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Abstract: In the present study, the in vitro activity of the sulbactam–durlobactam (SUL–DUR) combi-
nation was evaluated against 141 carbapenem-resistant A. baumannii (CRAb) clinical strains collected
from six Italian laboratories. Over half (54.6%) of these isolates were resistant to colistin. The SUL–
DUR combination was active against these CRAb isolates with MIC50 and MIC90 values of 0.5 mg/L
and 4 mg/L, respectively. Only eleven isolates were resistant to SUL–DUR with MIC values ranging
from 8 to 128 mg/L. The SUL–DUR resistant A. baumannii exhibited several antimicrobial resistance
genes (ARGs) such as blaOXA-20, blaOXA-58, blaOXA-66, blaADC-25, aac(6′)-Ib3 and aac(6′)-Ib-cr and muta-
tions in gyrA (S81L) and parC (V104I, D105E). However, in these isolates, mutations Q488K and Y528H
were found in PBP3. Different determinants were also identified in these CRAb isolates, including
adeABC, adeFGH, adeIJK, abeS, abaQ and abaR, which encode multidrug efflux pumps associated with
resistance to multiple antibacterial agents. This is the first report on the antimicrobial activity of
SUL–DUR against carbapenem-resistant A. baumannii isolates selected from multiple regions in Italy.

Keywords: durlobactam; A. baumannii; WGS

1. Introduction

Acinetobacter baumannii has emerged in the last two decades as one of the major causes
of nosocomial infections associated with significant morbidity and mortality and it has
been recognized by World Health Organization (WHO) as a “critical priority pathogen”
(www.who.int, accesssed on 2 August 2022) [1,2]. A. baumannii is ubiquitous and can
be found in various environmental sources including soil, water, vegetables, meat and
fish [3,4]. In hospital settings, especially in intensive care units, A. baumannii can cause
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ventilator-associated pneumonia and bloodstream infections [5–8]. The success of this
organism is attributed to its ability to survive long-term in hospital environments and its
prodigious capacity to acquire new antimicrobial resistance determinants [9]. The mecha-
nisms of resistance in A. baumannii include enzymatic inactivation by β-lactamases, modifi-
cation of target sites (e.g., Penicillin Binding Proteins, PBPs), alterations of porin proteins
that result in decreased permeability and the upregulation of the activity of multidrug
efflux pumps [9]. Currently, carbapenem-resistant A. baumannii (CRAb) pose a global
threat to human health. CRAb is emerging worldwide, and the majority of these isolates
show multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant
(PDR) phenotypes [10–13]. Currently, few therapeutic options are available for CRAb treat-
ment [14,15]. Generally, colistin (CST), tigecycline and aminoglycosides are used against
MDR A. baumannii, although there are limitations due to toxicity and poor pharmacoki-
netic properties [16]. CST has been successfully used to treat pneumoni and, bloodstream
and meningitis infections caused by CRAb [17,18]. However, colistin-resistant isolates are
emerging worldwide [19]. The intravenous fosfomycin is also used in combination with
colistin or tigecycline or aminoglycoside for the treatment of hospital-acquired pneumonia
caused by CRAb [20]. Cefiderocol, a novel siderophore cephalosporin, has recently been
approved for the treatment of MDR A. baumannii [21]. Durlobactam (DUR), previously
called ETX2514, is a non-β-lactam diazabicyclooctane (DBO) inhibitor with activity against
Ambler class A, C and D β-lactamases [22,23]. Recently, some studies have shown that
sulbactam in combination with durlobactam is active against MDR A. baumannii [24–31].
Sulbactam (SUL) is one of the first β-lactamase inhibitors used in combination with ampi-
cillin for the treatment of class A β-lactamase-producing pathogens. In A. baumannii, SUL
also has antibacterial activity by targeting PBPs (i.e., PBP1a/b and PBP3), enzymes required
for cell wall synthesis [32]. DUR inactivates serine-β-lactamases by forming a reversible
covalent bond with the active site serine [33]. This potent activity of durlobactam allows the
susceptibility of CRAb to sulbactam to be restored [22,27]. The aim of the present study was
to examine the in vitro activity of sulbactam–durlobactam (SUL–DUR) against 141 CRAb
clinical isolates retrospectively collected from six clinical microbiology laboratories located
across the national territories representative of northern, central and southern Italy.

