈Λj

ωi>0

Re
(
e
√
−1ωiteTl Pi

)
.

4.3 Asymptotic analysis

The next theorem describes the asymptotic behavior, as t → +∞, of the condition
numbers Kl(t, A, y0, ẑ0) and Kl(t, A, y0), l = 1, . . . , p. We use the notation

f(t) ∼ g(t), t → +∞, for lim
t→+∞

f(t)

g(t)
= 1,

already used in the previous chapters.

Theorem 4.3.1. We have

Kl(t, A, y0, ẑ0) ∼ e(rj∗∗−rj∗)t

∣∣∣∣∣ ∑
λi∈Λj∗∗

e
√
−1ωiteTl Piẑ0

∣∣∣∣∣∣∣∣∣∣ ∑λi∈Λj∗
e
√
−1ωiteTl Piŷ0

∣∣∣∣∣
, t → +∞, (4.3.1)

Kl(t, A, y0) ∼ e

(
rj∗−rj∗

)
t

∥∥∥∥∥ ∑
λi∈Λj∗

e
√
−1ωiteTl Pi

∥∥∥∥∥∣∣∣∣∣ ∑λi∈Λj∗
e
√
−1ωiteTl Piŷ0

∣∣∣∣∣
, t → +∞, (4.3.2)
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where

j∗ := min
{
j ∈ {1, . . . , q} : eTl Piŷ0 ̸= 0 for some λi ∈ Λj

}
j∗∗ := min

{
j ∈ {1, . . . , q} : eTl Piẑ0 ̸= 0 for some λi ∈ Λj

}
j
∗
:= min

{
j ∈ {1, . . . , q} : eTl Pi ̸= 0 for some λi ∈ Λj

}
.

Proof. For the numerator or denominator in (4.2.2) we have, with u = ẑ0 and j(u) = j∗∗

or u = ŷ0 and j(u) = j∗,∣∣∣∣∣∣
q∑

j=1

e(rj−r1)t
∑
λi∈Λj

e
√
−1ωiteTl Piu

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

λi∈Λj(u)

e(rj(u)−r1)te
√
−1ωiteTl Piu

∣∣∣∣∣∣ (1 + E)

with

|E| ≤

∣∣∣∣∣ q∑
j=j(u)+1

e(rj−r1)t
∑

λi∈Λj

e
√
−1ωiteTl Piu

∣∣∣∣∣∣∣∣∣∣e(rj(u)−r1)t ∑
λi∈Λj(u)

e
√
−1ωiteTl Piu

∣∣∣∣∣
=

∣∣∣∣∣ q∑
j=j(u)+1

e(rj−rj(u))t ∑
λi∈Λj

e
√
−1ωiteTl Piu

∣∣∣∣∣∣∣∣∣∣ ∑
λi∈Λj(u)

e
√
−1ωiteTl Piu

∣∣∣∣∣
.

Now, by letting t → +∞ (see point 1 in Remark 4.3.1 below), we obtain (4.3.1). Simi-
larly, we obtain (4.3.2).

Remark 4.3.1.

1. In (4.3.1) we assume there exists σ > 0 such that

Aσ =

t ≥ 0 :

∣∣∣∣∣∣
∑

λi∈Λj∗∗

e
√
−1ωiteTl Piẑ0

∣∣∣∣∣∣ ≥ σ and

∣∣∣∣∣∣
∑

λi∈Λj∗

e
√
−1ωiteTl Piŷ0

∣∣∣∣∣∣ ≥ σ

 (4.3.3)

has +∞ as an accumulation point. In (4.3.1), we consider t → +∞ with t ∈ Aσ. Analo-
gously, in (4.3.2) we assume there exists σ > 0 such that

Bσ =

t ≥ 0 :

∣∣∣∣∣∣
∑

λi∈Λj∗

e
√
−1ωiteTl Piŷ0

∣∣∣∣∣∣ ≥ σ

 (4.3.4)

has +∞ as an accumulation point. In (4.3.2), we consider t → +∞ with t ∈ Bσ.

2. We have j
∗ ≤ j∗ and then rj∗ − rj∗ ≥ 0 in the exponential e(rj∗−rj∗)t in (4.3.2) and so it

is an increasing function of t .

