
WebMonitor: Verification of Web User Interfaces
Ennio Visconti

TU Wien
Vienna, Austria

Christos Tsigkanos
University of Bern
Bern, Switzerland

Laura Nenzi
University of Trieste

Trieste, Italy

ABSTRACT
Application development for the modern Web involves sophisti-
cated engineering workflows which include user interface aspects.
Those involve Web elements typically created with HTML/CSS
markup and JavaScript-like languages, yielding Web documents.
WebMonitor leverages requirements formally specified in a logic
able to capture both the layout of visual components as well as
how they change over time, as a user interacts with them. Then,
requirements are verified upon arbitrary web pages, allowing for
automated support for a wide set of use cases in interaction test-
ing and simulation. We position WebMonitor within a developer
workflow, where in case of a negative result, a visual counterexam-
ple is returned. The monitoring framework we present follows a
black-box approach, and as such is independent of the underlying
technologies a Web application may be developed with, as well as
the browser and operating system used.
WebMonitor is available as open source software:
https://github.com/ennioVisco/webmonitor
Video demonstration ofWebMonitor:
https://youtu.be/hqVw0JU3k9c

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • Theory of computation→ Logic and verification.

KEYWORDS
Web Technologies, Spatio-temporal Logic, Runtime Verification
ACM Reference Format:
Ennio Visconti, Christos Tsigkanos, and Laura Nenzi. 2022. WebMonitor:
Verification of Web User Interfaces. In 37th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE ’22), October 10–14, 2022,
Rochester, MI, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3551349.3559538

1 INTRODUCTION
Application development for the modern Web is a sophisticated
process that involves long engineering pipelines spanning from the
specification of business requirements to the worldwide delivery of
applications. The development of modern continuous integration
(CI) and continuous delivery (CD) workflows has allowed devel-
opers to drastically automate large portions of these processes, by
building complex pipelines. While most of the tasks involved in
the process have seen a significant boost in the level of automation

This work is licensed under a Creative Commons Attribution International
4.0 License.

ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9475-8/22/10.
https://doi.org/10.1145/3551349.3559538

and repeatability in recent years, things are fairly different when
considering User Experience (UX) issues. In fact, aspects like usabil-
ity, accessibility, understandability, etc. are becoming increasingly
crucial for modern applications, and significant industrial effort is
being put into prioritizing applications that assess them at some
level [3].

Validation within a user interface engineering workflow is domi-
nated by User Interface (UI) testing, which typically entails inspect-
ing visual elements to check that they are functioning according
to requirements – both in terms of functional (such as regulatory
conformance), and in terms of non-functional (e.g., performance,
timings). Current Web UI testing techniques however are largely
ad-hoc and tailor-made to specific classes of requirements and web
technologies, or extensively require human-in-the-loop qualitative
evaluations. Web UI validation so far has lacked formal founda-
tions, which would enable providing (in an automatic manner)
assurances on compliance with requirements, something highly
desired to check complex e.g., accessibility requirements.

To this end, we present WebMonitor, for monitoring Web UIs.
In our approach, requirements are formally specified in a Domain-
Specific Language (DSL) over a logic language able to capture two
essential aspects of web documents; the layout of visual compo-
nents and how they change over time, as a user interacts with them.
The cornerstone of WebMonitor is that UIs can be formalized
as a spatio-temporal model over locations of the graphical device
(e.g. pixels of the screen). Over such a model, graphical UI compo-
nents (e.g. buttons, images, input fields, etc.) are overlayed, while
its temporal dimension corresponds to interaction events that a
user may induce. The advantages of such a formal perspective are
that (i) it can be defined and monitored regardless of the specific
physical device or browser being used, and (ii) automated support
can be enabled for a wide set of use cases in interaction testing and
simulation.

In the following, we illustrate how Web documents can give rise
to formal models, whereupon a spatio-temporal logic can be used
to express requirements, presenting WebMonitor– an end-to-end
technical framework, where given a webpage target, automated
procedures carry out analysis processes.

