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Abstract: COVID-19 is an ongoing global pandemic caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus. Although it primarily attacks the respiratory tract, inflammation
can also affect the central nervous system (CNS), leading to chemo-sensory deficits such as anosmia
and serious cognitive problems. Recent studies have shown a connection between COVID-19 and
neurodegenerative diseases, particularly Alzheimer’s disease (AD). In fact, AD appears to exhibit
neurological mechanisms of protein interactions similar to those that occur during COVID-19. Starting
from these considerations, this perspective paper outlines a new approach based on the analysis
of the complexity of brain signals to identify and quantify common features between COVID-19
and neurodegenerative disorders. Considering the relation between olfactory deficits, AD, and
COVID-19, we present an experimental design involving olfactory tasks using multiscale fuzzy
entropy (MFE) for electroencephalographic (EEG) signal analysis. Additionally, we present the
open challenges and future perspectives. More specifically, the challenges are related to the lack
of clinical standards regarding EEG signal entropy and public data that can be exploited in the
experimental phase. Furthermore, the integration of EEG analysis with machine learning still requires
further investigation.

Keywords: COVID-19; Alzheimer’s disease; biomedical; mild cognitive impairment; electroencephalog-
raphy; EEG; entropy; brain; Multiscale Fuzzy Entropy; neurodegenerative; olfactory dysfunction

1. Introduction and Motivation of the Work

The coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus can cause a wide
spectrum of symptoms [1]. Although it primarily attacks the respiratory tract, the inflam-
mation can act heterogeneously on almost any organ, leading to kidney, gastrointestinal,
pulmonary, cardiovascular, and even serious cognitive problems [2]. In fact, it can attack the
central nervous system (CNS) causing chemo-sensory deficits such as anosmia, encephalitis,
cerebrovascular disorders, or brain fog [3,4]. An increasing number of studies [5,6] indicate
that the SARS-CoV-2 virus has the capability to overcome the blood–brain barrier (BBB) and
compromise neurons, potentially causing permanent damage. The impairment of the BBB
allows the entry of toxic substances, inflammatory agents, and immune cells into the brain,
ultimately causing neuronal deterioration and cognitive decline. The disruption of the BBB
is thought to play a key role in the development and progression of many neurological
conditions. Hence, the existence of a common mechanism involving the BBB and neuro-
inflammation implies a potential connection between COVID-19 and neurodegenerative
diseases such as dementia, Parkinson’s, and Alzheimer’s disease (AD) [7,8]
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In more detail, the SARS-CoV-2 virus directly invades the CNS due to the interaction
between the SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (ACE-2),
which is a membrane carboxypeptidase and is considered the main site of entry of SARS-
CoV-2 into cells [9]. As a consequence, greater soluble ACE-2 levels in the brain tissues
may enhance the risk of SARS-CoV-2 infection in CNS tissues. ACE-2 is mostly expressed
on neurons in the temporal lobe and hippocampus, areas which are involved in the patho-
physiology of AD [10], the most common age-related neurological disorder affecting about
55 million people globally. In this regard, studies were conducted to examine whether
ACE-2 levels were post-mortem-altered in the parietal cortex areas of AD subjects. It
was found that the ACE-2 level was higher [11] in those with a neuropathological diag-
nosis of AD compared to age-matched controls. This aspect could be a risk factor for
COVID-19 interacting with the virus spike protein [12]. SARS-CoV-2 could accelerate the
development of neurodegenerative disorders and potentially induce a worsening cogni-
tive decline in patients with AD [13–18], which, in the early stage, manifests as a mild
cognitive impairment (MCI), which includes slight memory impairment as the most typ-
ical symptom. In a recent study [19], researchers examined the levels of several serum
biomarkers (typically associated with neurodegenerative disorders) in COVID-19 patients
without prior history of dementia versus non-COVID-19 healthy, MCI, and AD subjects.
The levels of the considered serum biomarkers in COVID-19 patients were comparable
with MCI and AD patients. In addition, recent studies have shown that the apolipoprotein
E ε4 allele (APOE4) is directly linked to similar genetic factors implicated in COVID-19
and AD [20–22]. These investigations suggest that neurological mechanisms of protein
interactions during COVID-19 are similar to those exhibited in AD conditions.