3. A generic situation for A, y0 and ẑ0 is j∗ = j∗∗ = j
∗
= 1, where we have, as t → +∞,

Kl(t, A, y0, z0) ∼

∣∣∣∣∣ ∑λi∈Λ1

e
√
−1ωiteTl Piẑ0

∣∣∣∣∣∣∣∣∣∣ ∑λi∈Λ1

e
√
−1ωiteTl Piŷ0

∣∣∣∣∣
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Kl(t, A, y0) ∼

∥∥∥∥∥ ∑λi∈Λ1

e
√
−1ωiteTl Pi

∥∥∥∥∥∣∣∣∣∣ ∑λi∈Λ1

e
√
−1ωiteTl Piŷ0

∣∣∣∣∣
.

The next theorem considers the generic situation for A, y0 and ẑ0 described in point
3 in the previous remark, namely j∗ = j∗∗ = j

∗
= 1.

Theorem 4.3.2. Suppose that A is diagonalizable and it has a unique real eigenvalue
λ1 of multiplicity one, or a unique pair λ1 and λ2 = λ1 of complex conjugate eigenvalues
of multiplicity one, as rightmost eigenvalues. Let v be an eigenvector of λ1 and let w be
the first row of W = V −1, V being the matrix of the eigenvectors with v as first column.
Let l = 1, . . . , n such that vl ̸= 0. If wŷ0 ̸= 0 and wẑ0 ̸= 0, then, as t → +∞,

Kl(t, A, y0, ẑ0) →
|wẑ0|
|wŷ0|

and Kl(t, A, y0) →
∥w∥
|wŷ0|

(4.3.5)

when the rightmost eigenvalue is the real eigenvalue and

Kl(t, A, y0, ẑ0) ∼

∣∣∣Re(e√−1ω1tvlw
)
ẑ0

∣∣∣∣∣∣Re(e√−1ω1tvlw
)
ŷ0

∣∣∣ and Kl(t, A, y0) ∼

∥∥∥Re(e√−1ω1tvlw
)∥∥∥∣∣∣Re(e√−1ω1tvlw
)
ŷ0

∣∣∣
(4.3.6)

when the rightmost eigenvalues are the complex conjugate pair.

Proof. We have (see (4.2.1)) P1 = vw and then eTl P1 = vlw ̸= 0, eTl P1ŷ0 = vlwŷ0 ̸= 0
and eTl P1ẑ0 = vlwẑ0 ̸= 0. So j∗ = j∗∗ = j

∗
= 1 and then (see point 3 in Remark 4.3.1),

as t → +∞,

Kl(t, A, y0, z0) ∼
∣∣eTl P1ẑ0

∣∣∣∣eTl P1ŷ0
∣∣ = |wẑ0|

|wŷ0|

and

Kl(t, A, y0) ∼
∥∥eTl P1

∥∥∣∣eTl P1ŷ0
∣∣ = ∥w∥

|wŷ0|

when the rightmost eigenvalue is the real eigenvalue.
When the rightmost eigenvalues is the complex conjugate pair

Kl(t, A, y0, z0) ∼

∣∣∣(e√−1ω1teTl P1 + e
√
−1ω2teTl P2

)
ẑ0

∣∣∣∣∣∣(e√−1ω1teTl P1 + e
√
−1ω2teTl P2

)
ŷ0

∣∣∣
Since λ1 = λ2, and e

√
−1ω2teTl P2 = e

√
−1ω1teTl P1, we obtain

Kl(t, A, y0, z0) ∼

∣∣∣Re(e√−1ω1tvlw
)
ẑ0

∣∣∣∣∣∣Re(e√−1ω1tvlw
)
ŷ0

∣∣∣
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Similarly, we get

Kl(t, A, y0) ∼

∥∥∥e√−1ω1teTl P1 + e
√
−1ω2teTl P2

∥∥∥∣∣∣(e√−1ω1teTl P1 + e
√
−1ω2teTl P2

)
ŷ0

∣∣∣ =
∥∥∥Re(e√−1ω1tvlw

)∥∥∥∣∣∣Re(e√−1ω1tvlw
)
ŷ0

∣∣∣
Remark 4.3.2.

1. In the theorem we suppose that A is diagonalizable and it has a unique real eigenvalue
of multiplicity one, or a unique pair of complex conjugate eigenvalues of multiplicity one,
as rightmost eigenvalues. This is a generic situation for A. Moreover, also vl ̸= 0 for
any l = 1, . . . , n is a generic situation for A. Finally, wŷ0 ̸= 0 and wẑ0 ̸= 0 are generic
situations for y0 and ẑ0.