Motivating example. Consider a cookie consent notice – a banner
informing the user about the cookies stored on the browser to
track a website’s usage. Such a cookie popup should be able to be
dismissed by the user easily. Specifically:

ER1. The popup should be visible; specifically, the entirety of the
popup should be within the window that the user perceives
as the interface so that all the relevant information is avail-
able.

ER2. The popup should be visible within 2 seconds after the page
has been loaded and should remain visible until the user
explicitly dismisses it.

https://orcid.org/0000-0002-1146-4850
https://github.com/ennioVisco/webmonitor
https://youtu.be/hqVw0JU3k9c
https://doi.org/10.1145/3551349.3559538
https://doi.org/10.1145/3551349.3559538
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3551349.3559538
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3551349.3559538&domain=pdf&date_stamp=2023-01-05

ASE ’22, October 10–14, 2022, Rochester, MI, USA Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

Observe that the example describes a characteristic case that
involves both spatial and temporal aspects of the UI; visibility of
the popup (ER1) can be inspected upon a snapshot of the UI, while
dismissibility (ER2) involves checking if the popup disappears with
some user action but also denotes timing constraints. In the follow-
ing, we demonstrate how such requirements can be specified and
monitored against a sample web page, illustrating WebMonitor
capabilities. We note that any page can be used; the example page
is adopted to simplify presentation of the specification features.

2 MODELS AND REASONING IN WEB UIS
Graphical user interfaces assume the presence of a display for inter-
acting with the user – this is the case for all platforms, including the
Web-based. Therefore, an intuitive interpretation of the 2-D graph-
ical space corresponds to a set of (x ,y) coordinates that identify
each element of the pixel-grid that composes the physical display
of the targeted device. We devise a spatial model capturing all the
logical locations pixels can occupy, identified by coordinate pairs.

Recall the running example; requirements entail checking the
behavior, including any conditions that make a given component
of the GUI get-in or get-out of the user’s focus. More generally, in
the context of the web, three conceptually different areas of the
screen should be represented: (i) the document, which is the logical
region over which the web page is defined throughout its lifecycle;
(ii) the layout viewport, which represents the reachable area of
the page, and (iii) the visual viewport, which is the region of the
page that is displayed to the user at a given moment. A requirement
like ER2 would translate to the popup being in the visual viewport
until the user explicitly dismisses it. In practice, this is described by
associating different values as propositions in each pixel, to express
the presence in different areas of the screen (i-iii).

Following the same intuition, UI visual entities can be captured
in the spatial model. For example, the outer box of a cookie popup
could be defined by developers utilizing HTML as such:

< div class = “cookieInfo” > We use cookies to... < /div >. (1)

However, first-class objects of a web UI are not only visual com-
ponents such as the aforementioned cookie popup outer box; they
include also styling properties as well as events, the latter corre-
sponding to the user’s interaction with the UI. Standard web APIs
already provide a wide range of events fired by the browser engine
when the user interacts with the page. Consider primary browser
events such as click, focus, scroll, and load, fired respectively when
the user clicks an element, selects an element, scrolls the page, and
when the page loading is completed. These will be taken into ac-
count for reasoning over the dynamics of the interface as the user
interacts with it. Such events fire in the browser’s event loop, a
standard HTML concept that guarantees synchronous recording
of user events [4]. Back to our example, as the user interacts with
the cookie popup, only a small set of events is recorded – initially
there is the page load, which may then be followed by a series of
scroll and click events. Behind the scenes, WebMonitor relies on a
formal spatio-temporal model that captures visual and structural
parts of the UI, as well as its evolution due to possible user actions.
Using such a formal model, automated reasoning can be enabled,
and properties reflecting the desired requirements can be evaluated
over its spatio-temporal evolution.