On the other hand, recently, long-term neurological effects due to SARS-CoV2 infection
have been recognized [23] and associated with inflammatory processes, which are central
to AD. This suggests a bidirectional relationship between the two pathologies. Several
studies support the theory of neurotropic involvement of SARS-CoV-2 [24]. As a result,
much more attention should be paid to the risk of neurological involvement in patients
with COVID-19. It is well known that a neurotropic virus can result in the alteration of
the EEG signal [25], such as in the case of the Japanese encephalitis virus, which causes
an alteration in the EEG delta band and nonresponsive activity associated with the alpha
band [26]. Another example is the poliovirus, which causes slow-wave EEG activity [27].
In addition, another neurotropic virus, such as the Measles morbillivirus, may result in
lesions of the subcortical white matter and the occurrence of periodic high-amplitude
slow EEG waves in case of non-vaccination [28]. Furthermore, echovirus is associated
with a characteristic EEG pattern and is characterized by convulsions [29]. Similarly, the
potential neurotropic nature of SARS-CoV-2 could be associated with some abnormalities
in the EEG patterns. For this reason, it is important to identify and quantify the common
features between AD and COVID-19 and the possible similarity of the effects that they
imply on the human nervous system. Should these commonalities be consistent, in fact,
then neurodegenerative processes would be added to the list of severe, long-term effects
caused by the SARS-CoV-2 virus.

Although several aforementioned studies are underway to prove such an impactful
statement at a physiological level, the present evidence only partially corroborates the
association between COVID-19 and the manifestations of neurodegenerative diseases.
The absence of quantitative biomarkers for tracking disease progression represents an
issue in understanding potentially shared mechanisms between these pathologies [17]. In
addition to that, reliable biomarkers could help clinicians effectively manage the impact
of an acute SARS-CoV-2 infection on brain dynamics, particularly in situations where
the risk of triggering or worsening neurological conditions is elevated [16]. COVID-19
has been shown to cause neurological symptoms [3,4], such as confusion, delirium, and
stroke, particularly in older adults and those with pre-existing conditions. Such symptoms
could potentially contribute to the development or progression of Alzheimer’s disease in
some individuals. However, it is crucial to note that this remains an active research area,
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and further studies are necessary to comprehend the potential long-term consequences of
COVID-19 on cognitive health.

One intriguing aspect identified in the literature is that both SARS-CoV-2 infections
and neurodegenerative diseases [30,31] (AD in particular) may lead to an impairment of the
olfactory system. Anosmia, the loss of sense of smell, is one of the first and most frequent
symptoms of COVID-19, and an estimated 85% to 98% of patients experience some degree
of olfactory dysfunction [32]. Although this symptom typically resolves spontaneously
within two weeks in the majority of cases, a substantial number of patients may suffer
from persistent post-COVID-19 olfactory impairment. While potentially affecting millions
of people, this symptom is also associated with a range of debilitating psycho-social
effects, including depression and cognitive impairment. Since this phenomenon may be
indicative of complex cerebral mechanisms involved in cognitive decline, such as localized
nasal dysfunctions, investigating potential biomarkers for changes in brain dynamics
could be a worthwhile pursuit [17]. Hence, the analysis of electroencephalographic (EEG)
signals (when they are subjected to olfactory tasks) could be a promising strategy to
investigate if (and to what extent) SARS-CoV-2 infection and AD are related. The EEG signal
analysis could help in the exploration of common features among patients with COVID-19
and AD, with the advantages of non-invasiveness and cost-effectiveness, compared to
other neuroimaging techniques. Non-linear analyses (particularly among advanced EEG
signal-processing techniques) investigate the complex emergent phenomena underlying
chaotic dynamical systems, providing the possibility to analyze the strong complexity and
irregularity of neuronal activities of the brain. These analyses are of extreme importance
in order to identify the process of cognitive impairment [33]. Indeed, the complexity
measures of EEG signals could enhance and provide more reliable results than traditional
EEG analysis techniques (e.g., event-related potential, time, and frequency analysis) in the
studies of psycho-pathological conditions [34] and the diagnosis of disorders [35]. Linearity
measures, such as power spectral analyses, assume the stationary of the system. However,
neuronal processes in the brain are known to be non-stationary and exhibit complex and
time-evolving behavior [36,37] and, thus, non-linear dynamical analyses may be more
suitable for studying brain dynamics and understanding neural processes, particularly
in neurological conditions, such as Alzheimer’s disease, which weaken inter-neuronal
connections. This is because non-linear analyses assume statistical non-stationary as an
inherent characteristic of neural signals and can provide more reliable insights into the
changes in the complexity of EEG signals resulting from these disorders [35,38].