2. Results
2.1. Antimicrobial Susceptibility

Antimicrobial susceptibility of CRAb isolates was previously assessed by each cen-
ter using commercial systems in the context of normal clinical routine. Consistently, the
associated traits were as follows: imipenem and meropenem, MICs > 8 mg/L; gentam-
icin, MICs > 8 mg/L; ciprofloxacin, MICs > 2 mg/L and SXT, MICs > 8 mg/L (based
on trimethoprim concentration). Overall, 64 CRAb isolates were XDR (MIC values for
colistin ≤ 2 mg/L), while 77 CRAb isolates showed a PDR phenotype (MIC values for
colistin > 2 mg/L).

The in vitro activity of SUL–DUR was evaluated for 141 CRAb clinical isolates using
SUL, DUR and CST as comparators. Overall, 77 out 141 (54.6%) A. baumannii isolates exhib-
ited resistance to CST with Minimal Inhibitory Concentration (MIC) values of ≥4 mg/L.
The MIC50 and MIC90 for CST were 4 mg/L and >4 mg/L, respectively (Table 1). As
shown in Table 1, 131 out of 141 CRAb isolates exhibited MICs > 4 mg/L for SUL and the
MIC50 and MIC90 values were 16 mg/L and 128 mg/L, respectively. DUR had MIC50 and
MIC90 values of 64 mg/L and 128 mg/L, respectively. The SUL–DUR combination was
more potent against these CRAb isolates with MIC50 and MIC90 values of 0.5 mg/L and
4 mg/L, respectively. Only eleven isolates exhibited MIC values > 4 mg/L, the preliminary
susceptible breakpoint for SUL–DUR (Table 1) [34,35]. All of the SUL–DUR resistant CRAb
isolates were from the Clinical Microbiology Laboratory of Catania University located in
southern Italy (Table 2).
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Table 1. In vitro activities of sulbactam–durlobactam and comparators against 141 carbapenem-
resistant Acinetobacter baumannii collected in Italy.

Antimicrobial
Agent

Number of Isolates at Each MIC (mg/L)

0.06 0.125 0,25 0.5 1 2 4 >4 8 16 32 64 128 >128 MIC RANGE MIC50 MIC90

SUL / / / / / 2 8 _ 27 45 33 8 13 5 0.06–>128 16 128
DUR / / / / / / / _ 3 7 44 39 47 1 0.06–>128 64 128

SUL–DUR / 4 25 51 30 14 6 _ 4 2 / / / 5 0.06/4–>128/4 0.5 4
CST / 7 6 12 20 19 22 55 _ _ _ _ _ _ 0.06–>4 4 >4

/ = the number of isolates equal to zero. _, no values available. In SUL–DUR combination, DUR was at fixed
concentration of 4 mg/L.

Table 2. MIC distribution of sulbactam–durlobactam and comparators against 141 CRAb isolates by
location of the clinical microbiology laboratory.

City (No. Isolates)
Antimicrobial Agents

Number of Isolates with MIC (mg/L)

0.06 0.125 0.25 0.5 1 2 4 >4 8 16 32 64 128 >128

Pavia (16)
SUL / / / / / / 1 - 1 5 7 2 / /
DUR / / / / / / / - / / / 2 13 1

SUL–DUR / / / 6 6 4 / - / / / / / /
CST / / 1 6 9 / / / - - - - - -

Gemelli (26)
SUL / / / / / 1 2 - 4 11 7 1 / /
DUR / / / / / / / - / 2 6 11 7 /

SUL–DUR / / 3 16 7 / / - / / / / / /
CST / / / / / / 13 13 - - - - - -

PE/AQ (9)
SUL / / / / / / / - / 1 6 1 1 /
DUR / / / / / / / - / / 3 2 4 /

SUL–DUR / / 1 2 2 4 / - / / / / / /
CST / / / / / / / 9 - - - - - -

Roma Tre (20)
SUL / / / / / 1 3 - 3 5 7 1 / /
DUR / / / / / / / - / / 6 6 8 /

SUL–DUR / / 3 7 7 1 2 - / / / / / /
CST / / / / / 7 7 6 - - - - - -

Catania (70)
SUL / / / / / / 2 - 19 23 6 3 12 5
DUR / / / / / / / - 3 5 29 18 15 /

