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Abstract—With software systems becoming increasingly per-
vasive and autonomous, our ability to test for their quality
is severely challenged. Many systems are called to operate in
uncertain and highly-changing environment, not rarely required
to make intelligent decisions by themselves. This easily results in
an intractable state space to explore at testing time. The state-of-
the-art techniques try to keep the pace, e.g., by augmenting the
tester’s intuition with some form of (explicit or implicit) learning
from observations to search this space efficiently. For instance,
they exploit historical data to drive the search (e.g., ML-driven
testing) or the tests execution data itself (e.g., adaptive or search-
based testing). Despite the indubitable advances, the need for
smartening the search in such a huge space keeps to be pressing.

We introduce Reasoning-Based Software Testing (RBST), a
new way of thinking at the testing problem as a causal rea-
soning task. Compared to mere intuition-based or state-of-the-
art learning-based strategies, we claim that causal reasoning
more naturally emulates the process that a human would do to
“smartly” search the space. RBST aims to mimic and amplify,
with the power of computation, this ability. The conceptual
leap can pave the ground to a new trend of techniques, which
can be variously instantiated from the proposed framework, by
exploiting the numerous tools for causal discovery and inference.
Preliminary results reported in this paper are promising.

Index Terms—Causal reasoning, Software Testing

I. INTRODUCTION

Software testing is ultimately about prediction. In deriving
tests, a tester basically asks her/himself: What input makes
the system fail? S/he tries to envisage how the system would
behave for some specific input in a given execution scenario.
To get support for this prediction, s/he usually relies on some
auxiliary information to derive failure-exposing tests (e.g.,
using corner/adversarial inputs, coverage measures, discrep-
ancy/similarity measures with respect to an observed context).
Existing techniques exploit the tester’s belief about what is
expected to correlate with failures, to automate testing tasks.
In a learning-supported strategy, the belief is corroborated
and complemented by past observations (testing/operational
data) for training a Machine Learning (ML) model [1]–[3] or,
unsupervisedly, exploiting the feedback from tests execution
to derive better tests in the next step (e.g., adaptive testing
[4], search-based software testing [5], [6]). Learning supports
various tasks, such as tests generation [7], [8], test selection
and prioritization [9], [10], test execution [11], [12].

This current approach to testing has inherent limitations: it
either relies only on intuition (expertise/experience) to “guess”
the right failure-correlated information, then devising a tech-
nique from it, or is focused on learning failing patterns from

past observations to predict the best next tests, but assuming
that the future context resembles the past.

While human reasoning is, in principle, great at “guessing”
failure-related information, it, clearly, cannot scale. Learning
from the past indeed helps navigate the search space, but it
is just a palliative: correlations learnt on observations in a
certain context are exploitable to make “predictions” solely
based on what seen [13]. This hides a conceptual glitch: with
current learning-based techniques such as ML-driven testing,
we are implicitly turning the What makes it fail? question into:
What is more correlated to failure? But this is not the kind of
prediction a tester tries to do: with that question, s/he means:
What input causes the system to fail?

The former question reads as: Given the same context in
which I learned the model (i.e., the same data distribution),
what output Y do we expect if the input X happens to be
equal to x? On this basis, for instance, we select or prioritize
tests that are more similar to failure-causing tests observed in
the past, and ML is great at this task.

The causal question reads as: What output Y do we expect
if the input X is actively set to x (hence, if we change X’s
distribution)? The tester’s question is inherently causal, but
a learning-from-association paradigm like ML cannot handle
causality [14]. It indeed amplifies our pattern search ability,
which is a great added-value; however, we can do much more,
and rather amplify our causal reasoning ability. The latter is
not limited to learning from observations, but it learns from
hypothesizing interventions on variables of interest.

This work proposes a conceptual leap in the way machine
and human cooperate to intelligently explore the huge search
space and derive tests. Machine should support and boost
human reasoning far beyond the mere search for patterns in
past observations. We claim that automated causal reasoning is
the next step we should take in software testing, as it gives the
ability to infer knowledge proactively, and to ask what happens
if questions in a world different from the one observed.

