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Abstract We consider minimal surfaces of general type with pg = 2, q = 1 and K2 = 5.
We provide a stratification of the corresponding moduli space M and we give some bounds
for the number and the dimensions of its irreducible components.
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1 Introduction

Recently there has been considerable interest in understanding the geometry of irregular
surfaces of general type. Although the classification of such surfaces is still far from being
achieved, their study has produced in the last years a considerable amount of results, see for
instance the survey papers [2] and [14].

Minimal surfaces of general type satisfy the classical inequalities:

• χ(OS) := pg − q + 1 ≥ 1,
• K2

S ≥ 2pg if S is irregular (Debarre’s inequality),
• K2

S ≤ 9χ(OS) (Miyaoka–Yau inequality).

If S is irregular and K2
S = 2χ , then it follows q = 1. In this case the Albanese map

f : S −→ Alb(S) is a genus 2 fibration whose fibres are all 2-connected. The corresponding
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classification was given by Catanese [7] for K2
S = 2, and by Horikawa [12] in the general

case.
The study of irregular surfaces with K2

S = 2χ + 1 was started by Catanese and Ciliberto
in [4] and [5]. They investigated the case χ = 1, i.e., pg = q = 1 and K2

S = 3, proving that
for this class of surfaces the genus g of the fibre of the Albanese map can be either 2 or 3.
They also described all surfaces with g = 3 and started the classification of surfaces with
g = 2, which was later completed by Catanese and Pignatelli in [6], by using a structure
theorem for genus 2 fibrations which is proven in the same work.

For χ ≥ 2 the situation is far more complicated and not yet thoroughly studied. In this pa-
per we consider the case χ = 2, and we investigate the surfaces whose numerical invariants
are

K2
S = 5, pg = 2, q = 1.

By a result of Horikawa, given any irregular minimal surface of general type with 2χ ≤
K2 < 8

3χ , its Albanese map f : S −→ Alb(S) is a genus 2 fibration over a smooth curve of
genus q . Then in our case we have a genus 2 fibration f : S −→ B over an elliptic curve B .

We can therefore use the results of Horikawa-Xiao and those of Catanese-Pignatelli in
order to construct our surfaces and describe their moduli space. In fact, we first study the
rank 2 vector bundle V1 := f∗ωS , distinguishing the two cases where V1 is either decompos-
able or indecomposable. Then we divide the problem in various subcases, according to the
behaviour of V2 := f∗ω2

S , and for each subcase we study the corresponding stratum of the
moduli space M. By Riemann-Roch and [9], at a point [S] ∈ M we have

dim[S] M ≥ 10χ(OS) − 2K2
S + pg = 12,

hence, to understand the irreducible components of M, we have to consider only those strata
whose dimension is greater than or equal to 12.

Our main results are

Theorem 1.1 Let M′ be the subspace of M corresponding to surfaces such that V1 is
decomposable. There is a stratification into unirational algebraic subsets:

M′ = MI ∪ MIIa ∪ MIIb ∪ MIIc ∪ MIIIa ∪ MIIIc ∪ MIVa ∪ MIVb ∪ MIVc ∪ MV,gen ∪ MV,2,

where MIIc, MIVa, MIVb and MIVc have dimension ≤ 11, so they can be disregarded in the
determination of the irreducible components, while:

MI is nonempty, irreducible, of dimension at most 13;
MIIa, MIIb, MIIIa, MIIIc have dimension at most 12;
MV,gen is non-empty, of dimension 11;
MV,2 is a generically smooth, irreducible component of dimension 12.

Theorem 1.2 Let M′′ be the subspace of M corresponding to surfaces such that V1 is
indecomposable. There is a stratification

M′′ = MVI ∪ MVIIa ∪ MVIIb,

where the strata MVIIa and MVIIb have dimension ≤ 11, while MVI has dimension at
most 12.
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Using Theorems 1.1 and 1.2 and some easy additional arguments, one can prove the
following

Corollary 1.3 The moduli space M of minimal surfaces of general type with pg = 2, q = 1
and K2 = 5 is unirational and contains at least 2 irreducible components. Moreover, the
dimension of each irreducible component is either 12 or 13, and there is at most one com-
ponent of dimension 13.

Of course, it would be interesting to exactly describe all irreducible components of M
and also to understand how their closures intersect, but we will not try to develop this point
here.

Now let us explain how this paper is organized.
In Sect. 2 we present some preliminaries, and we set up notation and terminology. In

particular we recall Atiyah’s classification of vector bundles over an elliptic curve and
Horikawa’s and Catanese–Pignatelli’s approaches to the study of genus 2 fibrations.

In Sect. 3 we investigate the structure and the possible splitting types of the vector bun-
dles V1 = f∗ωS and V2 = f∗ω2

S .
Finally, Sect. 4 deals with the study of the moduli space M.

2 Preliminaries

2.1 Vector bundles over an elliptic curve

The classification of vector bundles of an elliptic curve was given in [1]. Here we just recall
the results needed in order to make this paper self-contained, and we refer the reader to
Atiyah’s paper for further details. Let B be an elliptic curve and let o be the identity element
in the group law of B . If τ ∈ B , we set Eτ (1, 1) := OB(τ ) and for all r ≥ 2 we denote by
Eτ (r, 1) the unique indecomposable rank r vector bundle on B defined recursively by the
short exact sequence

0 −→ OB −→ Eτ (r, 1) −→ Eτ (r − 1, 1) −→ 0.

Moreover, we set F1 := OB and for all r ≥ 2 we denote by Fr the unique indecomposable
rank r vector bundle on B defined recursively by the short exact sequence

0 −→ OB −→ Fr −→ Fr−1 −→ 0.

Proposition 2.1 [1] (i) For all L ∈ Pic0(B) and for all r ≥ 2 we have

h0(Eτ (r,1) ⊗ L) = 1, h1(Eτ (r,1) ⊗ L) = 0.

Moreover every indecomposable rank r vector bundle V on B such that degV = 1 is iso-
morphic to Eτ (r,1) ⊗ L for some L ∈ Pic0(B).

(ii) For all L ∈ Pic0(B) \ {OB} we have

h0(Fr ⊗ L) = h1(Fr ⊗ L) = 0,

whereas h0(Fr) = h1(Fr) = 1. Moreover every indecomposable rank r vector bundle V on
B such that degV = 0 is isomorphic to Fr ⊗ L for a unique L ∈ Pic0(B).
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By using Proposition 2.1, we can prove

Proposition 2.2 Let V be a rank 3 vector bundle on B , such that detV = OB(τ ) for some
τ ∈ B . Then the following holds.

(i) If h1(V ⊗ L) = 0 for all L ∈ Pic0(B), then V = Eτ (3, 1).
(ii) If h1(V ⊗L) = 0 for all L ∈ Pic0(B)\{OB} and h1(V ) = 1, then either V = Eτ (2, 1)⊕

OB or V = F2 ⊕ OB(τ ).
(iii) If h1(V ⊗ L) = 0 for all L ∈ Pic0(B) \ {OB} and h1(V ) = 2, then V = OB ⊕ OB ⊕

OB(τ ).

Proof (i) Assume h1(V ⊗ L) = 0 for all L ∈ Pic0(B). If V is indecomposable, then
V = Eτ (3,1) by Atiyah’s classification. Suppose now that V = W ⊕ M , where W is in-
decomposable of rank 2 and M is a line bundle. By our assumptions on the cohomology
of V , it follows 0 ≤ degM ≤ 1. If degM = 0, then h1(V ⊗ M−1) = 1 yields a contra-
diction. If degM = 1, then degW = 0, hence W = F2 ⊗ L for some L ∈ Pic0(B). It fol-
lows h1(V ⊗ L−1) = 1, again a contradiction. Finally, suppose that V = L1 ⊕ L2 ⊕ L3,
where the Li are line bundles. We must have degLi ≥ 0, hence we may assume degL1 = 0,
degL2 = 0, degL3 = 1; therefore we have h1(V ⊗L−1

1 ) ≥ 1, a contradiction. This concludes
the proof of part (i).

(ii) Since h1(V ) = 1, the vector bundle V cannot be indecomposable. Suppose that
V = W ⊕ M , where W is indecomposable of rank 2 and M is a line bundle; as before, we
have 0 ≤ degM ≤ 1. If degM = 0 we have degW = 1, hence h1(M) = h1(V ) = 1. It fol-
lows M = OB and V = Eτ (2,1) ⊕ OB . If degM = 1 we have degW = 0; since h1(V ) = 1,
the only possibility is V = F2 ⊕ OB(τ ). Finally, suppose that V = L1 ⊕ L2 ⊕ L3, where
the Li are line bundles. Taking L ∈ Pic0(B) \ {OB}, we have h1((L1 ⊕ L2 ⊕ L3) ⊗ L) = 0,
hence degLi ≥ 0; on the other hand degV = 1, hence, as before, we may assume
degL1 = 0, degL2 = 0, degL3 = 1; moreover L1 ⊗ L �= OB and L2 ⊗ L �= OB for all
L ∈ Pic0(B) \ {OB}. Hence we obtain V = OB ⊕ OB ⊕ OB(τ ), so h1(V ) = 2, a contradic-
tion. This concludes the proof of part (ii).

(iii) Since h1(V ) = 2, arguing as before we see that V = L1 ⊕L2 ⊕L3, where the Li are
line bundles. Moreover h1(V ⊗ L) = 0 for all L ∈ Pic0(B) implies degLi ≥ 0. So we may
assume degL1 = 0, degL2 = 0, degL3 = 1, which implies V = OB ⊕ OB ⊕ OB(τ ). This
concludes the proof of part (iii). �

Remark 2.3 A similar result holds if one replaces Pic0(B) \ {OB} with Pic0(B) \ {M}, for
any M ∈ Pic0(B).