To specify properties capturing UI requirements, we adopt a
specification language predicating in both space (i.e., the visual UI)
and time (i.e., the user’s behavior). We work within a fragment of
the Spatio-Temporal Reach and Escape Logic (STREL) [1], which we
describe briefly over the running example. For a complete formal
treatment and semantics of the logic, the interested reader is re-
ferred to [1]. Although we present logical formulae for conciseness,
a DSL with this semantics is used for actual specification in Web-
Monitor. A STREL formula conforms to the following grammar:

φ := p ◦ c | b | (2)

⊤ | ⊥ | ¬ φ | φ ∨ φ | φ ∧ φ | φ → φ | (3)

F≤tφ | G≤tφ (4)
Recall that requirements ER1-2 are centered on visibility of the

cookie popup, which is identified by the developers-defined class
cookieInfo. Note that in principle there could be more than one
popup (e.g. one could have a small one at the bottom of the page
and a big one at the center), yet the properties would still be valid.

µvisible := .cookieInfo$visibility = ‘visible′ (5)

Formula 5 encodes that the visibility property of all the elements
of class cookieInfo equals to visible. To retrieve a specific ele-
ment of the page in an atomic property, WebMonitor adopts the
standard selector notation [2], followed by the special character
‘$’ to denote the exact styling property that is being analyzed. An
example of a Boolean atomic proposition is the screen property
that is true only in areas of the spatial model that are currently
shown on the user’s screen, such property permits to specify the
pixels that belong to the visual viewport. Back to our cookie popup
example, the requirement (ER1) can be formalized as follows:

ϕER1 := µvisible ∧ screen. (6)

Formula 6 states the basic condition that a popup must be visible
and that at the same time and location the screen property must
hold. Therefore the formalized property ER1 will be satisfied only
in the areas of the spatial model that are on the screen and have a
visible popup.

To predicate about behaviour, temporal operators (Formula 4)
are used to express the fact that a subformula φ is satisfied for some
(respectively for all) next time points t , as in usual temporal logics.
To illustrate that, consider expressing the requirement (ER2):

ϕER2 := F≤2(ϕER1 ∧ (button.close@active → µhidden), (7)

where
µhidden := .cookieInfo$visibility = ‘hidden′ (8)

Formula 7 expresses the fact that ϕER1 should hold within 2 sec-
onds: i.e., the popup should be visible to the user within 2 seconds,
and, whenever the button element with class close is clicked (i.e.
becomes active), then (→) it must become invisible (‘hidden’).

3 A WALK THROUGHWEBMONITOR
Having briefly illustrated how UI requirements can be specified into
formal spatio-temporal properties over UI elements, WebMonitor
can be used to evaluate them on an arbitrary webpage. WebMoni-
tor contains automatic facilities for automating interfacing with
browsers, generating spatio-temporal models upon which verifica-
tion is performed, and subsequently interpreting analysis output

WebMonitor: Verification of Web User Interfaces ASE ’22, October 10–14, 2022, Rochester, MI, USA

Interaction
Behaviour

UI Requirements

Visual
Counterexample

Web Source
Web API

Spatial Model

Reporting

Oracle Verification Result

M ⊨φ ?

Interface Spatio-
Temporal Model (M)

Development Cycle

Session Builder

Page Tracker

Trace Builder

Plotter

CI/CD Reporter

Spatio-Temporal
Properties (φ)

Tracking Verifying

Figure 1:WebMonitor: Key components (white) and artifacts (shaded), over activities (dashed lines).

in a visual, meaningful way. Figure 1 shows a typical WebMoni-
tor workflow highlighting the primary components, artifacts and
activities involved. The overall process starts with a Web Source,
which denotes a URL as well as auxiliary parameters required such
as browser and screen size. Subsequently, the process can be con-
sidered as taking place in three stages:

• Tracking: The first stage of the WebMonitor workflow is
responsible for the execution and collection of the webpage
data. The primary input consists of the Web Source descrip-
tor, which delimits the scope of the evaluation (e.g., browser
sizes of interest, destination URL, browser engines of in-
terest). The target descriptor is used to launch a browser
session (via Session Builder) that is passed to the Page
Tracker component, which is responsible for the interac-
tions with standard Web APIs that will be used to fetch
elements and events as described by the atomic propositions
found in the specification. The concrete output of this stage
is a spatio-temporal model of the Web UI at hand. Selenium
Webdriver1 APIs are leveraged for the interaction with web
browsers, by using instructions that work interchangeably
across browsers.