Hereafter, we present our proposal to cast the testing
problem as a causal-reasoning task, called Reasoning-Based
Software Testing (RBST). We then preliminarily evaluate a
basic instance of RBST, for testing an Autonomous Driving
System against adaptive testing and an ML-driven search-
based technique. Results show the benefit of exploiting cause-
effect relations to derive safety-violating tests.
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II. BACKGROUND

A. Causal Inference

Causality is the influence by which an event contributes to
the production of other events [15]. For decades statisticians
have tried to explain causality through statistical methods
identifying associations between variables (e.g., correlation,
regression), which however cannot distinguish between cause
and effect. These are limited to what Pearl called the first
rung of the ladder of causation [13], that is “Association”.
Causal reasoning allows to stair up to the second and third
rung, respectively, learning by “doing” (interventions) and
by “imagining” (counterfactuals). Research on causality has
two main branches, causal inference, aimed at quantifying the
effect of changing one or more variables on an outcome of
interest, and causal discovery, aimed at extracting a causal
model from observational data. A causal model is a mathemat-
ical representation of causal relationships between variables.
A common type of model is defined as follows:

Definition 1. (Structural Causal Model) An SCM is a Directed
Acyclic Graph G = (X, E), where nodes ∈ X are random
variables and edges ∈ E are the causal relationships between
them, associated with a collection of structural assignments
Xk := fk(Pa(Xk), Uk) that define the (endogenous) random
variables Xk, as function of their parents Pa(Xk) and of
(exogenous) independent random noise variables Uk.

In causal inference, we are interested in the distribution of
an outcome variable Xk after setting a variable W to a certain
value w (i.e., doing an intervention), rather than after just see-
ing an occurrence W = w (i.e., P (Xk|W = w)) like in ML.
Pearl introduced the do-operator, a mathematical representa-
tion of physical intervention, written as P (Xk|do(Wi = w))
[16]. An intervention do(W = w) changes the SCM graph
(namely, it modifies the distribution), by removing the causal
relations with its predecessors (i.e., deleting the Pa(W ) → W
arrows). Thus: P (Y |do(Xi = x)) 6= P (Y |(Xi = x)).

Definition 2. (Intervention distribution) The probability
P (Xk|do(W = w)) over an SCM is the distribution entailed
by the SCM obtained by replacing the definition Xk :=
fk(Pa(Xk), Uk) with Xk := wk.

Figure 1(a) shows a partial SCM , where X causally affects
Y, and Z affects both X and Y. Considering X as intervention

Z

YX

(a) Original SCM

Z

YX

(b) SCM after interven-
tion

Fig. 1: (a) A sample Structural Causal Model; (b) Effect of an
intervention on X

variable W , an intervention changes the graph (hence the dis-
tribution), by removing causal relations with its predecessors,
as shown in Figure 1(b).

From an intervention, it is possible to estimate causal
effects through the do-calculus [14]: it allows expressing a
do operation in terms of conditional distributions of a set of
related variables, properly identified by graph patterns (e.g.,
back-door, front-door, instrumental variable). The effect can
be quantified by various metrics, the most common one being
the average treatment effect (ATE)1.

An additional opportunity with causal inference is to use
counterfactuals. A counterfactual is a proposition in the form
of a subjunctive conditional such as “if W had been w, then
Xk would have been xk”. This interestingly allows answering
questions like What would have happened if, thus enabling the
exploration of an alternative hypothetical past.

In software engineering, causality is partly used in a few
studies, e.g., to support root cause analysis and diagnosis
[17], debugging [18], fault localization [19], [20], and for
interpretability of machine learning models [21], [22].

B. Causal Discovery
In causal inference, the causal structure is often assumed.

There are three main alternatives to build a causal model. The
first one consists in intervening on variables and observing
the post-intervention probability distributions (i.e., controlled
experiments). This can also be done with soft interventions,
which influence the intervened variables distribution without
setting it to a fixed value [23], [24].