Proposition 2.4

(i) Set W := Eτ (2,1). Then we have

S2W =
3⊕

i=1

Li(τ ), S3W = W(τ) ⊕ W(τ),

where the Li are the three non-trivial 2-torsion line bundles on B .
(ii) Sr−1F2 = Fr, for all r ≥ 2.

Proof (i) If τ = o, see [1, pp. 438–439]. The general case follows since, by Proposi-
tion 2.1, we have Eτ (2,1) = Eo(2,1) ⊗ L, where L is any line bundle on B such that
L⊗2 = OB(τ − o).

(ii) See [1, Theorem 9]. �
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2.2 Structure theorems for genus 2 fibrations

2.2.1 Horikawa’s method

The following approach to genus 2 fibrations was introduced by Horikawa in [11]; see also
[18, §1] for further details. Let f : S −→ B be a relatively minimal genus 2 fibration over a
smooth curve B of genus b, set V1 := f∗ωS|B and let π1 : P(V1) −→ B be the associated P

1-
bundle. Let us consider the relative canonical map φ : S ��� P(V1), whose indeterminacy
locus is contained in the fibres of f which are not 2-connected. After composing with a
finite number of blow-ups, we can extend φ to a generically finite, degree 2 morphism
φ̃ : S̃ −→ P(V1); let B be the branch divisor of φ̃. There exists a divisor F ∈ Pic(P(V1))

such that 2F = B, so we can consider the double cover S ′ −→ P(V1) branched at B, and
it is no difficult to see that there exists a birational morphism S̃ −→ S ′. The Néron Severi
group of P(V1) is generated by C0 and �, that are the classes of OP(V1)(1) and of a fiber,
respectively; since B� = 6, it follows that B = 6C0 + π∗

1 α, for some α ∈ Pic(B). After
applying a finite number of elementary transformations to the pair (P(V1), B), we obtain
that B has only the following types of singularities, defined when k ≥ 1:

(0) a double point or a simple triple point;
(Ik) a fibre � plus two triple points on it (hence these are quadruple points of B); each

of these triple points is (2k − 1)-fold or 2k-fold;
(I I k) two triple points on a fibre, each of these is 2k-fold or (2k + 1)-fold;

(I I I k) a fibre � plus a (4k − 2) or a (4k − 1)-fold triple point on it which has a contact of
order 6 with �;

(I V k) a 4k or (4k + 1)-fold triple point x which has a contact of order 6 with the fibre
through x;

(V) a fibre � plus a quadruple point x on �, which after a blow-up in x results in a
double point in the proper transform of �.

We recall that a k-fold triple point is a triple point that results in a simple triple point after
k − 1 blow-ups. Let us denote by ν(∗) the number of fibres of type ∗.

Theorem 2.5 [11] The following equality holds:

K2
S = 2pa(S) − 4 + 6b

+
∑

k

{(2k − 1)(ν(Ik) + ν(I I I k)) + 2k(ν(I I k) + ν(I V k))} + ν(V).

2.2.2 Catanese-Pignatelli’s method

Now we recall Catanese-Pignatelli approach to genus 2 fibrations, which roughly speaking
consists in considering the relative bicanonical map instead of the canonical one. We closely
follow the treatment given in [6] and [15], referring the reader to those papers for further
details. For any relatively minimal genus 2 fibration f : S −→ B , we can consider the rank
3 vector bundle V2 := f∗ω2

S|B and the corresponding P
2-bundle π2 : P(V2) −→ B . Therefore

we can associate to the fibration f the 5-tuple (B,V1, τ, ξ,w), where
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• B is the base curve;
• V1 = f∗ωS|B;
• τ is an effective divisor on B of degree K2

S − 6(b − 1) − 2χ(OS), corresponding to the
fibres of f which are not 2-connected;

• ξ is an element of Ext1
OB

(Oτ ,S2V1)/AutOB
(Oτ ) giving the short exact sequence

0 −→ S2V1
σ2−→ V2 −→ Oτ −→ 0, (1)

where σ2 is the natural map induced by the tensor product of canonical sections of
the fibres of f ; then σ2 yields a rational map P(V1) ��� P(V2) (the relative version of
the 2-Veronese embedding P

1 ↪→ P
2) birational onto a conic bundle C ∈ |OP(V2)(2) ⊗

π∗
2 (detV1)

−2|. More precisely, if x0, x1 are generators for the stalk of V1, then the equa-
tion of C is locally given by

σ2(x
2
0 )σ2(x

2
1 ) − (σ2(x0x1))

2 = 0. (2)

• w ∈ PH 0(B, Ã6), where Ã6 := A6 ⊗ (detV1 ⊗ OB(τ ))−2 and A6 is given by the following
short exact sequence:

0 −→ (detV1)
2 ⊗ V2

i3−→ S3V2 −→ A6 −→ 0. (3)

Here the map i3 is locally defined as follows: if x0, x1 are generators for the stalk of V1

and y0, y1, y2 are generators for the stalk of V2, then

i3((x0 ∧ x1)
⊗2⊗ yi) := σ2(x

2
0 )σ2(x

2
1 )yi − σ2(x0x1)

2yi.

The relative bicanonical map, which is always a morphism, induces a factorization of the
fibration f as

S
r−→ X

ψ−→ C π2|C−→ B,

where r is a contraction of (−2)-curves to Rational Double Points, and ψ is a finite
double cover. The element w ∈ PH 0(Ã6) = |O C(6)⊗ (detV1 ⊗ OB(τ ))−2| corresponds to
the divisorial part � of the branch locus of ψ . In fact, the branch locus of ψ consists of a
disjoint union � ∪ P , where P ⊂ Sing(C) is a finite set of points in natural bijection with
supp(τ ). Notice that A6 is the quotient of S3V2 by the subbundle of the relative cubics
vanishing on C ; geometrically, this reflects the fact that, in general, not all the divisors
in |O C(6) ⊗ (detV1 ⊗ OB(τ ))−2| can be written as the complete intersection of C with a
relative cubic G ∈ |OP(V2)(3) ⊗ (detV1 ⊗ OB(τ ))−2|. Finally, observe that if

0 −→ G1 −→ G2 −→ Ã6 −→ 0 (4)

is the short exact sequence obtained by tensoring (3) with (detV1 ⊗ OB(τ ))−2, we obtain

h0(Ã6) ≤ h0(G2) − h0(G1) + h1(G1). (5)

We call (B,V1, τ, ξ,w) the associate 5-ple of the fibration f : S −→ B .

Theorem 2.6 [6] Assume that we have a 5-ple (B,V1, τ, ξ,w) as before, such that the
following (open) conditions are satisfied:
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(P1) the conic bundle C has only Rational Double Points as singularities;
(P2) the curve � has only simple singularities, where “simple” means that the germ of the

double cover of C branched on it has at most a Rational Double Point.

Then there exists a unique relatively minimal genus 2 fibration f : S −→ B having the above
as associate 5-ple. Moreover, the surface S has the following invariants:

χ(OS) = degV1 + (b − 1),

K2
S = 2 degV1 + deg τ + 8(b − 1).

3 Surfaces of general type with pg = 2, q = 1 and K2 = 5

3.1 The sheaf V1

Let S be a minimal surface of general type with pg = 2, q = 1 and K2
S = 5. Its Albanese

variety B := Alb(S) is an elliptic curve, and its Albanese map f : S −→ B is a genus 2
fibration [12, Theorem 3.1]. Notice that since B is elliptic then ωS|B = ωS . By Theorem 2.6
we have deg(τ ) = 1, i.e. τ is a point of B . The genus 2 fibration contains exactly one
singular fibre, which comes from a singularity of (P(V1), B) of type I1, I I I 1 or V , see
Theorem 2.5. In particular, the curve B contains the fibre �τ = π∗

1 (τ ) of π1 : P(V1) −→ B .
Standard calculations, see [3, Chap. V], show that B is algebraically equivalent to 6C0 −2�,
so we can write B = B′ + �, where B′ is an effective divisor algebraically equivalent to
6C0 − 3�.
Let now E1 be a rank 1 subsheaf of maximal degree of V1 = f∗ωS ; then there is a short exact
sequence

0 −→ E −→ V1 −→ F −→ 0

such that F is locally free and degF ≥ 0, see [10]; moreover one clearly has 1 ≤ h0(E) ≤
h0(V1) = 2. Setting e := degE − degF , by [18, Théorème 2.1, p. 16] there are exactly two
possibilities:

• degE = 1, degF = 1, e = 0
• degE = 2, degF = 0, e = 2.

Proposition 3.1 (i) If e = 0 then (up to translations) either V1 = OB(p) ⊕ OB(2o − p) for
some p ∈ B or V1 = F2(η), where η ∈ E is a 2-torsion point.

(ii) If e = 2 then V1 = OB(D) ⊕ L, where D is an effective divisor of degree 2 on B

and L ∈ Pic0(B) is a non-trivial, torsion line bundle. This case occurs if and only if the
canonical map φ|K| of S factors through f .

Proof (i) If e = 0, up to a translation we may assume E = OB(p), F = OB(2o − p), for
some p ∈ B . If F �= E, then Ext1(F,E) = 0 and we obtain V1 = OB(p) ⊕ OB(2o − p).
If F = E, then Ext1(F,E) = C. In that case 2o = 2p, so any non-trivial extension class
corresponds to V1 = F2(η), where 2η ∈ |2o|.

(ii) If e = 2 then degE = 2, hence E = OB(D) for some effective divisor D on B . We
have h0(E) = 2 and h1(E) = 0, so h0(V1) = h0(E) + h0(F ), which implies h0(F ) = 0.
Then F is a non-trivial, degree zero line bundle. Since Ext1(F,E) = 0, it follows V1 =
OB(D) ⊕ F , and Simpson’s results ([17]) imply that F is a non-trivial torsion line bundle
on B . The last assertion follows from [18, Théorème 5.1, p. 71]. �
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Proposition 3.2 The case e = 2 does not occur.