• Verifying: The second stage of the WebMonitor workflow
is responsible for the actual analysis of the specification
with respect to the data collected at the previous stage. An
oracle component encapsulates a monitor to verify spatio-
temporal properties, which evaluates the satisfaction of the
specification. The monitoring facilities are provided by the
Moonlight2 library for monitoring STREL formulae.

• Reporting: The last stage is responsible for delivering the
results of the evaluation. This may be manifested in two
ways, faithful to contemporary processes within web appli-
cation development. The first is intended to integrate anal-
ysis within a typical developer workflow, where a Plotter
facility generates a figure highlighting the areas of the target
screen where the specification is violated. This represents

1Info at www.selenium.dev
2Info at github.com/MoonLightSuite/MoonLight

a violation counterexample, as in classical model checking.
The developer may revise the design accordingly and restart
the verification process. The second form of reporting func-
tionality targets CI/CD pipelines. In this case, the CI/CD
Reporter facility generates a machine-readable result of
the evaluation, intended to be consumed by the appropri-
ate pipeline stage (e.g., among integration or other testing
hooks), which can be used e.g., to decide whether or not to
deploy the application in production.

4 WEBMONITOR IN PRACTICE
Guided by the crucial role that graphical user interfaces play for
contemporary web platforms, we introduced a novel tool to formal-
ize and evaluate their spatio-temporal behaviors. WebMonitor is
a software framework for automatic monitoring of spatio-temporal
specifications of web pages, which encapsulates Moonlight and
Selenium WebDriver for the formal verification aspects and for
the interaction with the Web, respectively. A facility producing
visual counterexamples of requirement violations assists the devel-
oper within the development workflow. We especially note that the
formal approach advocated in this paper is independent from the
underlying technologies a Web application is developed with, as
well as from the browser and operating system in use.

WebMonitor is available as open source software, as a JVM-
based software tool for reasoning on spatio-temporal behaviors of
web pages. To use WebMonitor in practice, a developer follows
four distinct steps:

(1) Initialization; a target web page is specified, along with pa-
rameters concerning browser and screen size, illustrated in
Listing 1.

(2) Specification; requirements that the design should fulfill
are specified in terms of the language outlined in Sec. 2,
which is encoded by the WebMonitor DSL fragment shown
in Listing 2.

(3) Analysis; verification facilities are invoked.
(4) Reporting; in case of violation, the visual counterexample is

inspected.

www.selenium.dev
github.com/MoonLightSuite/MoonLight

ASE ’22, October 10–14, 2022, Rochester, MI, USA Ennio Visconti, Christos Tsigkanos, and Laura Nenzi

(a) Initial state (b) Evaluation on initial state (c) Evaluation after click

Figure 2: Visual counterexamples returned as the evaluation result on a sample page as a web target for requirements ER1-2.

A typical user workflow is illustrated in Fig. 2, where the same
page is evaluated over a trace composed of the loading of the page
(Figure 2b), and the click of the closing button (Figure 2c). Red areas
denote pixels of the pixel grid where ER2 is not satisfied, while the
green one denote the areas where the property is satisfied.

Listing 1 provides the settings that have been used to define
the web source for the analysis. screenWidth and screenHeight
set the size of the browser window for the evaluation. Note that
the optional parameter browser) allows selecting an alternative
web browser engine, while the optional waiting time (wait) can
be set to give some extra time before starting the evaluation, to be
sure that the page is fully loaded. Lastly, maxSessionDuration and
targetUrl set the maximum duration of the session and the URL
of the web page under analysis, respectively.