2. When the rightmost eigenvalue is the real eigenvalue, there exists σ > 0 such that Aσ = R+

and there exists σ > 0 such that Bσ = R+ (remind (4.3.3) and (4.3.4)). So in (4.3.5)
we can consider t → +∞ without restrictions on t. Moreover, observe that the limits in
(4.3.5) are independent of l (independent of the particular component).

3. In (4.3.6), by setting

vl = |vl|e
√
−1αl , ŵ =

w

∥w∥
=
(
|ŵk| e

√
−1βk

)
k=1,...,n

(observe that ŵ is a unit vector and, if ∥ · ∥ is a p-norm, |ŵk| ≤ 1, k = 1, . . . , n) and

ŵŷ0 = |ŵŷ0| e
√
−1γ(ŷ0), ŵẑ0 = |ŵẑ0|e

√
−1γ(ẑ0),

we can write ∣∣∣Re(e√−1ω1tvlw
)
ẑ0

∣∣∣∣∣Re (e√−1ω1tvlw
)
ŷ0
∣∣ =

|cos (ω1t+ αl + γ (ẑ0))|
|cos (ω1t+ αl + γ (ŷ0))|

· |ŵẑ0|
|ŵŷ0|

,

and ∥∥∥Re(e√−1ω1tvlw
)∥∥∥∣∣Re (e√−1ω1tvlw
)
ŷ0
∣∣ =

∥∥∥(|ŵk| cos (ω1t+ αl + βk))k=1,...,n

∥∥∥
|cos (ω1t+ αl + γ (ẑ0))|

· 1

|ŵŷ0|
,

So, the long-time oscillations of Kl(t, A, y0, ẑ0) and Kl(t, A, y0) are scaled by the factors
|ŵẑ0|
|ŵŷ0| =

|wẑ0|
|wŷ0| and

1
|ŵŷ0| =

∥w∥
|wŷ0| , respectively, independent of l (independent of the particular

component). Moreover, observe that

Aσ = {t ≥ 0 : | cos (ω1t+ αl + γ (ẑ0)) | · |vl| · |wẑ0| ≥ σ

and | cos (ω1t+ αl + γ (ŷ0)) | · |vl| · |wŷ0| ≥ σ}

and
Bσ = {t ≥ 0 : | cos (ω1t+ αl + γ (ŷ0)) | · |vl| · |wŷ0| ≥ σ}

Thus, there exists σ > 0 such that Aσ and Bσ are countable unions of intervals (whose
lengths are uniformly away from zero) with +∞ as an accumulation point.
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4.4 Numerical test

We show two examples with the matrix A taken from the MATLAB gallery test. We use
the euclidean norm ∥ · ∥ = ∥ · ∥2 for measuring the relative error of the perturbation
of y0.

In the first example, we consider A = gallery(′lesp′, n) with dimension n = 10.
The matrix has ten real eigenvalues: the rightmost is −4.5491. In Figures 4.1 and

4.2, for two different initial values y0, the graphs of t 7→ Kl(t, A, y0) =
∥eTl etA∥
|eTl etAŷ0|

(blue

line), l = 1, 2, 3, 4, are plotted along with the constant value ∥w∥
|wŷ0| (red line). Just for a

comparison, in Figure 4.3 we see the graph of t 7→
∥∥eTl etA∥∥, where ∥∥eTl etA∥∥ is the worst

magnification factor of the absolute error at the time t.
In the second example, we consider as A = −gallery(′parter′, n) with dimension

n = 10. The matrix has five complex conjugate pairs of eigenvalues: the rightmost pair
is −0.9066 ±

√
−1 · 2.7709. In Figures 4.4 and 4.5, for two different initial values y0,

we see the graphs of t 7→ Kl(t, A, y0) (blue line), l = 1, 2, 3, 4, along with the graph of

t 7→ ∥Re(e
√
−1ω1tvlw)∥

|Re(e
√

−1ω1tvlw)ŷ0| (red line) and the constant value ∥w∥
|wŷ0| (yellow line). In Figure 4.6,

we see the graph of t 7→
∥∥eTl etA∥∥ for the absolute error.