Proof If e = 2, then S would be the canonical resolution of the singularities of a degree 2
cover of P(V1) = P(OB(D)⊕L). Since V1 is decomposable, we can take global coordinates
on the fibres of π1 : P(V1) −→ B , namely

x0 ∈ H 0(OP(V1)(1) ⊗ π∗
1 OB(−D)), x1 ∈ H 0(OP(V1)(1) ⊗ π∗

1 L−1).

Putting M = OB(D), we obtain xi
0x

j

1 ∈ H 0(OP(V1)(i + j) ⊗ π∗
1 M−i ⊗ π∗

1 L−j ). Since B′ is
algebraically equivalent to 6C0 − 3�, we have B′ ∈ |H 0(OP(V1)(6) ⊗ π∗

1 T −1)| for a suitable
degree 3 line bundle T on B , so the equation of B′ can be written as

∑

i+j=6

aij x
i
0x

j

1 = 0, (6)

where aij ∈ H 0(P(V1),π
∗
1 (T −1 ⊗ Mi ⊗ Lj)). In particular a06 = a15 = 0, so x2

0 divides the
left-hand side of (6). Hence B′ is non-reduced, a contradiction. �

Propositions 3.1 and 3.2 imply the following

Corollary 3.3 Let S be a minimal surface of general type with pg = 2, q = 1, K2
S = 5. Then

the canonical map of S does not factor through the Albanese fibration.

3.2 The sheaf V2

3.2.1 The case where V1 is decomposable

If V1 is decomposable then Propositions 3.1 and 3.2 yield V1 = OB(p)⊕ OB(2o−p), so we
have S2V1 = ⊕3

i=1 Pi , where P1 = OB(2p), P2 = OB(2o), P3 = OB(4o−2p). Fix a section
f0 ∈ H 0(OB(τ )) \ {0}; applying the functor Hom(−,S2V1) to the exact sequence

0 −→ OB(o − τ)
(−f0)−→ OB(o) −→ Oτ −→ 0

we obtain

Ext1(Oτ ,S2V1) =
3⊕

i=1

H 0(Pi(τ − o))

H 0(Pi(−o))
∼= C

3, (7)

that is Ext1(Oτ ,S2V1) can be identified with the space of global sections of⊕
H 0(Pi(τ − o)), modulo the subspace of sections vanishing in τ . For any (f1, f2, f3) ∈⊕
H 0(Pi(τ − o)), we denote by (f̄1, f̄2, f̄3) its image in Ext1(Oτ ,S2V1). Arguing as in [6,

p.1032], this implies that V2 = f∗ω2
S is the cokernel of a short exact sequence

0 −→ OB(o − τ)
i−→ OB(o) ⊕

3⊕

i=1

Pi −→ V2 −→ 0, (8)

where the injective map i is given by t (f0, f1, f2, f3).

Remark 3.4 If we choose the map i ′ given by t (f0, f1 + f0g1, f2 + f0g2, f3 + f0g3), with
gi ∈ H 0(Pi(−o)), we obtain a commutative diagram:
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0 OB(o − τ) O(o) ⊕ ⊕3
i=1 Pi V ′

2 0

0 OB(o − τ) O(o) ⊕ ⊕3
i=1 Pi V2 0

M

i

i′

where the matrix M is given by
⎛

⎜⎜⎝

1 g1 g2 g3

0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

Hence V ′
2
∼= V2, so the isomorphism class of V2 only depends on (f̄1, f̄2, f̄3).

Notice that V2 is a vector bundle if and only if f1, f2, f3 do not vanish simultaneously
in τ , that is if and only if ξ = (f̄1, f̄2, f̄3) is not the trivial extension class. Let m be the
cardinality of the set {i | f̄i = 0}; hence 0 ≤ m ≤ 2. Now we give the description of V2 in the
different cases.

Proposition 3.5 Assume V1 = OB(p)⊕ OB(2o−p). Then there are precisely the following
possibilities:

(I) m = 0, OB(4o − 4p) �= OB, V2(−2o) = Eτ (3,1)

(IIa) m = 0, OB(4o − 4p) = OB, OB(2o − 2p) �= OB, V2(−2o) = F2(2o − 2p) ⊕ OB(τ )

(IIb) m = 0, OB(4o − 4p) = OB, OB(2o − 2p) �= OB, V2(−2o) = Eτ (2,1) ⊕ OB

(IIc) m = 1, OB(4o − 4p) = OB, OB(2o − 2p) �= OB, V2(−2o) = OB(2o − 2p) ⊕ OB ⊕
OB(τ + 2p − 2o)

(IIIa) m = 1, OB(2o − 2p) �= OB, V2(−2o) = Eτ+2o−2p(2,1) ⊕ OB(2p − 2o)

(IIIb) m = 1, OB(2o − 2p) �= OB, V2(−2o) = Eτ+2p−2o(2,1) ⊕ OB(2o − 2p)

(IIIc) m = 1, OB(2o − 2p) �= OB, V2(−2o) = Eτ (2,1) ⊕ OB

(IVa) m = 2, OB(2o − 2p) �= OB, V2(−2o) = OB(2p − 2o) ⊕ OB ⊕ OB(τ + 2o − 2p)

(IVb) m = 2, OB(2o − 2p) �= OB, V2(−2o) = OB(2o − 2p) ⊕ OB ⊕ OB(τ + 2p − 2o)

(IVc) m = 2, OB(2o − 2p) �= OB, V2(−2o) = OB(2p − 2o) ⊕ OB(2o − 2p) ⊕ OB(τ )

(V) 0 ≤ m ≤ 2, OB(2o − 2p) = OB, V2(−2o) = OB ⊕ OB ⊕ OB(τ )

Proof The proof is not difficult, but one needs to consider several cases; for the reader’s
convenience, we will write it in detail. Let L ∈ Pic0(B); tensoring the exact sequence (8)
with L(−2o) we obtain

0 −→ L(−o − τ) −→ L(−o) ⊕ L(2p − 2o) ⊕ L ⊕ L(2o − 2p)

−→ V2(−2o) ⊗ L −→ 0, (9)

which in turn induces a linear map in cohomology

α : H 1(L(−o − τ)) −→ H 1(L(−o) ⊕ L(2p − 2o) ⊕ L ⊕ L(2o − 2p))

such that H 1(V2(−2o) ⊗ L) is isomorphic to the cokernel of α. Notice that detV2(−2o) =
OB(τ ). The first component of α is always surjective, since it is induced by the short exact
sequence

0 −→ L(−o − τ) −→ L(−o) −→ Oτ −→ 0,
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therefore if L /∈ {OB(2o − 2p), OB, OB(2p − 2o)} the map α is surjective and
H 1(V2(−2o) ⊗ L) = 0. Taking the dual of α, we obtain the map

α∗ : H 0
(
L∗(o) ⊕ L∗(2o − 2p) ⊕ L∗ ⊕ L∗(2p − 2o)

) −→ H 0(L∗(o + τ)),

which is given by (f0, f1, f2, f3); moreover H 1(V2(−2o) ⊗ L)∗ is isomorphic to kerα∗.
If OB(2o − 2p) = OB , then α∗ is injective for all L ∈ Pic0(B) \ {OB}, whereas for L =

OB it has a 2-dimensional kernel; by using Proposition 2.2 we conclude that V2(−2o) =
OB ⊕ OB ⊕ OB(τ ), so we are in case (V). Therefore we may assume OB(2o − 2p) �= OB .
Since α∗ is injective unless L ∈ {OB(2o − 2p), OB, OB(2p − 2o)}, we have just to consider
these three cases.

If L = OB(2o − 2p) we obtain

h1(V2(−2o) ⊗ L) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if OB(4o − 4p) �= OB and f̄1 �= 0;
1 if OB(4o − 4p) �= OB and f̄1 = 0;
1 if OB(4o − 4p) = OB and f̄1 �= 0 or f̄3 �= 0;
2 if OB(4o − 4p) = OB and f̄1 = f̄3 = 0.

Analogously, if L = OB(2p − 2o) we obtain

h1(V2(−2o) ⊗ L) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if OB(4o − 4p) �= OB and f̄3 �= 0;
1 if OB(4o − 4p) �= OB and f̄3 = 0;
1 if OB(4o − 4p) = OB and f̄1 �= 0 or f̄3 �= 0;
2 if OB(4o − 4p) = OB and f̄1 = f̄3 = 0.

Finally, if L = OB we obtain

h1(V2(−2o) ⊗ L) =
{

0 if f̄2 �= 0;
1 if f̄2 = 0.

Now we observe that if f̄i = 0 then Pi(−2o) is a direct summand of V2(−2o), and we
analyze the different possibilities.

Assume first OB(4o − 4p) �= OB . In this case there exist exactly m line bundles L such
that H 1(V2(−2o) ⊗ L) �= 0. By a straightforward application of Proposition 2.2 and Re-
mark 2.3 we obtain cases (I), (IIIa), (IIIb), (IIIc), (IVa), (IVb), (IVc).

Now assume OB(4o − 4p) = OB . Then the only new possibilities are:

• f̄i �= 0 for all i, that is m = 0; then H 1(V2(−2o)⊗L) is trivial for all L ∈ Pic0(B), except
in the case L = OB(2o − 2p) = OB(2p − 2o) where it is 1-dimensional. By Proposi-
tion 2.2 and Remark 2.3 this is either (IIa) or (IIb).

• f̄1 �= 0, f̄2 = 0, f̄3 �= 0; then H 1(V2(−2o)⊗L) is trivial for all L ∈ Pic0(B), except in the
cases L = OB(2o − 2p) and L = OB where it is 1-dimensional; this is (IIc).

