
Received 14 January 2023, accepted 5 February 2023, date of publication 13 February 2023, date of current version 23 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3244712

Impact of Nutritional Factors in Blood Glucose
Prediction in Type 1 Diabetes Through
Machine Learning
GIOVANNI ANNUZZI1,4, ANDREA APICELLA 2,3,
PASQUALE ARPAIA 2,3,4, (Senior Member, IEEE), LUTGARDA BOZZETTO1,
SABATINA CRISCUOLO 2,3, (Graduate Student Member, IEEE),
EGIDIO DE BENEDETTO 2,4, (Senior Member, IEEE), MARISA PESOLA2,3,
ROBERTO PREVETE 2,4, AND ERSILIA VALLEFUOCO2,3
1Department of Clinical Medicine and Surgery, University of Naples Federico II, 80125 Naples, Italy
2Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, 80138 Naples, Italy
3Augmented Reality for Health Monitoring Laboratory (ARHeMLab), University of Naples Federico II, 80138 Naples, Italy
4Interdepartmental Research Center on Management and Innovation in Healthcare (CIRMIS), University of Naples Federico II, 80138 Naples, Italy

Corresponding author: Egidio De Benedetto (egidio.debenedetto@unina.it)

This work was supported in part by the University of Naples Federico II, through the ‘Artificial Intelligence for managing Postprandial
Glycaemia in diabetic patients on artificial pancreas (AI4PG)’ Project under the FRA—Finanziamento per la Ricerca di Ateneo Initiative,
under Grant CUP E65F21000500005; in part by the Piano Nazionale di Ripresa e Resilienza (PNRR) under Grant DM 351/2022-M4C1; in
part by the European Union-Fondo Sociale Europeo - Assistenza alla Ripresa per la Coesione e i Territori d’Europa (FSE-REACT-EU),
Programma Operativo Nazionale (PON) Research and Innovation 2014–2020; in part by the Ministry of University and Research under
Contract DM 1061/2021, Contract DOT19X7NYL-2, Contract DM 1062/2021, and Contract 18-I-15350-2; and in part by the Progetti di
Rilevante Interesse Nazionale (PRIN) Research Project ‘‘BRIO—BIAS, RISK, OPACITY in Artificial Intelligence (AI): design,
verification and development of Trustworthy AI,’’ under Project 2020SSKZ7R.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Ethical Committee of Federico II University.

ABSTRACT Type 1 Diabetes (T1D) is an autoimmune disease that affects millions of people worldwide.
A critical issue in T1D patients is the managing of Postprandial Glucose Response (PGR), through the
dosing of the insulin bolus to inject before meals. The Artificial Pancreas (AP), combining autonomous
insulin delivery and blood glucose monitoring, is a promising solution. However, state-of-the-art APs require
several information for bolus delivery, such as the estimated carbohydrate intake over the meals. This is
mainly related to the limited knowledge of the determinants of PGR.Althoughmeal carbohydrates aremostly
considered as the major factor into, uencing PGR, other food components play a relevant role in PGRs,
and thus, should be taken into account. Based on these considerations, a study to determine the effect of
nutritional factors (i.e., carbohydrates, proteins, lipids, fibers, and energy intake) in the short and middle
term on BloodGlucose Levels (BGLs) prediction was conducted byMachine Learning (ML)methods. AML
model able to predict the BGLs after 15, 30, 45, and 60 minutes from the meal leveraging on insulin doses,
blood glucose, and nutritional factors in T1D patients on AP systems was implemented. More specifically,
to investigate the impact of the nutritional factors on the model predictions, a Feed-Forward Neural Network,
was fed with several dispositions of BGLs, insulin, and nutritional factors. Both public and self-produced
data were used to validate the proposal. The results suggest that patient-specific information about nutritional
factors can be significant for middle term postprandial BGLs predictions.