SUL–DUR / 4 18 20 8 5 4 - 4 2 / / / 5
CST / 7 5 6 11 12 2 27 - - - - - -

Pavia, isolates collected from the Microbiology Laboratory of the University of Pavia. Gemelli, isolates collected
from the teaching “Gemelli” Hospital Rome. PE/AQ, isolates collected from Spirito Santo Hospital Pescara
and the University of L’Aquila. Roma Tre, isolates collected from the Clinical Microbiology Laboratory of
Roma Tre University. Catania, isolates collected from the Clinical Microbiology Laboratory of the University of
Catania./= the number of isolates equal to zero. -, no values available. In the SUL–DUR combination, DUR was at
a fixed concentration of 4 mg/L.

2.2. Whole-Genome Sequencing of SUL–DUR Resistant A. baumannii: Resistome and
Virulome Characterization

Whole-genome sequencing of the eleven SUL–DUR resistant CRAb isolates was per-
formed and these isolates were found to encode several antibiotic resistance genes (ARGs)
(Table 3) and virulence-associated genes (VAGs) (Table 4). Among the eleven analyzed
strains, all encoded for the class D β-lactamases OXA-20, OXA-58 and OXA-66, in addition
to ADC-25, a chromosomally encoded class C β-lactamase. While the presence of these
β-lactamases most likely confer resistance to β-lactam antibiotics such as carbapenems,
durlobactam has been shown to effectively inhibit these enzymes, so are not a likely cause
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of the elevated SUL–DUR MICs. Genes that confer resistance to other classes of antibiotics
were also detected including aminoglycoside resistance (aac(6′)-Ib3 and aac(6′)-Ib-cr) and
fluoroquinolone resistance (mutations in gyrA (S81L) and parC (V104I, D105E) (Table 2).
The Insertion Sequence (IS) IS26 and ISAba125 were also identified in all eleven CRAb, and
the transposon Tn6018 was found in two isolates (CT24 and CT58). All of the SUL–DUR-
resistant CRAb showed the same profile of virulence factors (Table 4); however, isolates
CT57 and CT58 possessed, in addition, lpsB and lpx VAGs which confer resistance to CST.
The eleven CRAb isolates showed the presence of AdeABC, AdeFGH, AdeIJK, abeS, abaQ
and abaR multidrug efflux pumps. As shown in Table 4, several genes involved in the
biofilm formation system were also identified. Resistance mediated by quorum sensing is
represented by abaI and abaR genes. The pbpG, also known as PBP7, was also identified in all
SUL–DUR-resistant CRAb (Table 4). The impact of these genes on SUL–DUR susceptibility
is not known.

Table 3. Characterization of Sulbactam–Durlobactam-resistant A. baumannii.

Strain Sequence
Type

Ward Sample
SUL–
DUR
MIC

(mg/L)

SUL
MIC

(mg/L)

DUR
MIC

(mg/L)

CST
MIC

(mg/L)

Resistance Genes Mobile
Genetic

Elements
β-

Lactamases Other

A. baumannii CT20 2 transplant BAL 8 128 128 0.125
blaADC-25
blaOXA-20
blaOXA-58

aac(6′)-Ib-cr
aac(6′)-Ib3
tetA(41)

IS26,
ISAba125

A. baumannii CT57 2 ICU BAL 8 128 64 64
blaADC-25
blaOXA-20
blaOXA-58

aac(6′)-Ib-cr
aac(6′)-Ib3
tetA(41)

Tn6018,
IS26,

ISAba125

A. baumannii CT58 2 ICU wound 8 128 32 32
blaADC-25
blaOXA-20
blaOXA-58

aac(6′-)Ib-cr
aac(6′)-Ib3
tetA(41)