The proof is now complete. �

3.2.2 The case where V1 is indecomposable

If V1 is indecomposable, then V1 = F2(η), where η is a 2-torsion point, so Proposition 2.4
yields S2V1 = F3(2o). Arguing as in Sect. 3.2.1, we obtain

Ext1(Oτ , S2V1) = H 0(F3(o + τ))

H 0(F3(o))
∼= C

3, (10)
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that is Ext1(Oτ ,S2V1) can be identified with the space of global sections of F3(o + τ),
modulo the subspace of sections vanishing in τ . For any v ∈ H 0(F3(o + τ)), we will denote
by v̄ its image in Ext1(Oτ ,S2V1). Now let us fix a section f0 ∈ H 0(OB(τ )) \ {0}. Then V2 is
the cokernel of a short exact sequence

0 −→ OB(o − τ)
i−→ OB(o) ⊕ F3(2o) −→ V2 −→ 0, (11)

where the injective map i is given by t (f0, v). Notice that V2 is a vector bundle if and only
if v does not vanish in τ , that is if and only if ξ := v̄ is not the trivial extension class. We
can now give a more precise description of V2.

Proposition 3.6 Assume V1 = F2(η), where η ∈ E is a 2–torsion point. Then we have the
following possibilities:

(VI) V2(−2o) = Eτ (3,1)

(VIIa) V2(−2o) = F2 ⊕ OB(τ )

(VIIb) V2(−2o) = Eτ (2,1) ⊕ OB .

Moreover, for a general choice of ξ ∈ Ext1(S2V1, Oτ ) only (VI) occurs.

Proof Let L ∈ Pic0(B); tensoring the exact sequence (11) with L(−2o) we obtain

0 −→ L(−o − τ) −→ L(−o) ⊕ (F3 ⊗ L) −→ V2(−2o) ⊗ L −→ 0, (12)

which in turn induces a linear map in cohomology

α : H 1(L(−o − τ)) −→ H 1(L(−o)) ⊕ H 1(F3 ⊗ L)

such that H 1(V2(−2o) ⊗ L) is isomorphic to the cokernel of α. As in the proof of Proposi-
tion 3.5, the first component of α is always surjective. If L �= OB then H 1(F3 ⊗ L) = 0 (see
Proposition 2.1); consequently, α is surjective and H 1(V2(−2o) ⊗ L) = 0. We must now
investigate what happens for L = OB . Let v ∈ Hom(OB(−o − τ),F3) ∼= H 0(F3(o + τ)),
and let Q be the cokernel of the corresponding map v : OB(−o − τ) −→ F3.

Claim 3.7 For a general choice of v, we have

Q = OB(q) ⊕ OB(o + τ − q)

for some q ∈ B . Moreover, Q = OB ⊕ OB(o + τ) if and only if imv ⊂ W , where W is the
unique subbundle of F3 isomorphic to F2, see [1, p. 433].

Proof Since F3(o + τ) is globally generated, for a general choice of v the sheaf Q is lo-
cally free. If Q were indecomposable then Q = F2(u), where u ∈ B is such that OB(2u) =
OB(o + τ). Since Fr is self-dual, by taking duals we obtain the exact sequence

0 −→ F2(−u) −→ F3 −→ OB(o + τ) −→ 0.

By composing it with the injective morphism OB(−u) → F2(−u) induced by the section of
F2, we conclude that OB is a sub-vector bundle of F3(u), but this is a contradiction, since
every section of F3(u) vanishes in u (see [8, Sect. 5, p. 108]); thus Q must be decomposable.
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Moreover, we have Q ∼= OB ⊕ OB(o+ τ) if and only if there exists a surjective map F3 −→
OB whose kernel contains im v. But such a kernel is exactly W , so we are done. �

In order to complete the proof of Proposition 3.6, let us take a general v ∈ H 0(F3(o + τ)).
We must then study the exact sequence

0 −→ OB(−o − τ)
v−→ F3

j−→ OB(q) ⊕ OB(o + τ − q) −→ 0,

and in particular the map β induced in cohomology as follows:

H 0(OB(q) ⊕ OB(o + τ − q)) −→ H 1(OB(−o − τ))
β−→ H 1(F3) −→ 0. (13)

Dualizing (13), using Serre duality and exploiting the isomorphism F ∗
3

∼= F3 we obtain

0 −→ H 0(F3)
β∗−→ H 0(OB(o + τ)) −→ H 1(OB(−q) ⊕ OB(−o − τ + q)),

hence imβ∗ can be identified with 〈sq〉, the line generated by the unique non-zero section
sq ∈ H 0(OB(o + τ)) such that sq(q) = 0. Now, looking at sequence (12) for L = OB , we
see that α is dual to

α∗ : H 0(OB(o)) ⊕ H 0(F3)
(f0,β∗)−→ H 0(OB(o + τ)),

so the image of α∗ is the subspace spanned by so and sq . Since v is general we have o �= q ,
hence so and sq are linearly independent sections in H 0(OB(o + τ)) and this implies that
α∗ is an isomorphism. Consequently, α is also an isomorphism and for a general choice of
ξ = v̄ we obtain h1(V2(−2o)) = 0. For some special choice of v ∈ H 0(F3(o + τ)) it may
happen that α∗ has a 1-dimensional kernel; consequently, α has a 1-dimensional cokernel
and h1(V2(−2o)) = 1. Therefore we can apply Proposition 2.2, concluding the proof of
Proposition 3.6. �

4 The moduli space

Let M be the moduli space of minimal surfaces of general type S with pg(S) = 2, q(S) = 1
and K2

S = 5. We write M = M′ ∪ M′′, where M′ corresponds to surfaces such that V1 is
decomposable and M′′ corresponds to surfaces such that V1 is indecomposable.

Definition 4.1 We stratify M′ and M′′ as

M′ = MI ∪ MIIa ∪ · · · ∪ MV

M′′ = MVI ∪ MVIIa ∪ MVIIb,

according to the decomposition type for V2, as in Propositions 3.5 and 3.6.

Now we want to estimate the dimensions of these strata. By Catanese-Pignatelli’s struc-
ture theorem for genus 2 fibrations, we can consider a surjective map � : D −→ M, where
D is the set of admissible 5-tuples (B,V1, τ, ξ,w) which give surfaces with our numerical
invariants and belonging to a given stratum. Therefore in each case the dimension of the
stratum is less than or equal to the dimension of D.

Moreover, we will see that each strata can be parametrized via a unirational family; there-
fore M itself is unirational.
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Remark 4.2 In order to compute the exact dimension of each strata of the moduli space,
we must compute the dimension of the corresponding parameter space D, and then subtract
from the result the dimension of the general fibre of �. Such a fibre will correspond to the
orbit of the action of certain automorphism groups over our construction data.

Locally around the point [S] ∈ M, the coarse moduli space M is analytically isomorphic
to the quotient of the base T of the Kuranishi family by the finite group Aut(S). Hence

h1(S,TS) ≥ dim[S] M ≥ h1(S,TS) − h2(S,TS) = 10χ(OS) − 2K2
S = 10.

When q = 1 one obtains the better lower bound 10χ(OS)− 2K2
S +pg = 12, see [16] and

[9]. So in our case we have

h1(S,TS) ≥ dim[S] M ≥ 12.

This implies that those strata whose dimension is less than 12 can be disregarded for the
determination of the irreducible components of M.

For further application, let us describe a method that can be used in order to estimate
h1(S,TS), see [15]. There is an exact sequence

0 −→ ωS −→ �1
S ⊗ ωS −→ ω⊗2

S −→ OCrit(f )(ω
⊗2
S ) −→ 0,

where f : S −→ B := Alb(S) is the Albanese map of S. Setting F := (�1
S ⊗ ωS)/ωS , we

get

0 −→ F −→ ω⊗2
S −→ OCrit(f )(ω

⊗2
S ) −→ 0.

Therefore

2 = h0(S,ωS) ≤ h0(S,�1
S ⊗ ωS) ≤ h0(S,ωS) + h0(S, F ) = 2 + h0(S, F ), (14)

and by the Serre duality h2(S,TS) = h0(S,�1
S ⊗ ωS). Finally,

0 −→ H 0(S, F ) −→ H 0(S,ω⊗2
S ) −→ H 0(S,ω⊗2

S ⊗ OCrit(f )) −→ 0

implies that H 0(S, F ) is the vector space given by the bicanonical curves of S passing
through Crit(f ).

Let us start by studying M′. We have OB(p) ⊕ OB(2o − p) ∼= OB(q) ⊕ OB(2o − q) if
and only if either p = q or p + q ∈ |2o|; therefore, when p varies in B , the vector bundle
V1 varies into a 1-dimensional family isomorphic to P

1.

Proposition 4.3 The stratum MI is nonempty, irreducible, of dimension at most 13.

Proof Set W := Eτ (3,1); then V2 = W(2o) and we have a short exact sequence

0 −→ W(2o − 2τ) −→ S3W(2o − 2τ) −→ Ã6 −→ 0,

see (3) and (4). By [5, Sect. 1] we obtain

h0(W(2o − 2τ)) = 1, h1(W(2o − 2τ)) = 0, h0(S3W(2o − 2τ)) = 10,
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hence h0(Ã6) = 9. We have 1 parameter for B , 1 parameter for V1, 2 parameters for ξ , 1
parameter for τ and 8 parameters from PH 0(Ã6). Therefore MI has dimension at most 13,
and it is irreducible since it can be parametrized via an irreducible family.