The second option consists in using causal discovery al-
gorithms, which extract a causal structure from observational
data, hence avoiding expensive (or even technically infeasible)
controlled experiments. The last decades have seen advances
in the development of such algorithms to enable better use of
“big data”. Causal discovery algorithms aim to seize the causal
structure from observational data taking statistical dependen-
cies (or independencies) as indicators of causal relations (or
lack thereof) [25]. Causal discovery algorithms can be divided
into constraint-based (e.g., PC, FCI, RFCI), score-based (e.g.,
GES, FGES, GFCI), and FCM-based (e.g., LinGAM) [26].

Constraint-based algorithms use independence tests on ob-
served data in order to determine a set of edge constraints
[27]. Although these algorithms have the benefit of being
broadly applicable, they might not perform well without large
sample sizes [26]. Score-based algorithms use adjustment
criteria like the Bayesian Information Criterion to maximize
the score given to candidate graphs. The goodness-of-fit tests
are used in place of the conditional independence tests. Finally,
using various model assumptions (e.g., linear non-Gaussian
parameterization for LinGAM), FCM-based algorithms try to
identify the true causal structure by determining the causal
direction of edges.

In addition, due to its interpretable nature, a causal model
could also be manually built or refined with domain experts’
knowledge.

1With W binary, ATE = E[Xk|do(W = 1)]−E[Xk|do(W = 0)] [15].
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Fig. 2: Reasoning-Based Software Testing

III. REASONING-BASED SOFTWARE TESTING

Causal inference aims at estimating the causal effect of one
or more variables (treatment) over a certain outcome of interest
[15]. In software testing, a direct application is for test data
generation, wherein the aim is to identify input combinations
that maximize/minimize the test output (e.g., performance
metrics or safety-related variables) or a metric of interest (e.g,
coverage). Reformulating testing objectives as causal questions
is possible given the underlying causal structure of the system
under test. For instance, in the context of test data generation,
cause-effect relations among variables give the possibility to
query the model with questions such as: “What happens to the
test output Y if we fix the test input X = x?”. If the model’s
predictions are accurate, the test space can be explored by
using the model, without executing any tests, so as to select
and actually run only the most promising tests.

Test case generation is the focus of this paper (supported
by experimental results). However, causal reasoning can assist
testers in many other tasks such as regression test selection
and prioritization, test suite minimization, and test planning,
or even to analyse results of tests execution (and support
debugging) with the use of counterfactuals (i.e.: as Would have
we still observed the failure if we had fixed X = x?)

A. Test Case Generation

Efficient test case generation requires the ability of search-
ing the input space intelligently, so as to identify combinations
satisfying the testing goal (e.g., maximize fault detection or
coverage) with reasonable cost. This exploration process is
redefined as a causal reasoning task. The envisaged Reasoning-
Based Software Testing process is depicted in Figure 2).

There is a wide range of possibilities to instantiate the
process. Possible alternatives for the key steps of RBST are
listed in Table I, with a non-exhaustive list of alternatives.
The selection of a combination of alternatives forms a test
generation strategy.

The causal model encodes the causal structure knowledge
enabling the inference. It is built initially and iteratively refined
as more data becomes available. As mentioned in Section II-B,
controlled (or soft) experiments, Causal Structure Discovery
(CSD) from data (such as past executions of an initial bunch
of tests), and, non-alternatively, using domain knowledge are
the options. In the latter case, it is worth to stress that the
validity of the model is then cross-checked with data; should

data not support an assumed relation, the domain expert can
refine the model for a next iteration.

The model can be queried via a set of interventions. Each
intervention allows estimating the effect of a potential change
analytically or via simulation. Thus, an intervention produces
a hypothetical test case, namely a hypothesis for a test along
with the expected effect if such test would be executed.
The RBST user is here required to develop a strategy for
selecting the variable(s) on which to intervene, and the values
to assign. An option is to select the intervention maximizing
the information gained (i.e., minimize the uncertainty) about
the true graph – hence intervene to better learn the graph [28].