Tn6018,
IS26,

ISAba125

A. baumannii CT68 2 ICU blood 8 128 64 0.25
blaADC-25
blaOXA-20
blaOXA-58

aac(6′)-Ib-cr
aac(6′)-Ib3

sul1

IS26,
ISAba125

A. baumannii CT24 2 ICU blood 16 64 128 0.5

blaADC-25
blaOXA-20
blaOXA-58
blaOXA-66

aac(6′)-Ib-cr
aac(6′)-Ib3

qacE
sul1

gyrA (S81L)
parC(V104I, D105E)

IS26,
ISAba125

A. baumannii CT25 2 ICU catheter 16 128 64 1

blaADC-25
blaOXA-20
blaOXA-58
blaOXA-66

aac(6′)-Ib-cr
aac(6′)-Ib3

sul1

IS26,
ISAba125

A. baumannii CT26 2 surgery bile >128 >128 64 0.5

blaADC-25
blaOXA-20
blaOXA-58
blaOXA-66

aac(6′)-Ib-cr
aac(6′)-Ib3

qacE
sul1

gyrA (S81L)
parC (V104I, D105E)

IS26,
ISAba125

A. baumannii CT29 2 ICU exudate >128 >128 128 1

blaADC-25
blaOXA-20
blaOXA-58
blaOXA-66

aac(6′)-Ib-cr
aac(6′)-Ib3

qacE
sul1

gyrA (S81L)
parC (V104I, D105E)

IS26,
ISAba125

A. baumannii CT30 20 ICU catheter >128 >128 32 1

blaADC-25
blaOXA-20
blaOXA-58
blaOXA-66

aac(6′)-Ib-cr
aac(6′)-Ib3

qacE
sul1

gyrA (S81L)
parC (V104I, D105E)

IS26,
ISAba125
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Table 3. Cont.

Strain Sequence
Type

Ward Sample
SUL–
DUR
MIC

(mg/L)

SUL
MIC

(mg/L)

DUR
MIC

(mg/L)

CST
MIC

(mg/L)

Resistance Genes Mobile
Genetic

Elements
β-

Lactamases Other

A. baumannii CT31 20 ICU pus >128 >128 128 0.125

blaADC-25
blaOXA-20
blaOXA-58
blaOXA-66

aac(6′)-Ib-cr
aac(6′)-Ib3

qacE
sul1

gyrA (S81L)
parC(V104I, D105E)

IS26,
ISAba125

A. baumannii CT32 20 ICU BAL >128 >128 128 1

blaADC-25
blaOXA-20
blaOXA-58
blaOXA-66

aac(6′)-Ib-cr
aac(6′)-Ib3

qacE
sul1

gyrA (S81L)
parC (V104I, D105E)

IS26,
ISAba125

Table 4. Virulence factors encoded by the eleven A. baumannii isolates resistant to SUL–DUR.

SUL–DUR-Resistant A. baumannii
(Strains No.: CT20, CT24, CT25, CT26, CT29, CT30, CT31, CT32, CT57, CT58, CT68)

Virulence-Associated Genes Virulence Factors

adeA, adeC, adeF, adeG, adeH, adeI, adeK, adeL,
adeN, adeJ, adeR

RND efflux pump AdeABC, AdeFGH
and AdeIJK

abeS SMR family of transporter efflux pumps
abaQ, abaF MFS transporters
plc, plcD Phospholipase

lpsB (only in CT57 and CT58) Lipopolysaccharide synthesis (mutations are
involved in CST resistance)

lpxA, lpxB, lpxC, lpxD, lpxL, lpxM (only in CT57
and CT58)

Biosynthesis of lipid A (mutations are involved
in CST resistance)

barA, barB
basA, basB, basC, basD, basF, basG, basH, basI, basJ

bauA, bauB, bauC, bauD, bauE, bauF
entE

hemO

Iron uptake: acinetobactin and heme utilization

bap, pgaA, pgaB, pgaC, pgaD, csuA, csuB, csuC,
csuD, csuE, bfmR, bfmS

Biofilm formation system and
cell–cell adhesion

abaI, abaR Quorum sensing
pbpG (or PBP7) and PBP3Q488K and PBP3Y528H Penicillin-binding protein

katA A secondary catalase/peroxidase
RND, resistant-nodulation division. SMR, small multidrug resistance. MFS, major facilitator superfamily.