Now let us show that it is non-empty. For the sake of simplicity, we assume τ = o and we
write π : P(W) −→ B and π2 : P(V2) −→ B for the projective bundles associated to W and
V2, respectively. There is an isomorphism of projective bundles ψ : P(W) −→ P(V2) such
that

ψ∗OP(V2)(1) ∼= OP(W)(1) ⊗ π∗OB(2o). (15)

The projective bundle P(W) can be identified with Sym3B , see for instance [5]. For all
x ∈ B , set:

Dx = {x + x2 + x3 | x2, x3 ∈ B},
Fx = {x1 + x2 + x3 | the sum of x1, x2, x3 in the group law of B equals x}

Then Do is the divisor class of OP(W)(1), and (15) implies that

OP(V2)(1) = OP(V2)(Do + 2Fo). (16)

Thus C ∈ |OP(V2)(2) ⊗ π∗
2 (det(V1))

−2| = |2Do + 4Fo − 4Fo| = |2Do|.
Let now ϕ : B̃ −→ B be an isogeny of degree 3, and set G := ker(ϕ) ∼= Z3. If we write

ϕ−1(o) = {õ, ã, b̃},
we have G = 〈t∗

ã
〉, where t∗

ã
is the translation by ã.

By [1] there exists a line bundle L ∈ Pic(B̃) of degree 1 such that

ϕ∗L = W

and moreover

ϕ∗ϕ∗L = ϕ∗Eτ (3,1) = OB̃ (õ) ⊕ t∗ã OB̃ (õ) ⊕ (t∗ã )2 OB̃ (õ)

= OB̃ (õ) ⊕ OB̃ (ã) ⊕ OB̃ (b̃), (17)

see [13, Theorem 2.2]. Let us define Ẽ := ϕ∗(W ⊗ OB(2o)); since the divisor 2ã + 2b̃ is
linearly equivalent to 4õ, (17) yields

Ẽ = ϕ∗W ⊗ OB̃ (2õ + 2ã + 2b̃)

= OB̃ (3õ + 2ã + 2b̃) ⊕ OB̃ (2õ + 3ã + 2b̃) ⊕ OB̃ (2õ + 2ã + 3b̃)

= OB̃ (7õ) ⊕ OB̃ (6õ + ã) ⊕ OB̃ (6õ + b̃).

From the commutative diagram

P(Ẽ)

B̃

P(V2)

B

π̃2

�

π2

ϕ
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it follows

�∗�∗OP(V2)(Do) = OP(V2)(Do) ⊗ �∗OP(Ẽ)

= OP(V2)(Do) ⊗ (OP(V2) ⊕ L ⊕ L2)

= OP(V2)(Do) ⊕ (OP(V2)(Do) ⊗ L) ⊕ (OP(V2)(Do) ⊗ L2),

where L is the 3-torsion line bundle inducing the étale Z3-cover � : P(Ẽ) −→ P(V2). By
(16) we see that

�∗OP(V2)(Do) = �∗(OP(V2)(1) ⊗ π∗
2 OB(−2o))

= OP(Ẽ)(1) ⊗ π̃∗
2 OB̃ (−6õ).

Let y0, y1 and y2 be global coordinates on the fibers of π̃2, namely

y0 ∈ H 0(OP(Ẽ)(1) ⊗ π̃∗
2 OB̃ (−7õ)),

y1 ∈ H 0(OP(Ẽ)(1) ⊗ π̃∗
2 OB̃ (−6õ − ã)),

y2 ∈ H 0(OP(Ẽ)(1) ⊗ π̃∗
2 OB̃ (−6õ − b̃)).

We have h0(�∗OP(V2)(Do)) = 3 and a general section of �∗OP(V2)(Do) can be written as

σ = λ0y0 + λ1y1 + λ2y2,

where λ0 ∈ H 0(π̃∗
2 OB̃ (õ)), λ1 ∈ H 0(π̃∗

2 OB̃ (ã)) and λ2 ∈ H 0(π̃∗
2 OB̃ (b̃)).

Then a straightforward computation shows that we can choose the yi so that the action
of t∗

ã
∈ G on the yi is given by

t∗ã :
⎧
⎨

⎩

y0 �→ y1,

y1 �→ y2,

y2 �→ y0.

(18)

Therefore t∗
ã
σ = (t∗

ã
λ0)y1 + (t∗

ã
λ1)y2 + (t∗

ã
λ2)y0, so σ is G-invariant if and only if t∗

ã
λ0 =

λ1, t∗
ã
λ1 = λ2 and t∗

ã
λ2 = λ0. Since (t∗

ã
)2 = t∗

b̃
, this is equivalent to require λ1 = t∗

ã
λ0 and

λ2 = t∗
b̃
λ0. So a general invariant section of �∗OP(V2)(Do) is given by

λy0 + (t∗ã λ)y1 + (t∗
b̃
λ)y2,

where λ ∈ H 0(OB̃ (õ)).
Now a general section of �∗OP(V2)(2Do) is of the form:

σ =
∑

i+j+k=2

λijky
i
0y

j

1 yk
2

= λ200y
2
0 + λ020y

2
1 + λ002y

2
2 + λ110y0y1 + λ101y0y2 + λ011y1y2,

where the λijk are sections of pullbacks of suitable line bundles on B̃ .
By (18), t∗

ã
acts on σ as

t∗ã σ = (t∗ã λ200)y
2
1 + (t∗ã λ020)y

2
2 + (t∗ã λ002)y

2
0 + (t∗ã λ110)y1y2 + (t∗ã λ101)y0y1

+ (t∗ã λ011)y0y2,
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so σ is G-invariant if and only if

λ020 = t∗ã λ200, λ002 = t∗ã λ020 = t∗
b̃
λ200,

λ011 = t∗ã λ110, λ101 = t∗ã λ011 = t∗
b̃
λ110.

Hence a general invariant section of �∗OP(V2)(2Do) can be written as

λy2
0 + (t∗ã λ)y2

1 + (t∗
b̃
λ)y2

2 + μy0y1 + (t∗
b̃
μ)y0y2 + (t∗ã μ)y1y2, (19)

with λ ∈ H 0(OB̃ (2õ)), μ ∈ H 0(OB̃ (õ + ã)).
Denoting by p̃ ∈ B̃ any of the points in ϕ−1(p), the short exact sequence (1) lifts to

0 −→ OB̃ (6p̃) ⊕ OB̃ (6õ) ⊕ OB̃ (12õ − 6p̃)
σ̃2−→ Ẽ −→ Oõ+ã+b̃ −→ 0. (20)

Taking global coordinates x̃0, x̃1 on the fibres of ϕ∗V1 = OB̃ (3p̃) ⊕ OB(6õ − 3p̃), the map
σ̃2 is given by

⎧
⎨

⎩

σ̃2(x̃
2
0 ) = a00y0 + a01y1 + a02y2,

σ̃2(x̃0x̃1) = a10y0 + a11y1 + a12y2,

σ̃2(x̃
2
1 ) = a20y0 + a21y1 + a22y2,

where

a00 ∈ H 0(π̃∗
2 OB̃ (7õ − 6p̃)), a01 ∈ H 0(π̃∗

2 OB̃ (6õ − 6p̃ + ã)),

a02 ∈ H 0(π̃∗
2 OB̃ (6õ − 6p̃ + b̃)), a10 ∈ H 0(π̃∗

2 OB̃ (õ)), a11 ∈ H 0(π̃∗
2 OB̃ (ã)),

a12 ∈ H 0(π̃∗
2 OB̃ (b̃)), a20 ∈ H 0(π̃∗

2 OB̃ (6p̃ − 5õ)),

a21 ∈ H 0(π̃∗
2 OB̃ (6p̃ − 6õ + ã)), a22 ∈ H 0(π̃∗

2 OB̃ (6p̃ − 6õ + b̃)).

Let us consider now the conic bundle C̃ ⊂ P(Ẽ) given by

(a00y0 + a01y1 + a02y2)(a20y0 + a21y1 + a22) − (a10y0 + a11y1 + a12y2)
2 = 0.

If we choose

a01 = t∗ã a00, a02 = t∗
b̃
a00, a11 = t∗ã a10,

a12 = t∗
b̃
a10, a21 = t∗ã a20, a22 = t∗

b̃
a20

the equation of C̃ is G-invariant, hence of the form (19); in fact, we have

λ = a00a20 − a2
10, μ = a00(t

∗
ã a20) + (t∗ã a00)a20 − 2a10(t

∗
ã a10).

We claim that, for a general choice of a00, a10, a20, the only singularities of C̃ are three
rational double points of type A1, lying over the three points õ, ã, b̃. Since σ̃2 is of maximal
rank outside these points, and since they form an orbit for the G-action, it is sufficient to
check that the fibre over õ has a node (which will be automatically a point of type A1 for C̃).
In a neighborhood of this fibre, set

u0 := a00(õ)y0 + a01(õ)y1 + a02(õ)y2,

u1 := a10(õ)y0 + a11(õ)y1 + a12(õ)y2,

u2 := a20(õ)y0 + a21(õ)y1 + a22(õ)y2.
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Since σ̃2 drops rank in õ, we can find c0, c2 ∈ C such that u1 = c0u0 + c2u2; then a local
equation of the fibre of C̃ over õ is given by

u0u2 − (c0u0 + c2u2)
2 = 0. (21)

Since for a general choice of a00, a10, a20 (i.e. for a general choice of c0, c2) the quadratic
form (21) splits into two distinct linear forms, our claim is proven.

Therefore the image of C̃ in P(V2) is a conic bundle C with a unique singular point of type
A1, lying over the point o ∈ B . Moreover, by construction, C is the conic bundle associated
with the map σ2 : S2V1 → V2, so condition (P1) of Theorem 2.6 is satisfied.

The relative cubic G belongs to the linear system |OP(V2)(3) ⊗ π∗
2 OB(−4o − 2τ)| =

|3Do + 6Fo − 6Fo| = |3Do|. By [5], the linear system |3Do| is base point free, hence its
restriction to C is base point free too. This implies that a general complete intersection of the
form G ∩ C is smooth and does not contain the unique singular point of C . Thus condition
(P2) is also satisfied, and consequently MI is not empty. �

Proposition 4.4 The stratum MIIa has dimension at most 12.