In both examples, the asymptotic behavior described in Theorem 4.3.2 is confirmed.
Observe that the peaks ofKl(t, A, y0) not shown in Figures 4.2 and 4.4 are not of interest,
because the components of the solution become zero at the peaks and the important error
becomes the absolute error (recall point 1 in Remark 4.0.1). As remarked in point 3 of

Remark 4.3.2, the quantity of interest in Figures 4.2 and 4.4 is the scale factor ∥w∥
|wŷ0| of

the oscillations (the constant yellow line).

4.5 Conclusions

In this chapter we have studied the propagation of a perturbation in the initial value
along the solution of a linear ODE. A normwise relative error is used for the perturbed
initial value and componentwise relative errors are used for the perturbed solution.

� The main result of the paper says that in the generic situation of a linear ODE with
a diagonalizable matrix having a real eigenvalue of multiplicity one, or a complex
conjugate pair of eigenvalues of multiplicity one, as rightmost eigenvalues, the error
in the initial value is magnified in the components of the solution, in the worst case,
by the factor ∥w∥ ∥y0∥

|wy0| over a long-time, where y0 is the initial value and w is the

first row of the inverse of the eigenvectors matrix (i.e. wT is an eigenvector of AT

relevant to the rightmost real eigenvalue or to the rightmost complex conjugate
pair). The magnification factor is the same for all the components. In case of
a complex conjugate pair of eigenvalues, as rightmost eigenvalue, oscillations are
present in the long-time relative error of the perturbed solution.

� In non-generic situation, the magnification in the components of the solution of
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Figure 4.1: Kl(t, A, y0) (blue line), l = 1, 2, 3, 4, along with the constant value ∥w∥
|wŷ0| =

1.0143 (red line) for y0 = (1, . . . , 1). The abscissas are the times t ∈ [0, 3].

Figure 4.2: Kl(t, A, y0) (blue line), for l = 1, 2, 3, 4, along with the constant value
∥w∥
|wŷ0| = 49.3891 (red line) for y0 = ((−1.2)l)l=1,...,10. The abscissas are the times t ∈ [0, 4].
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Figure 4.3:
∥∥eTl etA∥∥ (blue line) for l = 1, 2, 3, 4. The abscissas are the times t ∈ [0, 4].

Figure 4.4: Kl(t, A, y0) (blue line) for l = 1, 2, 3, 4, along with
∥Re(e

√
−1ω1tvlw)∥

|Re(e
√
−1ω1tvlw)ŷ0| (red

line) and the constant value ∥w∥
|wŷ0| = 2.9509 (yellow line) for y0 = (1, . . . , 1). The abscissas

are the times t ∈ [0, 8].
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Figure 4.5: Kl(t, A, y0) (blue line), for l = 1, 2, 3, 4, along with
∥Re(e

√
−1ω1tvlw)∥

|Re(e
√
−1ω1tvlw)ŷ0|

(red line) and the constant value ∥w∥
|wŷ0| = 18.4079 (yellow line) for y0 =

(0.9,−1.4, 0.2, 0.2,−0.2, 0.9,−0.4,−0.8, 0.3, 0.5). The abscissas are the times t ∈ [0, 8].

Figure 4.6:
∥∥eTl etA∥∥ (blue line) for l = 1, 2, 3, 4. The abscissas are the times t ∈ [0, 8].
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the initial value error is, in worst case, scaled by an exponential factor increasing
in time.



Conclusion

This thesis studies how perturbations either in the initial value y0 or in the matrix A
propagate along the solution of the following linear ODE{

y′(t) = Ay(t), t ≥ 0,
y(0) = y0,

(4.5.1)

where A ∈ Rn×n and y0 ∈ Rn and y(t) = etAy0 is the solution of the equation.
The error in input and output data is measured in a relative sense. To quantify errors
we use the euclidean norm as a vector norm and the spectral norm as a matrix norm.
We also give the componentwise relative error analysis, ı.e. by considering how pertur-
bations in the initial value propagate in each component of the solution.