INDEX TERMS Artificial intelligence, neural networks, artificial pancreas, blood glucose, health 4.0,
machine learning, nutritional factors, patient monitoring, postprandial glucose response, prediction model,
statistical attributes, type 1 diabetes.
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I. INTRODUCTION
Type 1 Diabetes (T1D) is an autoimmune chronic condition,
in which the immune system of the affected individual attacks
and destroys insulin-making cells (β cells) in the pancreas [1].
The etiology of T1D is complex and depends on different
factors, including genetic, immunologic and environmental
factors [1], [2]. Based on recent epidemiological studies
[3], [4], T1D incidence is 15 per 100,000 people and the
worldwide prevalence is 9.5 per 10000 people. In addition
to a regular exogenous administration of insulin, patients
with T1D have to adhere to a healthy lifestyle and be very
careful in monitoring and managing their blood sugar levels
to prevent and avoid acute complications, such as severe
hypoglycemia, severe hyperglycemia, and ketoacidosis
[5], [6], as well as the severe chronic complications involving
eye, kidney, and cardiovascular system. In particular, a main
issue for T1D patients is managing postprandial glucose
response [7].

Technological advances have facilitated the development
of closed-loop systems better known as Artificial Pancreas
(AP) [8], which combines an insulin pump, Continuous Glu-
cose Monitoring (CGM) and a control system which auto-
mates insulin release [9]. In AP systems, the CGM monitors
continually glucose levels and sends these data to a control
system; this, in turn, uses an algorithm based on heuristic
and theoretical knowledge to compute the insulin dosage
required to reestablish baseline glucose levels [10]. Hence,
not only does AP monitor glucose levels in the body but it
also automatically adjusts the delivery of insulin to prevent
hypoglycemia and hyperglycemia episodes. Therefore, APs
can be a promising solution for T1D treatment. However,
although fully-closed loop systems are desirable, delays in
insulin absorption and other physiological factors lead to the
adoption of Hybrid-Closed Loop Systems (HCLSs) in clini-
cal practice. HCLS automates the delivery of basal insulin but
it requires inputs from the patient for bolus insulin delivery
due to poor modeling of postprandial glucose response [11].

In this context, the glucose control algorithm seems to
represent the key element of AP systems since it keeps
blood glucose concentration within the healthy physiological
range. Different control algorithms have been developed and
proposed, including model predictive control, proportional-
integral-derivative control, and fuzzy logic control [12], [13].
However, the modeling of Postprandial Glucose Response
(PGR), and the insulin delivery regulation at meal remains
major challenges in APs [14]. In particular, carbohy-
drates are mostly considered in these control algorithms,
but also other nutritional factors, like lipids and proteins,
should be taken into account. In addition, it must be man-
aged the inter-individual variability and the problem of
long-term glucose management influenced by psychological
and physical factors (e.g., during physical activity) [15], [16].
In this regard, Artificial Intelligence (AI), especiallyMachine
Learning (ML), has opened new perspectives in AP systems
due thanks to the possibility of successfully extracting knowl-
edge from data [17], [18], [19].

A possible AI-based approach for forecasting future glu-
cose values is the use of ML with Artificial Neural Net-
works (ANNs), allowing to anticipate hypo-/hyperglycemia
events and to take appropriate action (e.g., eating sugar or
taking insulin). Furthermore, such information could be inte-
grated into closed-loop devices such as AP to improve insulin
administration [20], [21]. However, these models based on
ANNs mostly considered carbohydrates without taking into
account other nutritional factors, like lipids and proteins [22].
As a matter of fact, the nutritional properties of different
meals (e.g., lipids, proteins, and carbohydrates) can impact
Blood Glucose Level (BGL) in different ways, significantly
affecting PGR. It has been demonstrated that the main effect
of dietary fat was late postprandial hyperglycemia, show-
ing that high-fat/protein meals require more insulin than
lower-fat/protein meals with identical carbohydrate content.
These results highlight the importance of developing models
based on meal composition rather than carbohydrate quantity
alone [23].