Proof In case (IIa) we have OB(4o − 4p) = OB , so there are no parameters for V1. The
vector bundle Ã6 fits into the short exact sequence

0 −→ G1 −→ G2 −→ Ã6 −→ 0,

where

G1 = F2(2p − 2τ) ⊕ OB(2o − τ),

G2 = S3F2(2p − 2τ) ⊕ S2F2(2o − τ) ⊕ F2(2p) ⊕ OB(2o + τ).

By Proposition 2.4 we have S2F2 = F3, S3F2 = F4. Now there are two possibilities.

• OB(2p − 2τ) �= OB . In this case

h0(G1) = 1, h1(G1) = 0, h0(G2) = 10,

hence h0(Ã6) = h0(G2) − h0(G1) = 9. We have 1 parameter for B , 2 parameters for ξ ,
1 parameter for τ and 8 parameters from PH 0(Ã6).

• OB(2p − 2τ) = OB . In this case

h0(G1) = 2, h1(G1) = 1, h0(G2) = 11,

hence h0(Ã6) ≤ 10 by (5). We have 1 parameter for B , 2 parameters for ξ , no parameters
for τ and V1 and at most 9 parameters from PH 0(Ã6).

Summing up, we conclude that MIIa has dimension at most 12. �

Proposition 4.5 The stratum MIIb has dimension at most 12.

Proof Set W = Eτ (2,1); then V2(−2o) = W ⊕ OB and tensoring the exact sequence (3)
with OB(−6o) we obtain

0 −→ W ⊕ OB

i3−→ (
S3W ⊕ S2W

) ⊕ (W ⊕ OB) −→ A6(−6o) −→ 0. (22)
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Arguing as in [6, Lemma 6.14], we see that the second component of the map i3 is actually
the identity, hence the exact sequence (22) splits, giving

Ã6 = A6(−4o − 2τ) = (S3W ⊕ S2W)(2o − 2τ).

By Proposition 2.4 this in turn implies

Ã6 =
(

W ⊕ W ⊕
3⊕

i=1

Li

)
(2o − τ),

hence h0(Ã6) = 9. We have 1 parameter for B , no parameters for V1, 2 parameters for ξ ,
1 parameter for τ and 8 parameters from PH 0(Ã6). Therefore MIIb has dimension at most
12.

The fact that it is nonempty can be proven as in case MI (using an isogeny of degree 2
instead of 3); the details are left to the reader. �

Proposition 4.6 The stratum MIIc has dimension at most 11.

Proof In case (IIc) we have OB(2o − 2p) = OB(2p − 2o), with OB(2o − 2p) �= OB , and
the map σ2 has the form

σ2 : OB(2p) ⊕ OB(2o) ⊕ OB(4o − 2p) −→ OB(2p) ⊕ OB(2o) ⊕ OB(4o − 2p + τ).

Take global coordinates

x0 ∈ H 0
(

OP(V1)(1) ⊗ π∗
1 OB(−p)

)
, x1 ∈ H 0

(
OP(V1)(1) ⊗ π∗

1 OB(−2o + p)
)

on the fibres of P(V1) and, similarly, global coordinates y0, y1, y2 on the fibres of P(V2).
With respect to these coordinates, σ2 is given by

⎧
⎨

⎩

σ2(x
2
0 ) = a00y0 + a02y2,

σ2(x0x1) = a11y1 + a12y2,

σ2(x
2
1 ) = a20y0 + a22y2,

where a00, a11, a20 ∈ C, a02, a22 ∈ H 0(OB(τ )), a12 ∈ H 0(OB(τ + 2o − 2p)). Therefore the
equation of the conic bundle C ⊂ P(V2) is

(a00y0 + a02y2)(a20y0 + a22y2) − (a11y1 + a12y2)
2 = 0.

Moreover, since the rank of σ2 drops exactly at the point τ , it follows a11 �= 0. This means
that the coefficient of the term y2

1 is a non-zero constant, hence the same argument of [15,
Lemma 3.5] shows that exact sequence (3) splits. Therefore we obtain

Ã6 = OB(2p − 2τ) ⊕ OB(4o − 2p + τ) ⊕ OB(4p − 2o − 2τ)

⊕ OB(2p − τ) ⊕ OB(4o − 2p) ⊕ OB(6o − 4p) ⊕ OB(2o − τ),

so

h0(Ã6) =
{

10 if either O(2p − 2τ) = OB or OB(4p − 2o − 2τ) = OB ;

9 otherwise.
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So we have 1 parameter for B , 1 parameter for ξ , no parameters (resp. 1 parameter) for τ

and 9 parameters (resp. 8 parameters) from PH 0(Ã6). It follows that MIIc has dimension at
most 11. �

Proposition 4.7 We have MIIIa = MIIIb. Moreover the dimension of this stratum is at
most 12.

Proof Case (IIIb) is obtained from case (IIIa) by considering 2o−p instead of p; this shows
that the corresponding strata coincide. So it is sufficient to consider case (IIIa); set

W := Eτ+2o−2p, L := OB(2p − 2o).

Then we have V2(−2o) = W ⊕ L and tensoring the exact sequence (3) with OB(−6o) we
obtain

0 −→ W ⊕ L
i3−→ S3W ⊕ (S2W ⊗ L) ⊕ (W ⊗ L2) ⊕ L3 −→ A6(−6o) −→ 0.

Hence Ã6 = A6(−4o − 2τ) fits into the short exact sequence

0 −→ G1 −→ G2 −→ Ã6 −→ 0,

where

G1 = (W ⊕ L)(2o − 2τ),

G2 = (
S3W ⊕ (S2W ⊗ L) ⊕ (W ⊗ L2) ⊕ L3

)
(2o − 2τ).

There are several possibilities.

• L(2o − 2τ) �= OB,L3(2o − 2τ) �= OB . In this case

h0(G1) = 1, h1(G1) = 0, h0(G2) = 10,

hence h0(Ã6) = 9. We have 1 parameter for B , 1 parameter for V1, 1 parameter for ξ , 1
parameter for τ and 8 parameters from PH 0(Ã6).

• L(2o − 2τ) �= OB,L3(2o − 2τ) = OB . In this case

h0(G1) = 1, h1(G1) = 0, h0(G2) = 11,

hence h0(Ã6) = 10. We have 1 parameter for B , 1 parameter for V1, 1 parameter for ξ , no
parameters for τ and 9 parameters from PH 0(Ã6).

• L(2o − 2τ) = OB , L3(2o − 2τ) �= OB . We have

h0(G1) = 2, h1(G1) = 1, h0(G2) = 10,

hence h0(Ã6) ≤ 9 by (5). We have 1 parameter for B , 1 parameter for V1, 1 parameter for
ξ , no parameters for τ and at most 8 parameters from PH 0(Ã6).

• L(2o − 2τ) = OB , L3(2o − 2τ) = OB . Notice that this implies L2 = OB , so there are no
parameters for V1. We obtain

h0(G1) = 2, h1(G1) = 1, h0(G2) = 11,
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hence h0(Ã6) ≤ 10 by (5). We have 1 parameter for B , 1 parameter for ξ , no parameters for
τ and at most 9 parameters from PH 0(Ã6).

Summing up, we conclude that the dimension of the stratum MIIIa = MIIIb is at
most 12. �

Proposition 4.8 The stratum MIIIc has dimension at most 12.

Proof As in the proof of Proposition 4.5, h0(Ã6) = 9. We have 1 parameter for B , 1 param-
eter for V1, 1 parameter for ξ , 1 parameter for τ and 8 parameters from PH 0(Ã6). Therefore
MIIIc has dimension at most 12. �

Proposition 4.9 The strata MIVa, MIVb have dimension at most 11.

Proof The proof is the same as in case (IIc); the details are left to the reader. �

Proposition 4.10 The stratum MIVc has dimension at most 11.

Proof In case (IVc) the vector bundles G1, G2 in exact sequence (4) are as follows:

G1 = OB(2p − 2τ) ⊕ OB(4o − 2p − 2τ) ⊕ OB(2o − τ),

G2 = OB(6p − 4o − 2τ) ⊕ OB(8o − 6p − 2τ) ⊕ OB(2o + τ) ⊕ OB(2p − 2τ)

⊕ OB(4p − 2o − τ) ⊕ OB(4o − 2p − 2τ) ⊕ OB(6o − 4p − τ) ⊕ OB(2p)

⊕ OB(4o − 2p) ⊕ OB(2o − τ).

A tedious but elementary analysis of all possibilities, together with inequality (5), shows
that the number of parameters involved in the construction never exceeds 11. Hence MIVc

has dimension at most 11. �

Now let us write MV = MV,gen ∪ MV,2, where MV,2 consists of surfaces with OB(2o−
2τ) = OB and MV,gen is the rest.

Proposition 4.11 MV,gen and MV,2 are both non-empty.

Proof In case (V) we have OB(2o− 2p) = OB , hence the map σ2 : S2V1 → V2 has the form

σ2 : OB(2o)3 −→ OB(2o)2 ⊕ OB(2o + τ).

Recall that for a general choice of σ2 we have f̄i �= 0 for all i ∈ {1,2,3}. Take coordinates
x0, x1 on the fibres of V1 and y0, y1, y2 on the fibres of V2; with respect to these coordinates,
σ2 is given by

⎧
⎨

⎩

σ2(x
2
0 ) = a00y0 + a01y1 + a02f0y2,

σ2(x0x1) = a10y0 + a11y1 + a12f0y2,

σ2(x
2
1 ) = a20y0 + a21y1 + a22f0y2,

where aij ∈ C and f0 ∈ H 0(OB(τ )). Moreover, since the rank of σ2 drops precisely at the
point τ , it follows det(aij ) �= 0.
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Therefore the global equation of the relative conic C ⊂ P(V2) is

(a00y0 + a01y1 + a02f0y2)(a20y0 + a21y1 + a22f0y2)

−(a10y0 + a11y1 + a12f0y2)
2 = 0.