Recently, EEG complexity measures have been employed in studies focused on COVID-
19. Pastor et al. [39] calculated Shannon’s spectral entropy (SSE) and synchronization by
Pearson’s correlation coefficient by comparing patients with COVID-19 and those with
infectious toxic or post-cardiorespiratory arrest encephalopathy. The results suggested that
SSE was higher and hemispheric connectivity was lower for COVID-19 patients. However,
the literature lacks studies that relate to COVID-19 and brain complexity. In this regard,
entropy-based analysis in COVID-19 patients could confirm the connection with AD.

Based on these considerations, this work outlines the implementation of an entropy-
based approach for the detection of possible common EEG features between the early
stages of AD, such as MCI conditions, and patients suffering from long-COVID, a persistent
condition characterized by symptoms such as persistent effort, weakness, muscle and joint
pain, headaches, confusion, and smell disorders, even weeks or months after acquiring
SARS-CoV-2 infection. In particular, at the current state of the art, the possible neurodegen-
erative action of COVID-19 is the main subject of intensive studies and research. In this
perspective, At the current state of the art, intensive studies and research are focused on
investigating the possible neurodegenerative effects of COVID-19. It is of great interest to
explore its mechanisms at the brain level by comparing them with established neurological
diseases such as Alzheimer’s. Such a perspective could lead to a better understanding
of the neurodegenerative phenomena associated with COVID-19, enable a comparison of
its severity with those related to AD, and identify possible treatments. In particular, the
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multi-scale fuzzy entropy (MFE) technique has great potential for this purpose, as explained
in the following sections. Because both AD and COVID-19 exhibit olfactory deficits, this
work employs an olfactory recognition task during the experimental process to investigate
common EEG features between COVID-19 and AD in response to an olfactory stimulus.

This work is organized as follows. Section 2 provides an overview of the state-of-
the-art solutions for neurodegenerative disease diagnostics based on the study of brain
complexity. Section 3 presents the basic theoretical background behind the proposed
method and possible algorithm implementation. Section 4 analyzes the future perspectives
and open challenges for entropy applications on EEG signals (for the early detection of
neurological deficits). Finally, the conclusions are outlined in Section 5.

2. Review of Complexity Measures for the Analysis of EEG Signals

Brain activity is a complex phenomenon that involves non-linear and dynamic pro-
cesses and is characterized by behavior that is neither completely regular nor completely
random [40]. The organization and interactions of neurons in the brain are highly intricate,
resulting in the generation of a coherent and multimodal scene through the integration
of brain signals from functionally specialized groups of neurons located in various brain
areas. Additionally, the combination of continuous spontaneous brain activity with evoked
signals from the environment adds to the complexity of the neural system.

The concept of neural complexity entails the coexistence of functional specialization
and integration [40], which are two crucial aspects of the organization and functioning
of the human brain. Functional specialization refers to the idea that different regions
of the brain specialize in processing specific types of information or performing specific
functions. This specialization arises from the fact that different brain regions have distinct
anatomical and physiological properties that make them better suited for certain types
of processing. On the other hand, functional integration refers to the coordination and
communication between different specialized regions of the brain to achieve more complex
functions. This integration is essential because most cognitive tasks require the involvement
of multiple brain regions working together in a coordinated manner. For example, language
processing involves the activation of several different brain areas, including those involved
in sound processing, grammar, and meaning. Overall, the concept of neural complexity
acknowledges that the brain is not just a collection of isolated regions, but rather a highly
interconnected and integrated network of specialized areas that work together to support
complex cognitive functions.