2.3. Molecular Analysis of PBP-3 Gene

The amplification of the PBP-3 gene of the eleven SUL–DUR-resistant A. baumannii iso-
lates gave an amplicon of about 1800 bp which was entirely sequenced. In all A. baumannii
analyzed, the PBP3 showed the following amino acid substitutions: Q488K and Y528H.

3. Discussion

The production of carbapenem-hydrolysing β-lactamases is one of the most common
mechanisms responsible for carbapenem resistance in A. baumannii [10]. Several carbapene-
mases have been identified in A. baumannii, in particular, serine β-lactamases, belonging to
class D and metallo-β-lactamases (class B enzymes). Nevertheless, metallo-β-lactamases
are very rare in this microorganism [10]. However, in addition to β-lactamases, other
mechanisms of resistance to carbapenems, including overexpression of efflux pumps, the
reduction or inactivation of the expression of porins and the modification in the expression
or synthesis of new PBPs, are found in A. baumannii isolates [10]. In the 141 A. bauman-
nii analyzed in the present study, class C and D β-lactamases such as OXA-23, OXA-58,
OXA-66 (OXA-51-like enzyme), OXA-82 (OXA-51-like enzyme) and ADC-25 were previ-
ously identified [36–47]. The blaOXA-types are, usually, flanked by one or two copies of
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the insertion sequences (i.e., ISAba1, ISAba125) which are located in opposite orientations.
These ISAba insertion sequences enhance the expression of blaOXA genes and they give
genetic plasticity to A. baumannii species [48]. Herein, we have demonstrated potent in vitro
activity of the SUL–DUR combination against 92% of the CRAb clinical isolates collected
from a range of geographical regions within Italy. Of note, SUL–DUR demonstrated antimi-
crobial activity against both OXA-23- and OXA-58-producing isolates. Moreover, all but
two of the colistin-resistant isolates (more than 50% of total isolates) were susceptible to
the SUL–DUR combination. Eleven isolates (all from the Microbiology Clinical Laboratory
of Catania University) were resistant to SUL–DUR, with most of them belonging to ST2
(n = 8) and showing a MIC range of 8–>128 mg/L. Two of these isolates were also resistant
to CST. The whole genome analysis of the eleven SUL–DUR-resistant CRAb showed the
presence of several ARGs, including blaOXA-20 (blaOXA-58 like gene), blaOXA-58, blaADC-25,
aac(6′)Ib-cr, aac(6′)-Ib3, and tetA(41), a tetracycline efflux pump protein closely related to
Tet(39) often found in Acinetobacter spp. [49]. Multiple VAGs were also found in these
isolates. The multidrug efflux systems (RND, SMR, MFS families) are associated with
multiple resistance mechanisms which are capable of extruding a broad range of struc-
turally unrelated compounds [50–52]. The contribution of these ARGs and VAGs to the
SUL–DUR-resistant phenotype seen in these isolates is not known. However, in the eleven
SUL–DUR-resistant A. baumannii we found Q488K and Y528H mutations in PBP3. To date,
reports of SUL–DUR resistance have been rare and resistance is usually attributed to the
presence of metallo-β-lactamases, which DUR does not inhibit, or to mutations near the
active site of PBP3, the target of sulbactam [24–26]. Few therapeutic choices are available
to treat CRAb isolates [14,16,53]. CRAb pneumonia is a major clinical issue with unmet
therapeutic needs; in fact, both colistin and tigecycline did not reach a satisfactory epithelial
lining fluid concentration and cefiderocol showed disappointing clinical outcomes [54].
DUR displayed an acceptable ratio of epithelial lining fluid to plasma concentrations of 0.37
while SUL reached a 0.5 ratio [34,55]. Another important clinical issue to consider is that
the SUL–DUR combination is expected to have a lower degree of nephrotoxicity compared
to CST (ATTACK Trial. Available online: https://investors.entasistx.com/news-releases/
news-release-details/entasis-therapeutics-announces-positive-topline-results, accessed
on 2 August 2022), and in general be more safe. Taking into account the significant MIC
reduction reached upon adding DUR to SUL and the promising clinical data from the phase
3 clinical trial comparing the safety and efficacy of SUL–DUR to CST for the treatment of in-
fections caused by CRAb (SUL–DUR mortality 19%, CST mortality 32%, 95% CI: −30.0, 3.5),
if approved, SUL–DUR may be an important option for CRAb treatment regimens. Further
studies are needed to elucidate the molecular mechanisms responsible for resistance to
SUL-DUR and to explore its therapeutic potential. It will also be necessary to combine
in vitro findings with additional pharmacokinetic and pharmacodynamic data in order to
provide more meaningful predictions of the in vivo efficacy of SUL-DUR combination in
clinical practice.