Listing 1: WebSource definition.
WebSource . sc reenWidth = 600 // px

WebSource . s c r e enHe i gh t = 500 // px

WebSource . browser = Browser .CHROME
WebSource . wa i t = 0
WebSource . maxSes s ionDura t ion = 5 _000 // ms

WebSource . t a r g e t U r l =
"https :// enniovisco.github.io/webmonitor/"

An example of the specification of requirements ER1-2 is shown
in Listing 2, exploitingWebMonitor’s Kotlin-based DSL. Three pri-
mary hooks are available for the developer: Spec.atoms() for defin-
ing the atoms of the logic, Spec.record() to express the events
that fire a snapshot of the browsing session, and Spec. formula
that defines the final specification to analyze. select{} is used
to select HTML elements based on the passed query string, while
read is an optional function that selects a specific parameter of
the element, that is then compared for equality (by equals) or
inequality (by lessThan, lessThanEquals, ...) to some value.
Lastly, the at operator is optional to state that the given atom will
be considered true only when that event is fired. after{} is used
to state which events will be considered for firing new snapshots,
while STREL operators are used directly inline as shown in the
helper formulae fragment.

Listing 2: Specification definition.
Spec . atoms (

s e l e c t { ".cookieInfo" } // [0]

r ead "visibility"

e qua l s "visible" ,
s e l e c t { ".cookieInfo" } // [1]

r ead "visibility"

e qua l s "hidden" ,
s e l e c t { "button#close" } a t "click" // [2]

)
Spec . r e c o r d (

a f t e r { "click" } ,
a f t e r { "touch" }

)
// helper formulae

val s c r e en = Spec . s c r e en
val i s V i s i b l e = Spec . atoms [0]
val i sH idden = Spec . atoms [1]
val bu t t o nC l i c k = Spec . atoms [2]
val ER1 = i s V i s i b l e and s c r e en
val innerER2 = e r1 and (b u t t o nC l i c k implies i sH idden)
val ER2 = e v e n t u a l l y (innerER2)
Spec . fo rmula = ER2 // Final formula

Future directions on WebMonitor development will primarily
be centered on expanding the DSL to support comparisons of com-
plex data types (e.g. with operators like isDarkerThan), or a wider
range of web features (e.g. the CSS pseudo-element ::before); in
addition, several performance enhancement options can be pur-
sued, as well as more comprehensive counterexample reporting.
An empirical assessment of the end-to-end approach implied by
the tool and its integration within the contemporary web develop-
ment process should be evaluated. DSL-specific aspects can further
identify desirable specification features and abstractions.

REFERENCES
[1] Ezio Bartocci, Luca Bortolussi, Michele Loreti, and Laura Nenzi. 2017. Monitoring

Mobile and Spatially Distributed Cyber-Physical Systems. In Proc. of the 15th ACM-
IEEE International Conference on Formal Methods and Models for System Design
(Vienna, Austria) (MEMOCODE ’17). Association for Computing Machinery, New
York, NY, USA, 146–155. https://doi.org/10.1145/3127041.3127050

[2] Elika Etemad and Tab Atkins Jr. 2018. Selectors Level 4. W3C Working Draft. W3C.
https://www.w3.org/TR/2018/WD-selectors-4-20181121/.

[3] Ilya Grigorik. 2020. IntroducingWebVitals: essential metrics for a healthy site. blog.
chromium.org/2020/05/introducing-web-vitals-essential-metrics.html. Accessed:
2021-12-16.

[4] Web Hypertext Application Technology Working Group (WHATWG) 2022.
HTML Living Standard. Web Hypertext Application Technology Working Group
(WHATWG). html.spec.whatwg.org/multipage/webappapis.html#event-loop

https://doi.org/10.1145/3127041.3127050
blog.chromium.org/2020/05/introducing-web-vitals-essential-metrics.html
blog.chromium.org/2020/05/introducing-web-vitals-essential-metrics.html
html.spec.whatwg.org/multipage/webappapis.html#event-loop

	Abstract
	1 Introduction
	2 Models and Reasoning in Web UIs
	3 A Walk through WebMonitor
	4 WebMonitor In Practice
	References