However, these underlying physiological processes are not always discernible through
neuroimaging techniques. In electroencephalography (EEG), the voltage signal reflects
the activity of populations of neurons. The field of cognitive electrophysiology is con-
cerned with investigating the relationship between cognitive functions, such as perception,
memory, language, emotions, and behavioral control, and the electrical activity of neural
populations [41]. Complexity measures, which assess the degree of interaction among func-
tional brain networks across local and global scales, can provide a deeper understanding of
brain function and potential alterations in various neurological conditions.

In particular, the complexity of EEG signals has been extensively analyzed in the
study of neurodegenerative diseases, particularly in AD, showing a reduction in EEG
signal complexity in AD patients compared to healthy subjects [33]. However, a systematic
study on this topic is still lacking and no method could be considered as a consolidated
diagnostic tool.

The study of complexity has involved evaluating the predictability (through measures
of spatial or temporal dimensionality) and regularity (through pattern identification) of
EEG signals [33]. Predictability measures describe the temporal and spatial evolution of a
dynamic system, while regularity measures take into account the presence of repeated pat-
terns along the time series. Figure 1 provides a general classification of the most common
complexity measures. In past studies [42,43], predictability metrics such as Correlation
Dimension, fractal dimension, and Lyapunov exponent were used to compare the effects
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of AD with other forms of dementia and Parkinson’s disease. Despite the observed differ-
ences, the precise mechanisms behind the reductions in complexity associated with these
conditions are still being debated. It should be noted that predictability measures require a
complete reconstruction of the spatiotemporal dimensionality of the signal. On the other
hand, regularity measures investigate a lower level of details in the time-frequency domain,
in favor of higher robustness. For this reason, they are applicable to noisier or smaller time
series (which are typical of biosignals), for which predictability measures could not be
reliably calculated [33].

Figure 1. Classification of the most common complexity measures in neurodegenerative disease
studies. Predictability measures estimate the temporal and spatial evolution of a dynamic system,
whereas regularity measures take into account the presence of repeated patterns along the time series.

Therefore, in recent years, new metrics for measuring regularity have been proposed.
The most commonly used regularity metric is entropy, which is a class of statistical measures
of the level of uncertainty in a system. In particular, approximate entropy (ApEn), sample
entropy (SampEn), and fuzzy entropy (FuzzyEn) are the most investigated in neurodegen-
erative disease studies. The main differences between these three formulations of entropy
are reported in Table 1. ApEn, SampEn, and FuzzyEn arise as single-scale metrics, deducing
the degree of complexity from the signal at the original time scale. The basic idea of these
entropy measures is to estimate signal complexity by searching for repeated sequences
along the entire time series. Traditional implementations operate a binary mechanism of
full membership (in-or-out paradigm) [44]. In particular, ApEn and SampEn use the two-
state step function (also known as the Heaviside function) to evaluate similarities between
patterns by setting a threshold value. Accordingly, two vectors are declared either similar
or not. On the other hand, FuzzyEn employs a fuzzy membership function, which returns
a real number in the range [0, 1] as an output [45]. In this way, two vectors are considered
similar according to a continuous degree of similarity. However, biological signals have
different meanings at various temporal and spatial dimensions. For this reason, neural
complexity can be assessed across different spatial and temporal scales [40]. At the spatial
level, neural complexity can be characterized by the complexity of activity patterns within
individual neurons or populations of neurons in specific brain regions. At the temporal
level, neural complexity can be determined by the complexity of activity patterns over time.
Therefore, the EEG exhibits a correlation between multiple spatial and temporal scales.

Since the proposed method is intended solely for the analysis of the EEG signal at
each electrode, without considering the various areas of the brain, it may overlook spatial
resolution and focus only on evaluating the time scale. For this reason, the single-scale
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method may not be able to capture the complexity of biological systems [33]. In fact, most
physiological signals, such as EEG, reveal different behaviors and patterns over multiple
temporal scales. This motivates the introduction of multi-scale entropy measures [46],
which can evaluate signal complexity across different time scales. A multi-scale entropy
algorithm utilizes one of the traditional entropy formulations (e.g., SampEn) and calculates
its value for each resolution scale.

Table 1. Advantages and limitations of the three formulations of single-scale entropy.

Entropy Similarity Criterion Advantages Limitations

ApEn
Two-state step function
(Heaviside function)
with a fixed threshold.

It exploits a template-wise approach to
identify patterns and regularities.
It can be applied to noisy short signals.