On the other hand, testers might want to set an inter-
vention maximizing/minimizing the desired test objective(s)
(e.g., increase coverage, produce critical outputs) or maximize
diversity (e.g., impacting more effects together, helpful in
multi/many-objective testing). A combination thereof can be
set up, e.g., to trade model accuracy and reward: initially,
uncertainty-driven interventions improving the model could be
better, gradually replaced by objective-driven intervention.

Regardless of the chosen criterion, both the variable and
value selection/assignment can be implemented in several
ways, such as: via probabilistic sampling (e.g., (non-)uniform
random sampling), search-based or learning-based techniques,
adaptive strategies (i.e., using previous selections to drive the
next ones), or even exhaustively (depending on the context, the
intervention computation time could be negligible compared
to real tests execution time).

TABLE I: Alternatives in instantiating the RBST process
Step Description Alternatives

Model
building

How to build the
causal model

Causal Discovery
Domain Expert
Controlled Experiments

Intervention
variable
selection

How to select the
variable(s) for the
intervention

Criteria:
Uncertainty, Confidence
Test objective(s)
Diversity

Intervention
value
assignment

How to set the
intervention value
for the selected
variable(s)

Strategies:
Sampling
Search-based
Adaptive
Learning-based
Exhaustive

Effect estimation
How to estimate
the effects of an
intervention

Analytic
Simulation-based



Each intervention produces an effect, typically quantified by
the Average Treatment Effect (ATE), although other metrics
can be of interest (e.g.: ATE on Treated (ATT), Conditional
ATE (CATE)) [15]. The effect estimate is usually obtained
analytically, by using libraries such as DoWhy [29], or via
simulation, namely by sampling from the post-intervention
distributions and computing the desired effect estimate.

One (or more) actual tests are selected from the so-obtained
set of hypothetical tests. The basic choice is to get maximum-
effect test(s), but alternatives are worth to be explored, e.g.,
to improve diversity. The tests are then executed; this also en-
riches the knowledge to update the model. Finally, the updated
knowledge can be used to double check if the estimated effect
is significant or not (i.e., if are due to chance), via refutation
tests and confidence interval computation [29].

IV. EVALUATION

A. Context

We evaluate a basic instance of RBST in the context
of Autonomous Driving System (ADS) testing for critical
scenarios generation. We use Pylot [30] as ADS, and CARLA
as simulator [31].

A test scenario2 is defined by:
• sixteen (categorical) variables, including, among others,

road type, presence of cars, weather conditions;
• one output, namely the minimum distance d from other

vehicles.
The objective of a testing session is to find safety violations,
namely scenarios in which the event d = 0 (collision) occurs
at least once.

We run the experiments on a virtual machine deployed
on the Google Cloud Compute Engine Platform,3 configured
with Ubuntu version 18.04. The libraries used for causal
discovery and inference are, respectively, pycausal4 (based
on tetrad [32]) and dowhy-GCM [33].

B. Generation Strategies

We instantiate RBST with the most conservative options for
the steps’ alternative strategies (described in Section III-A):

• Model building: We opt for CSD, with the FCI algorithm
[27], one of the simplest solutions for CSD. The initial
database has 100 randomly generated tests;

• Intervention variable selection: We randomly select the
variable for the intervention;

• Intervention value assignment: We exhaustively evalu-
ate every possible value of the selected (categorical) vari-
able and choose the value minimizing the test objective;

• Effect estimation: We use the simulation-based ap-
proach, producing a hypothetical test scenario for each
possible value of the selected variable.5

2Details are in the replication package available at: https://github.com/
uDEVOPS2020/Replication-package-Reasoning-Based-Software-Testing.

3https://cloud.google.com/compute.
4https://zenodo.org/record/3592985.
5Sample size = 1,000, the dowhy-GCM default value.
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Fig. 3: Effectiveness of RBST compared to SBST-ML and
ART: Violin plots of the number of safety violations over test
repetitions

The initial model is updated with the executed tests at each
iteration. We compare RBST with:

i) an ML-driven search-based technique (SBST-ML) that,
similarly to [34], uses surrogate ML models to save tests
execution coupled with a genetic algorithm to evolve the
population of tests (same initial database as RBST);

ii) Adaptive Random Testing (ART) [35].