Notice that at least one of the coefficient of y2
0 , y2

1 or y0y1 in the equation of C is not zero,
otherwise y2

2 divides the equation of C . Since each of these coefficients is a non-zero con-
stant, by the argument in [15, Lemma 3.5] one sees that in any case the exact sequence (3)
splits. Therefore we obtain

Ã6 = OB(2o − 2τ)2 ⊕ OB(2o − τ)2 ⊕ OB(2o)2 ⊕ OB(2o + τ),

so

h0(Ã6) =
{

11 if OB(2o − 2τ) = OB ,

9 otherwise.

Choosing a02 = a22 = a10 = a11 = 0, a00 = a01 = a20 = a12 = 1, a21 = −1, the equation of
C becomes

y2
0 − y2

1 − f 2
0 y2

2 = 0.

Hence C has a unique singular point (of type A1), namely the point P with homogeneous
coordinates [0 : 0 : 1] lying on the fibre over τ ; in particular, condition (P1) of Theorem 2.6
is satisfied. Since (3) splits, the curve � defined by the section w ∈ H 0(Ã6) is cut by a
relative cubic G ∈ |OP(V2)(3) ⊗ π∗

2 OB(−4o − 2τ)|; let us write the equation of G as

∑

i+j+k=3

bijk yi
0y

j

1 yk
2 = 0, (23)

where bijk ∈ H 0(P(V2), π∗
2 OB(2o + (k − 2)τ )). If OB(2o − 2τ) = OB then all the coeffi-

cients of G are generically non-zero; one checks that in this case the linear system |G| in
P(V2) is base-point free, hence the linear system |�| in C is base-point free too; by Bertini
theorem, we conclude that for a general choice of � condition (P2) is also satisfied, hence
MV,2 is non-empty.

If OB(2o − 2τ) �= OB , then b300 = b210 = b120 = b030 = 0. So the relative cubic G splits
as G = H ∪ G′, where H is the relative hyperplane {y2 = 0} and G′ is the relative conic

b201y
2
0 + b111y0y1 + b102y0y2 + b021y

2
1 + b012y1y2 + b003y

2
2 = 0.

Consequently, � splits as � = HC ∪ �′, where HC = H ∩ C and �′ = G′ ∩ C . The sections
b201, b021, b111 all vanish at the same point, namely the unique point q ∈ B such that OB(2o−
τ) = OB(q); notice that q �= τ . Hence the base locus of |G′| is the line y2 = 0 in the fibre
π−1(q), and this in turn implies that the base locus of |�′| in C are the two points P1 = [1 :
1 : 0] and P2 = [1 : −1 : 0] on the fibre of C over q . Now let us make a general choice of
the coefficients in (23). Then � does not contain the unique singular point of C ; moreover,
a standard local computation together with Bertini theorem show that

• �′ is smooth;
• �′ and HC intersect transversally at P1 and P2.

So condition (P2) is satisfied and MV,gen is non-empty. �
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Let us compute now the dimensions of MV,2 and MV,gen.

Proposition 4.12 MV,2 has dimension 12, whereas MV,gen has dimension 11. Moreover,
MV,2 is a generically smooth, irreducible component of M.

Proof We first compute the dimension of the parameter space D in each case. If OB(2o −
2τ) = OB we have 1 parameter for B , 2 parameters for ξ and 10 parameters from PH 0(Ã6);
otherwise we have 1 parameter for B , 2 parameters for ξ , 1 parameter from τ and 8 pa-
rameters from PH 0(Ã6). Therefore MV,2 has dimension at most 13, whereas MV,gen has
dimension at most 12.

By Remark 4.2, we have now to find the dimension of the general fibre of � : D → M,
and for this we have to consider the action of certain automorphism groups over our data.

Observe first that in both cases we can forget the action of Aut(B), since we have fixed
a point of B by choosing detV1 = OB(2o). So we have only to consider the action of
Aut(V1) × Aut(V2).

We are therefore reduced to solve the following problem: given an admissible 5-tuple
(B,V1, t, ξ,w), corresponding to the genus 2 fibration f : S → B , we must find the dimen-
sion of the subvariety Z ⊂ Aut(V1) × Aut(V2) given by the pairs (φ1, φ2) which make the
following diagram commuting:

0 S2V1

σ2

S2φ1

V2

φ2

Oτ 0

0 S2V1

σ2

V2 Oτ 0. (24)

In fact, the dimension of the fibre �−1([S]) is given by dimZ − 1. Geometrically, this
expresses the fact that the points in such a fibre are in 1-to-1 correspondence with the family
of automorphisms of the projective bundle P(V2) fixing the conic bundle C .

Now we claim that, if S is general in either MV,2 or MV,gen, by choosing suitable coor-
dinates for V1 and V2 we can put the equation of the conic bundle C in the form

y0(y1 + f0y2) − y2
1 = 0. (25)

In fact, in the general case C has a nodal fibre over the point τ ; without loss of generality we
can assume that such a fibre has equation y1(y0 − y1) = 0, so that the conic bundle has the
form (y0 + a02f0y2)(y1 + a22f0y2) − (y1 + a12f0y2)

2 = 0. Now the claim follows by using
the linear change of coordinates

y ′
0 := y0 + a02f0y2, y ′

1 := y1 + a12f0y2, y ′
2 := (a22 − a12)y2.

Therefore, in order to compute the dimension of the general fibre of �, we may assume
that the matrix associated with σ2 : S2V1 → V2 is

⎛

⎝
1 0 0
0 1 1
0 0 f0

⎞

⎠ .
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Let now φ1 ∈ Aut(V1), given by φ1(x0) = ax0 + cx1 and φ1(x1) = bx0 + dx1,
a, b, c, d ∈ C. Then the action of S2φ1 on S2V1 is expressed by the matrix

⎛

⎝
a2 ab b2

2ac ad + bc 2bd

c2 cd d2

⎞

⎠ .

On the other hand, the general φ2 ∈ Aut(V2) is given by the matrix

⎛

⎝
b11 b12 0
b21 b22 0

b31f0 b32f0 b33

⎞

⎠ ,

where bij ∈ C. Hence, imposing that the diagram (24) commutes, by straightforward com-
putations one finds that any pair (φ1, φ2) ∈ Z is either of the form

φ1 =
(

a a

c −a

)
, φ2 =

⎛

⎝
a2 a2 0

2ac + c2 −a2 0
c2f0 −acf0 a(a + c)

⎞

⎠

or of the form

φ1 =
(

a 0
c a + c

)
, φ2 =

⎛

⎝
a2 0 0

2ac + c2 (a + c)2 0
c2f0 c(a + c)f0 a(a + c)

⎞

⎠ .

It follows that Z ⊂ Aut(V1) × Aut(V2) is a subvariety of dimension 2. Consequently, the
general fibre of � has dimension 1; this means that the dimension of MV,2 equals 12,
whereas the dimension of MV,gen equals 11.

Now we want to prove that MV,2 is an irreducible component of M. In order to do this,
we will show that h1(S,TS) = 12 for a general S ∈ MV,2. Since dim MV,2 = 12, this will
also prove that this component is generically smooth.

The condition h1(S,TS) ≤ 12 is equivalent to h2(S,TS) = h0(S,�1
S ⊗ ωS) ≤ 2. By Re-

mark 4.2, it is therefore enough to prove that h0(F ) = 0, where F := (�1
S ⊗ ωS)/ωS or,

equivalently, that there are no bicanonical curves of S containing the 0–dimensional scheme
Crit(f ).

By the results in Sect. 2.2.2, the Albanese fibration f : S → B factors as the composition
of the conic bundle C −→ B and a finite double cover ψ : S −→ C branched on the node of
C and on a smooth curve � not passing through the node.

Let us study the 0-dimensional scheme Crit(f ). Since all the fibres of C are reduced,
the critical points of f must be fixed by the involution of S. The isolated fixed point is the
preimage of the node of C , and it is critical for f . The other critical points of f are the points
of S whose images in C are the ramification points for the map � −→ B .

As before, we can choose C of equation y2
0 − y2

1 + f0y
2
2 = 0, and the curve � is defined

as the complete intersection of C with a relative cubic G ∈ |O C(3) ⊗ OB(−4o − 2τ)|. Since
OB(2o − 2τ) = OB , we can choose G of equation

ay3
0 + by3

1 + λy3
2 = 0,

where a, b ∈ C and λ ∈ H 0(P(V2),π
∗
2 OB(3τ)), see (23). The node P of C is the point with

homogeneous coordinates [0 : 0 : 1] lying on the fibre over τ , and Crit(� −→ B) is defined
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by

rank

(
y0 −y1 f 2

0 y2

ay2
0 by2

1 λy2
2

)
≤ 1.

This is obviously equivalent to set equal 0 all the minors of order 2. So we must solve the
system of equations

⎧
⎪⎨

⎪⎩

by0y
2
1 + ay2

0y1 = 0

λy0y
2
2 − af 2

0 y2
0y2 = 0

λy1y
2
2 + by2

1y2 = 0,

that is

⎧
⎪⎨

⎪⎩

y0y1(by1 + ay0) = 0

y0y2(λy2 − af 2
0 y0) = 0

y1y2(λy2 + bf 2
0 y1) = 0.