We describe the relation between relative error in the input data and output data by
defining three condition numbers. The three condition numbers are: a condition number
with the direction of perturbation, a condition number independent of the direction of
perturbation (this is the classical definition of condition number for a problem) and a
condition number independent of specific data. We study these condition numbers in
great depth in the case the when the matrix A is a normal matrix for normwise error
analysis and in the case when A is a diagonalizable for the componentwise analysis.
We give very useful upper and lower bounds on these condition numbers. A prominent
aspect of the thesis is the long term behavior of these condition numbers.
Of course, beyond this thesis further work needs to be done. In particular, the general
case of an arbitrary matrix, not necessarily normal, has to be developed.

We comment that the condition numbers developed in this thesis are different from
the condition number one can find in many papers in literature. Perturbation analyses
found in literature do not take into account the role of the initial value which is part of
our study, as we are dealing with a vector quantity etAy0 rather than a matrix quantity
etA. Another difference is that the present study considers the analysis of dependence
of condition numbers on time t which is missing in previous studies.
We address a few observations below.

67



4.5. CONCLUSIONS 68

� Specific structural conditions on the matrix A. For example, consider

A =

a 0 b
0 c 0
b 0 d

 ,

and the perturbation matrix Ã is given by Ã = A + ϵ ∥A∥ B̂, where B̂ is the
direction of perturbation. It makes sense to consider only perturbations in the
non-zero elements of the matrix A, and so consider B̂ possessing the same structure
as of the matrix A i.e.

B̂ =

x 0 y
0 z 0
y 0 w

 .

So, we have condition numbers: K(t, A, y0, B̂) with B̂ with this particular struc-
ture;

K(t, A, y0) = sup
B̂∈Rn×n

|||B̂|||=1

K(t, A, y0, B̂)

where B̂ is taken over all unit matrices B̂ of this particular structure and

K(t, A) := sup
y0∈Rn

y0 ̸=0

K(t, A, y0)

� Suppose we have nonhomogeneous linear ODE i.e.{
y′(t) = Ay(t) + f(t), t ≥ 0,
y(0) = y0,

where

y(t) = etAy0 +

∫ t

0
e(t−s)Af(s)ds (4.5.2)

is the solution of the equation. By considering perturbations in the initial value
y0, we observe that the absolute errors of the solution (4.5.2) and of the solution
of the homogeneous problem remains the same. Since

ỹ(t) = etAỹ0 +

∫ t

0
e(t−s)Af(s)ds,

we have
∥ỹ(t)− y(t)∥ =

∥∥etAỹ0 − etAy0
∥∥ .

On the other hand, the relative errors of homogeneous and nonhomogeneous equa-
tions are different. The relative error for the nonhomogeneous linear ODE is given
by

ζ(t) = K(t, A, y0, ẑ0) ·
∥∥etAy0∥∥
∥y(t)∥

ϵ,
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where ϵ is the relative error in the initial value and K(t, A, y0, ẑ0) is the condition
number with the direction of perturbation of homogeneous problem. The relation
between ζ(t) and ϵ can be interesting and useful to know. We have the same
observation for the case when the matrix perturbs.

� The perturbation analysis of this thesis could be used for inferring something about
the expected behavior of a numerical integration of the ODE (4.5.1) by interpreting
the numerical errors as perturbations in the matrix A.

� In the case of a slowly verying normal matrix A(t), we can make use of results in
this thesis by replacing A(t) by its average over a long period of time

A =
L

T

∫ T

0
A(s)ds

which is a matrix constant in time. Now suppose A(t) is perturbed to

Ã(t) = A(t) + ϵ(t) ∥A(t)∥ B̂

where B̂(t) is slowly verying. In the context where we replace A(t) by its average
A, we can consider the time constant perturbation of A.

Ã = A+ ϵ
∥∥A∥∥ B̂

where ϵ and B̂ are the averages over the time T of ϵ(t) and B̂(t).



Bibliography

[1] A.Al-Mohy and N. Higham. Computing the action of the matrix exponential, with
an application to exponential integrators. SIAM Journal on Scientific Computing,
33(2):488–511, 2011.

[2] A.Al-Mohy and N.Higham. Computing the Frechét derivative of the matrix ex-
ponential, with an application to condition number estimation. SIAM Journal on
Matrix Analysis and Applications, 30:1639–1657, 2008/2009.

[3] A. Al-Mohy and N. Higham. A New Scaling and Squaring Algorithm for the Matrix
Exponential. SIAM Journal on Matrix Analysis and Applications, 31, 01 2009.

[4] A. Al-Mohy, N. Higham, and S. Relton. Computing the Fréchet Derivative of
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