It is heavily dependent on recorded
data and chosen values for parameters.
It counts as self-matches.

SampEn
Two-state step function
(Heaviside function)
with a fixed threshold.

It is robust to noise and non-stationarity.
It does not count self-matches.

It is heavily influenced by chosen
values for parameters.

FuzzyEn

Continuous degree of
similarity based on an
exponential membership
function.

It estimates the degree of uncertainty
(fuzziness) of a signal.
It is highly insensitive to noise but it is
sensitive to complexity.
It does not count self-matches.

It can be affected by small changes in
the degree of membership.
It requires more computational steps.

3. Complexity Measures through Multi-Scale Entropy

As mentioned in Section 2, neural complexity can be assessed across different spatial
and temporal scales. Considering this, Costa et al. [46] proposed a multi-scale entropy
measure. Indeed, the multivariate entropy measures, which are statistical techniques used
to assess the amount of information or complexity in a system, can be especially useful for
studying brain complexity across multiple spatial and temporal scales.

Several studies have exploited multi-scale entropy over time to find a correlation
between brain complexity and neurodegenerative diseases, in particular AD, considered
the most prevalent neurodegenerative disease. Park et al. [47] conducted a study on the
multi-scale sample entropy (MSE) of EEG data from patients with different severities of
AD. The study revealed that quantifying the complexity level at various temporal scales
provides a dynamic description of AD development. In particular, the EEG data from
severe AD patients showed a loss of complexity over a wide range of time scales. These
findings were confirmed by Yang et al. [48] and Fan et al. [49], demonstrating that MSE was
sensitive to the degree of AD disease, with entropy considerably reducing from moderate
to severe AD, as opposed to early-stage AD, when entropy was almost indistinguishable
from healthy controls. These complexity decrements could suggest information processing
deficits and/or diminished brain dynamics in response to external stimuli. Moreover,
these phenomena might involve the loss of functional connectivity, following neuronal
death. Mizuno et al. [50] observed decreased entropy at small time scales in frontal areas,
consistent with other studies, but also an increased complexity at larger time scales in
various brain areas, which could be related to an underlying disconnection phenomenon.

Recently, multi-scale fuzzy entropy (MFE) was introduced; it evolved from the tradi-
tional FuzzyEn approach [51]. More specifically, fuzzy entropy is based on the concept of
fuzzy logic, which assigns degrees of truth to propositions. The standard set of truth-values
ranges from 0 to 1, where 0 represents "totally false," 1 represents "totally true," and values
in between refer to partial truth. This multipurpose logic is an extension of Boolean logic,
which only uses the values 0 and 1. In the EEG scenario, fuzzy entropy can be applied
by considering a template of the signal and identifying other templates that are similar
throughout the entire time series. Each time, a value between 0 and 1 will be associated with
the degree of similarity or repeatability. This approach can be used to interpret the patterns
and corresponding complexity of the brain’s electrical signals. Additionally, MFE takes into
account the signals over different time scales and quantifies how "fuzzy" or unpredictable
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they are at each scale. This provides insights into the organization and coordination of
brain activity, which is useful for understanding how different conditions affect brain
processes. However, as previously mentioned, FuzzyEn employs a fuzzy membership
function, which returns a real number in the range [0, 1] as output, considering two similar
vectors, according to a continuous degree of similarity. In particular, given a time series
x(t) consisting of N samples:

x(t) = {x(i) : 1 ≤ i ≤ N}, (1)

a first vector Xm
i of m consecutive samples extracted from x(t):

Xm
i = {x(i), x(i + 1), . . . , x(i + m− 1)} − x0(i), (2)

where i is the generic time point where the pattern begins and x0(i) is the mean value of
all m-selected samples. Taken Xm

i and the shifted vector Xm
j sliding along the signal, the

distance dm
ij is defined as the maximum absolute difference of the corresponding scalar

components of the two vectors:

dm
ij = max |(x(i + k)− x0(i))− (x(j + k)− x0(j))|, (3)

where i 6= j and k ∈ {0, m− 1}. Then, the similarity degree Dm
ij of Xm

j to Xm
i is calculated as:

Dm
ij = µ(dm

ij , n, r) = exp

(
−(dm

ij )
n

r

)
, (4)

where µ(dm
ij , n, r) is the fuzzy membership function.