C. Preliminary Findings

For each technique, we run the testing session with a fixed
time budget of 120 minutes, and repeated 20 times. The
evaluation compares the technique as for effectiveness (number
of violations found in a whole testing session) and efficiency
(number of violations at time 20-minutes time intervals). In
addition, we investigate to what extent the techniques push
the output value to the “edge” (namely, close to the threshold),
and the diversity of the generated test suites.

Figure 3 shows violin plots of the number of violations
found in the 20 repetitions by the three compared techniques
(RBST, SBST-ML, ART). For every technique, the vertical
black line represents the median, and the small triangle repre-
sents the mean value. RBST finds significantly more violations
than the compared approaches. (The results of statistical tests
are: Friedman test p-value 1.37E-03; pairwise Dunn test p-
values: 1.43E-02 for RBST vs SBST-ML; 2.20E-03 for RBST
vs ART.)

Figure 4 shows the mean number of violations found by the
three techniques over time. Since the execution of a scenario
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Fig. 4: Efficiency of RBST compared to SBST-ML and ART:
Mean number of violations over testing time
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Fig. 5: Violing plots of the distance from other vehicles for the
(values close to zero correspond to near-violating scenarios)

takes, on average, less than 10 minutes, we split the time
budget into 20 minutes intervals to have at least 2 scenarios
per slot. One can see that RBST significantly outperforms
the other techniques, almost reaching the maximum of the
search-based technique with half of the budget.

To investigate near-violating scenarios, we collect the output
value of each scenario execution. As the output corresponds
to the minimum distance from other vehicles, values close
to zero represent test scenarios close to violating a safety
requirement. Figure 5 shows violin plots of the results for the
three compared techniques. RBST achieves the best values
(Friedman p-value 3.23E-13; Dunn p-values: <1.00E-04 vs
both SBST-ML and ART), while SBST-ML and ART do not
differ (Dunn p-value = 1.00E+00).

Figure 6 reports on the diversity of the test suites, estimated
with the Test Set Diameter on input (TSD-I), a well-known
metric for black-box test suite diversity [36]–[38]. RBST
achieves the worst values of median and mean, but with no
significant difference (Friedman p-value: 2.93E-01).

Due to the causal inference step, RBST entails a time over-
head. Generating a test case required, on average, tgen=1.44
seconds, which is negligible with respect to the average test
execution time (tgen = 0.34% texec).

0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68
Test Set Diameter

RBST SBST-ML ART

Fig. 6: Comparison of techniques as for diversity of the test
suites: Violin plots of the Test Set Diameter on input over test
repetitions

V. FUTURE PLANS

Reasoning-Based Software Testing is conceived to foster the
use of causal reasoning in software testing. Depending on the
testing task (e.g., test generation, test prioritization), on the
objective (e.g., fault detection, coverage), and especially on
how the RBST process steps are instantiated (Table I), several
techniques can be implemented in the next years.

Our short-term plan is to explore RBST alternative in-
stantiations for tests generation, so as to give criteria for
their best implementation. For instance, performance could be
considerably improved by choosing the right trade-off between
enhancing the model (such as uncertainty minimization) and
attaining the testing aim.

Strategies for exploring the space of possible interventions
are also a big opportunity for improvement. Then, inter-
pretability/explainability of causal models will be investigated,
as this allows the seamless integration of human knowledge.

In the medium-long term, we plan to target regression test-
ing and to explore multiple testing objectives. Moreover, we
aim at integrating counterfactual reasoning in the loop for post-
test execution analysis, so as to support debugging via actual
causation analysis (i.e., the assignment of causal responsibility
for an occurred event). Lastly, we plan to broaden the RBST
application to a variety of domains to enforce external validity.
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