This yields

{y0 = y1 = 0} ∪ {y0 = y2 = 0} ∪ {y0 = λy2 + bf 2
0 y1 = 0}

∪ {y1 = y2 = 0} ∪ {y1 = λy2 − af 2
0 y0 = 0}

∪ {y2 = by1 + ay0 = 0} ∪ {λy2 + bf 2
0 y1 = λy2 − af 2

0 y0 = by1 + ay0 = 0}.
Let us compute, in each case, the solutions in C :

{y0 = y1 = 0} In this case, because f0(τ ) = 0, the unique solution in C is the point P .
{y0 = y2 = 0} By looking at the equation of C we have also that y1 = 0, and this is impossi-
ble. So in this case there are no solutions.

{y0 = λy2 + bf 2
0 y1 = 0} We must solve

{
y0 = λy2 + bf 2

0 y1 = 0

y2
0 − y2

1 + f 2
0 y2

2 = 0,
that is

⎧
⎪⎨

⎪⎩

y0 = 0

λy2 + bf 2
0 y1 = 0

(−y1 + f0y2)(y1 + f0y2) = 0,

which gives
⎧
⎪⎨

⎪⎩

y0 = 0

y1 = f0y2

y2(λ + bf 3
0 ) = 0

∪

⎧
⎪⎨

⎪⎩

y0 = 0

y1 = −f0y2

y2(λ − bf 3
0 ) = 0.

Since y2 �= 0 the solutions are the three points [0 : f0(ρi) : 1] lying on the fibres over ρi ,
where ρ1 +ρ2 +ρ3 = div(λ+bf 3

0 ), and the three points [0 : −f0(ρ
′
i ) : 1] lying on the fibres

over ρ ′
i , where ρ ′

1 + ρ ′
2 + ρ ′

3 = div(λ − bf 3
0 ).

{y1 = y2 = 0} The equation of C also gives y0 = 0, which is impossible; so in this case there
are no solutions.

{y1 = λy2 − af 2
0 y0 = 0} The computations are the same as in the case {y0 = λy2 +

bf 2
0 y1 = 0}. The solutions are the three points [−√−1f0(εi) : 0 : 1] lying on the fibres

over εi , where ε1 + ε2 + ε3 = div(λ + a
√−1f 3

0 ), and the three points [√−1f0(εi) : 0 : 1]
lying on the fibres over ε′

i , where ε′
1 + ε′

2 + ε′
3 = div(λ − a

√−1f 3
0 ).

{y2 = by1 + ay0 = 0} From the equation of C it follows that for a generic choice of a and b

we must have y0 = y1 = y2 = 0, which is impossible. So in this case there are no solutions.
{λy2 + bf 2

0 y1 = λy2 − af 2
0 y0 = by1 + ay0 = 0} In this case we find six points, three on the

curve
{

by1 + ay0 = 0
cy0 + bf0y2 = 0
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and three on the curve
{

by1 + ay0 = 0
cy0 − bf0y2 = 0,

where −c2 = b2 − a2. In general, a, b and c are nonzero and, in such a case, the solutions
are the three points [−bf0(σi) : af0(σi) : c] lying on the fibres over σi , where σ1 +σ2 +σ3 =
div(cλ + abf 3

0 ) and the three points [bf0(σ
′
i ) : −af0(σ

′
i ) : c] lying on the fibres over σ ′

i ,
where σ ′

1 + σ ′
2 + σ ′

3 = div(cλ − abf 3
0 ).

Summing up, for a general S ∈ MV,2 the 0-dimensional scheme Crit(f ) consists precisely
of 19 distinct points. One is the preimage Q := ψ−1(P ) of P in S, and the others correspond
to the singularities of eighteen 2-connected nodal curves, as in the following picture:

Notice that this agrees with the Zeuthen–Segre formula

19 = χtop(S) = χtop(B)χtop(F ) +
∑

χtop(Fp) − χtop(F )

=
∑

χtop(Fp) − χtop(F ),

where the sum runs over the singular fibres of f . Thus for a general S ∈ MV,2, the Albanese
map has exactly 19 singular fibres.

Since the linear system |2KS | is the pullback via the relative bicanonical map of the linear
system |OP(V2)(1)|, we must now compute the dimension of the vector space of elements in
H 0(OP(V2)(1)) which contain Crit(f ).

Let us consider the six curves

A1:
{
y0 = 0
y1 − f0y2 = 0,

A2:
{
y0 = 0
y1 + f0y2 = 0,

B1:
{
y1 = 0
y0 − √−1f0y2 = 0,

B2 :
{
y0 = 0
y0 + √−1f0y2 = 0,

C1:
{
by1 + ay0 = 0
cy0 + bf0y2 = 0,

C2 :
{
by1 + ay0 = 0
cy0 − bf0y2 = 0.

Each curve contains Q and three other points of Crit(f ) as in the following picture:
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The Néron–Severi group NS(P(V2)) is generated by H and � , where H is the class of
OP(V2)(1) and � is the class of a fibre.

Let Y be an element of |OP(V2)(1)| containing Crit(f ). Thus Y contains 4 points in each
curve Aj , Bj , Cj , j = 1, 2. Since the numerical class of these curves is (H −2�)2, we have

H(H − 2�)2 = H(H 2 − 2H�) = H 3 − 4H� = 7 − 4 = 3

and so, by Bézout theorem, Y contains all the curves Aj , Bj , Cj . Let us write the equation
of Y as αy0 + βy1 + γy2 = 0, where α,β ∈ H 0(π∗

2 OB(2o)) and γ ∈ H 0(π∗
2 OB(2o + τ)).

By imposing that Y contains A1, we find

βf0y2 + γy2 ≡ 0,

which implies γ = −βf0. By imposing that Y contains A2, we find

−βf0y2 + γy2 ≡ 0,

which implies γ = βf0. It follows γ = β = 0, hence Y has equation αy0 = 0. Similarly, by
imposing that Y contains both B1 and B2, we obtain that Y is of the form βy1 = 0. Thus
Y ≡ 0, i.e.

Ker[H 0(ω⊗2
S ) −→ H 0(OCrit(f )(ω

⊗2
S ))] = 0,

which implies h1(TS) = 12. This shows that MV,2 is a generically smooth, irreducible com-
ponent of M of dimension 12. �

Finally, we consider the strata belonging to M′′. The surfaces in these strata satisfy V1 =
F2(η), where η is a 2–torsion point, hence V1 will not play any role in the computation of
parameters.

Proposition 4.13 The stratum MVI has dimension at most 12.

Proof Set W := Eτ (3, 1); then we have a short exact sequence

0 −→ W(2o − 2τ) −→ S3W(2o − 2τ) −→ Ã6 −→ 0.

By [5, Sect. 1] we obtain

h0(W(2o − 2τ)) = 1, h1(W(2o − 2τ)) = 0, h0(S3W(2o − 2τ)) = 10,

hence h0(Ã6) = 9. We have 1 parameter for B , 2 parameters for ξ , 1 parameter for τ and 8
parameters from PH 0(Ã6). Therefore MVI has dimension at most 12. �
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Proposition 4.14 The stratum MVIIa has dimension at most 11.

Proof In this case V2(−2o) = F2 ⊕ OB(τ ), and ξ belongs to a family which is at most
1-dimensional, see Proposition 3.6. The vector bundle Ã6 fits into a short exact sequence

0 −→ G1 −→ G2 −→ Ã6 −→ 0,

where

G1 = (
F2 ⊕ OB(τ )

)
(2o − 2τ), G2 = (

F4 ⊕ F3(τ ) ⊕ F2(2τ) ⊕ OB(3τ)
)
(2o − 2τ).

We distinguish two cases.
(i) OB(2o − 2τ) �= OB . We obtain

h0(G1) = 1, h1(G1) = 0, h0(G2) = 10,

therefore h0(Ã6) = 9. We have 1 parameter for B , at most one parameter for ξ , one param-
eter for τ and 8 parameters from PH 0(Ã6).

(ii) OB(2o − 2τ) = OB . We obtain

h0(G1) = 2, h1(G1) = 1, h0(G2) = 11,

hence h0(Ã6) ≤ 10, see (5). We have 1 parameter for B , at most one parameter for ξ , no
parameters for τ and at most 9 parameters from PH 0(Ã6).

It follows that MVIIa has dimension at most 11. �

Proposition 4.15 The stratum MVIIb has dimension at most 11.

Proof In this case ξ belongs to a family which is at most 1-dimensional. Set W = Eτ (2, 1);
then V2(−2o) = W ⊕ OB and tensoring the exact sequence (3) with OB(−4o − 2τ) we
obtain

0 −→ (W ⊕ OB)(2o − 2τ)
i3−→ [

(S3W ⊕ S2W) ⊕ (W ⊕ OB)
]
(2o − 2τ)

−→ Ã6 −→ 0. (26)

Arguing as in [6, Lemma 6.14], we see that the second component of the map i3 is the
identity, hence the exact sequence (26) splits, giving

Ã6 = (S3W ⊕ S2W)(2o − 2τ).

By Proposition 2.4 this in turn implies

Ã6 =
(

W ⊕ W ⊕
3⊕

i=1

Li

)
(2o − τ),

hence h0(Ã6) = 9. We have 1 parameter for B , at most 1 parameter for ξ , 1 parameter for τ

and 8 parameters from PH 0(Ã6). Therefore MVIIb has dimension at most 11. �

Summing up, we have the following
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Corollary 4.16 The moduli space M of minimal surfaces of general type with pg = 2,
q = 1 and K2 = 5 is unirational and contains at least 2 irreducible components. Moreover,
the dimension of each irreducible component is either 12 or 13, and there is at most one
component of dimension 13.

Proof Notice first that MV,gen is not contained in the closure of MV,2, since in the former
case τ is a general point, whereas in the latter τ is a 2-torsion point. So M contains at least
two irreducible components, namely MV,2 and the component containing MV,gen. Moreover
there is at most one component of dimension 13, namely MI. �

It would be desirable to exactly describe all irreducible components of M and to under-
stand how their closures intersect, but we will not try to develop this point here.
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