Typically, µ(dm
ij , n, r) is chosen as an exponential function to fulfill two requirements:

it has to be continuous without abrupt variations and it has to maximize self-similarity [45].
In Equation (4), n and r are two arbitrarily assigned parameters, which tune the smoothness
of the exponential fuzzy function.

Consequently, the mean over all of the different sequences of length m is calculated
as follows:

φm(n, r) =
1

N −m

N−m

∑
i=1

(
1

N −m− 1

N−m−1

∑
j 6=i,j=1

Dm
ij

)
. (5)

Similarly, computations are repeated for a second vector Xm+1
i of length m + 1, obtain-

ing the mean φm+1 from Equation (5). Finally, FuzzyEn can be estimated as the negative
natural logarithm of the deviation between φm and φm+1:

FuzzyEn(m, n, r) = ln φm(n, r)− ln φm+1(n, r). (6)

Hence, FuzzyEn represents the conditional probability that patterns identified for m
points remain similar for the next (m + 1) points.

Defined in these terms, FuzzyEn is a single-scale measure that is not sensible enough
to analyze the dynamic processes of the brain. In light of this, it is reasonable to compute
FuzzyEn by using a multi-scale approach. In this regard, MFE enables the estimation of
the signal complexity over a time-scale interval [52]. In this way, it is possible to search for
additional information about the signal by using different time scales.

Starting from the original time series x(t), the basic idea is to change the time scale to
recompute the chosen entropy formulation each time:

ys(t) =
j+s−1

∑
i=j

x(i), for 1 ≤ j ≤ N − s + 1, (7)

where ys(t) represents the new time series at the s-th scale factor. In particular, it is desirable
to consider at least 15 scale factors [52].
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4. Possible Practical Implementation, Open Challenges, and Future Perspectives

As mentioned in previous sections, the aim of this work is to discuss and outline
the implementation of an entropy-based method for detecting possible common EEG
biomarkers between AD and COVID-19 by leveraging olfactory stimulation. Thus, this
paper proposes a design of experiments to distinguish EEG data from healthy subjects,
COVID-19 patients, and AD patients at different stages of the disease by calculating Multi-
scale Fuzzy Entropy (MFE), a scarcely explored formulation of entropy. Figure 2 shows the
general layout of the proposed approach.

Figure 2. General layout of the proposed approach. The EEG signals are acquired from the subject
during an olfactory stimulation task. The acquired signals are filtered with a bandpass filter and an
artifact removal technique is performed to remove artifacts. The MFE algorithm was applied to each
epoch for each channel.

Considering that olfactory loss occurs early in both AD and COVID-19 as a symptom,
the first step is to acquire EEG signals in response to a specific olfactory stimulus. The
presence of the stimulus is of fundamental importance in assessing the responsiveness
of the brain areas involved in the olfactory task. In this regard, the oddball paradigm
is most widely used for an olfactory recognition task. It involves the participant being
presented with a stimulus sequence consisting of two different odors, one presented more
frequently (non-target) and the other rarely (target) [53]. The choice of fragrances to be
used is crucial, as the selected odors should not stimulate the trigeminal system. This is due
to the interconnection between the olfactory and trigeminal systems, which can interact
and amplify or inhibit each other when exposed to certain stimuli [54,55].