4. Materials and Methods
4.1. Antibiotics and Inhibitors

SUL and DUR (ETX2514) were kindly provided by Dr. Alita A. Miller, Entasis Thera-
peutics, Waltham, MA, USA.

4.2. Bacterial Strains Selection

A total of 141 non duplicate CRAb strains, which were previously characterized for
their mechanisms of resistance, were included in this study [36–47]. In particular, we ret-
rospectively selected 64 XDR and 77 PDR previously characterized CRAb clinical isolates
collected in six centers from Italy. Isolates were selected on the basis of this extensive
resistance although resistance determinants were different (mostly including OXA-type
enzymes, as reported in related publications). Most of the isolates (121 out of 141) were
collected from five clinical microbiology laboratories distributed throughout northern,
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central and southern Italy. Specifically, 16 A. baumannii were collected from the Microbiol-
ogy Laboratory of the University of Pavia (Northern Italy) during 2018, 26 isolates were
collected from the teaching “Gemelli” Hospital Rome (central Italy) between 2020 and 2022,
8 isolates were collected from Spirito Santo Hospital Pescara (Central Italy) in 2020–2021,
1 isolate was from the University of L’Aquila (Central Italy) and 70 isolates were collected
from the Clinical Microbiology Laboratory of the University of Catania (Southern Italy)
between 2008 and 2018. In addition, 20 A. baumannii were kindly given by Professor Visca,
Clinical Microbiology Laboratory of Roma Tre University (Central Italy). These strains were
collected in 2004–2014 from different countries during the project “Carbapenem-resistant
Acinetobacter baumannii: whole-genomic and phenomic investigation of the traits that fa-
vored the predominance and shift to OXA-23-producing IC2 isolates”; funded by ESCMID
in 2017. The antimicrobial susceptibility of CRAb isolates was previously assessed by partic-
ipating centers using commercial systems in the context of normal clinical routine. Tested
antibiotics were imipenem, meropenem, gentamicin, ciprofloxacin and colistin. All strains
were collected from different wards including intensive care units, infectious diseases units,
neurosurgery, pneumology, thoracic surgery and internal medicine. All A. baumannii were
isolated from clinical sources, including sputum, blood, urine, wounds, peritoneal fluid,
liquor and stool. The A. baumannii isolates belonged to the following sequence types: ST2
(n = 121), ST1 (n = 6), ST4 (n = 1), ST20 (n = 5), ST78 (n = 2), ST81 (n = 1), ST95 (n = 1), ST109
(n = 1), ST196 (n = 1) and ST197 (n = 1). In these A. baumannii strains, the carbapenem resis-
tance was mainly mediated by the presence of OXA-23 (80 isolates), OXA-58 (48 isolates),
OXA-66 (4 isolates) and OXA-82 (4 isolates). The simultaneous presence of OXA-23 and
OXA-58 was found in 11 isolates and, in addition, ADC-25, a chromosomal AmpC enzyme,
was also identified [36–47].

MDR isolates were defined as those with acquired non-susceptibility to at least one
agent in three or more antimicrobial categories. XDR isolates were defined as those with
acquired non-susceptibility to all antibiotics, except for one or two. PDR isolates were
defined as those with acquired non-susceptibility to all antibiotics.