Another critical issue concerns the recording of EEG signals with an appropriate
reference, as the electrical potential in the EEG acquisition reflects the difference between
two recording sites (electrodes). Hence, it is essential to consider the position and contri-
bution of signals in a reference when analyzing the amplitudes and time differences in
quantitative EEG analysis [56]. Specifically, the choice of EEG reference has a significant
impact on complexity measures, as discussed in [57], where four different EEG references
were compared: linked-mastoids (LM) reference, average (AVG) reference, Laplacian (LAP)
“reference-free” transformation, and infinity (INF) reference. The LM reference method
calculates the mathematical average of signals from electrodes placed at the mastoids of
ears, while the AVG reference method subtracts the average of signals from all electrodes
from each individual electrode. The LAP method transforms the raw EEG potentials into a
measure of radial current density at the scalp, and the INF reference method approximately
transforms a scalp point reference to a reference point at infinity. The findings in [57]
suggest that the LAP reference method should be preferred for measuring complexity as
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it has a positive impact on EEG signal quality and reduces volume conduction effects. In
contrast, the LM reference method should be avoided in the context of EEG complexity
analysis due to its higher noise levels and tendency to induce artifactual correlations among
scalp electrodes. Once the olfactory EEG signal is acquired, it is good practice to pre-process
the data to reduce artifacts (e.g., eye blinks) and noise [58]. Typically, a notch filter is used
to eliminate power supply interference. Then, several techniques may be employed to min-
imize artifacts, depending on the number of channels used to acquire the EEG signal [59].
The resulting signal can be segmented into epochs centered on the olfactory stimulus,
considering seconds of pre- and post-stimulus. Finally, the data could be used for an MFE
analysis by considering a time-scale range (e.g., 15 scale factors [52]). Moreover, it could
be interesting to investigate the complexities of signals at different frequency bands. In
this instance, the frequency bands delta (0.5–3 Hz), theta (3–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz), and gamma (30–45 Hz) might be used to divide EEG signals and then apply
the MFE algorithm to each frequency range.

However, there are several open challenges and future perspectives in the study of the
complexity of EEG olfactory signals to discriminate or identify common features among
different diseases (such as COVID-19 and AD).

An open issue is the lack of clinical standards for entropy measures on EEG signals,
making entropy-based results across different studies difficult to compare [33]. As pre-
viously mentioned, entropy measures such as SampEn and ApEn have been used for
many years in research to assess the complexity of brain signals. However, there is a
limited understanding of the relationship between different entropy measures and the
underlying brain processes they are intended to represent. Moreover, different algorithms
exhibit significant variability, which can lead to inconsistent results and incorrect inter-
pretations. The selection of inherent parameters for each entropy formulation is a crucial
source of variability. Parameters such as the sliding window length on the time series or
the threshold set to define similarity between signal patterns can significantly influence
the results of an entropy analysis. Although some values are commonly used in several
studies, the parameters must be adjusted for each individual application. To overcome
this problem, a systematic study with a sufficient number of subjects at various stages of
disease progression would be necessary.

Another major issue related to the lack of clinical standards involves the lack of avail-
able data. Despite the extensive use of EEG for mapping brain activity both in clinical
and research contexts, the limited availability of public datasets is still a major drawback.
Although over the years, this lack of open-access data has been addressed [60,61], it is
still challenging to find suitable data online. Given the significant amount of EEG record-
ings collected worldwide every year, it is fair to assume that only a small portion of the
potentially existing data is made available.

A main aspect to consider is certainly the concern regarding the sensitive information
contained in EEG recordings. When sharing this type of sensitive data online, especially
data regarding the health conditions of individuals, there are specific ethical and privacy
regulations that must be respected. Therefore, most research groups are discouraged from
sharing such data from their experiments.

Moreover, collecting and preparing an EEG dataset for public use can be challenging
for several reasons. It often requires expensive instrumentation to perform time-consuming
experiments, which must be well-planned and conducted in a suitable environment. Addi-
tionally, due to the lack of generally recognized standards, experiments depend on many
design choices. The process of EEG data recording strongly depends on the working
conditions of the specific application or research focus. Hence, first-hand collected data can
be biased, limiting the reproducibility of the experiment and compromising the generality
of the results.

Few large datasets have been offered by past BCI competitions [62]. However, they
mainly contain EEG data from healthy subjects engaged in specific activities, such as
motor-imagery tasks. Other EEG datasets can be found on open-access platforms, such
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as OpenNeuro [63] and PhysioNet [64]. Nevertheless, comprehensive open-access EEG
datasets with both healthy subjects and patients with neurodegenerative diseases are still
lacking in EEG-based research.

As mentioned in the previous sections, neuronal complexity can be analyzed on both
multiple spatial and temporal scales. This work focuses on the use of MFE, which analyzes
the EEG signal at multiple time scales. However, since the proposed method is intended
only for the analysis of the EEG signal at each electrode, without considering the various
areas of the brain, it is possible to overlook the spatial resolution and focus only on the
evaluation of the time scale. Metrics that analyze the signal in spatial dimensions or in
spatial and time dimensions simultaneously can also be taken into account. An example of
this is neural complexity measures that directly quantify neural interactions across local
and global scales. The key idea of neural complexity is the coexistence of functional special-
ization and integration [40]. The former refers to the idea that different regions of the brain
are specialized in processing specific types of information or performing specific functions.
Functional integration, on the other hand, refers to the coordination and communication
between different specialized regions of the brain to achieve more complex functions. This
involves integrating information from different sources and synchronizing activity across
multiple brain regions. Understanding functional specialization and integration is crucial
for comprehending brain function and behavior. Impairment of either of these aspects
can result in neurological and psychiatric disorders. Therefore, it may be worthwhile to
evaluate neural complexity across spatial and temporal scales to gain insights into the
underlying mechanisms of neural processing.

Finally, machine learning (ML) approaches are being increasingly used to identify fea-
tures extracted from EEG signals acquired during olfactory tasks and to diagnose diseases.
In the literature, ML methods have been implemented to investigate the physiology of
pattern-based odor detection and recognition processes, as well as develop classifiers for
diseases based on biomarkers that include olfactory features [65]. However, despite these
efforts, it is still difficult to create a classifier for the diagnosis of olfactory dysfunctions,
often related to silent diseases such as neurodegenerative diseases. Therefore, greater
efforts in the field of ML need to be conducted. Currently, signal processing is mostly based
on the extraction of features in the time, frequency, and spatial domains, such as power
spectral density or complexity-based features [66,67]. Nevertheless, the most commonly
used pattern recognition approaches are based on principal component analysis (PCA)
or linear discriminant analysis (LDA) [67]. Hence, there is a necessity to enhance ML
algorithms that could aid in the development of a system to identify olfactory deficits and
specific diseases.

In light of this, it would be highly beneficial to explore the potential of ML algorithms
in conjunction with the complex analysis of EEG signals to differentiate various diseases.
In particular, developing an ML framework based on entropy features extracted from EEG
signals could facilitate the classification of diseases, including AD and COVID-19. The
fundamental concept is to extract relevant characteristics, such as entropy features, from
the EEG signals associated with a specific disease. In this way, similar to its successful ap-
plications in other medical domains, such as [68–70], the utilization of artificial intelligence,
including machine and deep learning, may enhance diagnostic accuracy.

5. Conclusions

In this paper, we highlighted emerging studies on the correlation between COVID-19
and neurodegenerative diseases. In more detail, we showed that neurological mechanisms
of proteins interaction during COVID-19 are similar to those exhibited in AD. Hence, it
is necessary to quantify the commonalities between AD and COVID-19 and how similar
the effects they produce on the human nervous system are. Moreover, as shown in the
literature, olfactory system impairment may occur in both SARS-CoV-2 infection and AD. In
this regard, measuring olfactory performance through EEG signals could be used to explore
common biomarkers between these two diseases. In particular, analyzing the complexity
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and irregularity of neuronal activities of the brain is extremely important in identifying the
process of cognitive impairment. To this end, this paper presents an overview of the use
of multi-scale entropy analysis to investigate brain complexity and provide an objective
evaluation of these issues. Entropy analysis is expected to have a more significant future
impact when combined with traditional techniques, such as event-related potentials and
time-frequency analysis, especially as a support in clinical diagnostics.

Beginning with these considerations, it would be interesting to investigate the possible
common EEG entropic features between COVID-19 and neurodegenerative diseases (such
as AD) when subjected to an olfactory task. For this reason, this perspective paper proposes
a practical implementation of an MFE-based method by leveraging olfactory stimulation.
In this context, open challenges and future perspectives are outlined. In light of this, future
work will be dedicated to testing the proposed procedure on a large-scale campaign on
voluntary subjects, divided into the following categories: healthy subjects, AD patients, and
people with a history of COVID-19. The proposed procedure could be applied to the EEG
patterns of each patient, calculating the MFE values for each channel and each EEG band.
In this way, it could be determined if the AD and COVID-19 cases exhibit a similar trend,
with different values with respect to the healthy subjects. Such a result could highlight that
similar neurodegenerative phenomena may be implicated in the two diseases, opening
unexplored avenues in which further research will be needed.
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