4.3. Bacterial Strains Identification

A. baumannii isolates were collected by standard methods, followed by isolation in
pure culture on MacConkey agar plates, identified by the Vitek 2 system (bioMerieux,
Marcy l’Etoile, France) and stored in Brain Hearth Infusion broth with 15% glycerol and
frozen at −80 ◦C.

4.4. MIC Determination

The MIC experiments were performed by conventional broth microdilution procedures
in Mueller Hinton broth supplemented with calcium and magnesium to physiological
concentrations (CAMHB), using an inoculum of 5 × 105 CFU/mL according to the Clinical
and Laboratory Standards Institute (CLSI) [56]. One hundred and forty-one non-duplicate
A. baumannii isolates were tested against DUR alone as well as SUL alone, plus SUL–DUR
and CST. For SUL, a susceptibility breakpoint of 4 mg/L was used, based on the CLSI
ampicillin–sulbactam susceptible breakpoint of 8/4 mg/L for Acinetobacter spp [56]. SUL–
DUR MICs were performed as 2-fold dilutions of SUL with DUR at a fixed concentration of
4 mg/L [56]. MICs were interpreted using CLSI breakpoints where available. Concurrent
quality control (QC) procedures were performed by testing Escherichia coli ATCC 25922,
examined for each MIC run. Following 18 to 20 h of aerobic incubation at 37 ◦C, the
microplates were examined for growth. The determination of all MICs was performed in
three separate sets of experiments.

4.5. Whole-Genome Sequencing

Total nucleic acid was extracted using MagMax Microbiome Ultra Nucleic Acid Isola-
tion kit (Applied Biosystems and ThermoFisher Scientific, Monza, Italy). Genomic libraries
were prepared using Swift 2S Turbo DNA Library kit (Swift Biosciences, Ann Arbor, MI,
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USA) as previously reported [57,58]. WGS was performed on an Illumina MiSeq using
v3 reagent kits generating 2 × 300 bp paired-end reads (Illumina, San Diego, CA, USA).
DRAGEN FastQC + MultiQC v3.9.5 (https://basespace.illumina.com/apps/10562553
/DRAGEN-FastQC-MultiQC, accessed on 24 May 2022) were used for quality control
and sequences filtering. Paired-end reads were assembled with Velvet de novo Assem-
bly v1.0.0 (https://basespace.illumina.com/apps/8556549/Velvet-de-novo-Assembly, ac-
cessed on 5 June 2022). Multi-Locus Sequence Typing (MLST) on assembled A. baumannii
genomes was performed according to the Pasteur scheme. ResFinder4.1 and MobileEle-
mentFinder 1.0.3 were used to detect acquired antimicrobial resistance genes and mo-
bile genetic elements, respectively. ResFinder and MobileElementFinder 1.0.3 databases
were synchronized with databases from Center for Genomic Epidemiology (http://www.
genomicepidemiology.org/, accessed on 10 June 2022). Virulence Factor Database (VFDB)
was used for the detection of virulence genes (http://www.mgc.ac.cn/VFs/, accessed on
2 August 2022).

4.6. PBP-3 Amplification and Sequencing

The amplification of the PBP-3 gene was performed in PCR using the total genome of the
SUL–DUR-resistant A. baumannii (CT20, CT24, CT25, CT26, CT29, CT30, CT31, CT32, CT57,
CT58, CT68) and the following external primers: PBP-3_F 5′TTACCTGCGAATAGGATTTTCTG
and PBP-3_R 5′ ATGTGGCGGTTTTATCTGCT. The amplicons obtained were purified and
directly sequenced on both strands by using a BigDye Sequencing Reaction Kit and an ABI
PRISM 3500 capillary automated sequencer (Applied Biosystem, Monza, Italy).

5. Conclusions

In the present study, SUL–DUR demonstrated good in vitro antimicrobial activity
against XDR and PDR A. baumanni clinical isolates, collected from different regions across
Italy. These data confirmed the results from recent studies showing good activity of the
SUL–DUR combination against MDR, XDR and PDR A. baumannii [59]. To the best our
knowledge, this study also represents the first report on SUL–DUR activity against a large
number of carbapenem-resistant, and largely colistin-resistant, A. baumannii isolates from Italy.
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