Based on these considerations, in this work, a study of the
impact of nutritional factors in the short and middle term after
a meal was conducted by Machine Learning (ML) methods.
The goal was to determine the effect of nutritional factors
such as carbohydrates, proteins, lipids, and fibres, as well as
meal energy intake, on postprandial blood glucose response.
To this aim, a set of experiments exploiting a supervised ML
system on data collected across several T1D patients was car-
ried out. Leveraging on the models proposed in [24] and [25],
in this study a blood glucose level predictor was proposed.
However, differently from other models, in the proposed
architecture nutritional factors were taken into account. More
in detail, a model able to predict the blood glucose level after
15, 30, 45, and 60 minutes from the meal was implemented.
To investigate the impact of the nutritional factors, the model
was fed with a different combination between glucose level,
insulin, and nutritional factors. The developed architecture
was tested on both public and self-produced data.

The paper is organized as follows. Section II provides
an overview of the state-of-the-art of ML solutions in the
managing of postprandial (after the meal) blood glucose
response. Section III describes the datasets employed and the
proposed method. The experimental assessment is reported
in Section IV, illustrating data preprocessing and the exper-
imental setup. Section V and Section VI reports results and
discussion, respectively. Finally, in Section VII, conclusions
are drawn and the future steps are outlined.

II. RELATED WORK
In the last years ML has gaining increasing attention
in several research fields. Among all the ML techniques
available today, ANNs are having particular success in
health-related tasks [26], [27], [28]. In particular, several
studies [29], [30], [31], [32], [33], [34], [35], [36] have
employed ANNs in the prediction of postprandial blood glu-
cose values, using both data from real patients with T1D and
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data computer-simulated patients (the latter named virtual
patients) [37], such as those obtained with UVA/Padova sim-
ulator [38].

For instance, Pappada et al. [34] analyzed the perfor-
mance of a Feed-Forward Neural Network (FFNN) model
for real-time predictions of glucose level after 75 minutes
(min) from the last input glucose value fed to the network.
The adopted FFNN was trained by using an information
set including CGM values, insulin dosages, metered glucose
values, nutritional intake, lifestyle, and emotional factors
collected in 17 patients. The performance was assessed on
data belonging to 10 patients outside from the training set.
The reported Root-Mean-Square-Error (RMSE) on the whole
test set was 43.9mg/dL± 6.5mg/dL. The study proposed by
Zecchin et al. [35] provided a short-time glucose prediction
algorithm that, in addition to past CGM readings, exploits
also information on carbohydrate intakes modeled through
a physiological model. The performance of the prediction
algorithm was tested both on 20 simulated virtual patients
and on 9 real patients. Results on simulated and real data
showed RMSE was 14.0mg/dL ± 4.1mg/dL for real data
and 9.4mg/dL ± 1.5mg/dL for simulated data, considering
30min as prediction horizon (PH). Li et al. [36] proposed
a convolutional recurrent neural network for the prediction
of blood glucose values with PHs of 30 and 60 min. The
adopted network model consisted of two parts: a multi-
layer convolutional neural network followed by a recurrent
neural network with Long Short Term Memory (LSTM)
cells. Datasets were composed both of T1D virtual and real
patients with CGM sensors. Reported RMSE for real data
were 21.07mg/dL ± 2.35mg/dL with a PH = 30min and
33.27mg/dL ± 4.79mg/dL with a PH = 60min

De Bois et al. [39] proposed a comprehensive review of the
current state-of-art on glucose predictive models, reporting
the descriptions of the most well-known public datasets and
glucose predictive models. Furthermore, in the same study
nine predictive models were implemented and tested on both
virtual and real patients, considering three different temporal
horizons (30, 60 and 120 min). All the models were fed with
the same input, composed of the glycemic history in the pre-
vious 3 hours with 5 min steps, the carbohydrate intake, and
the administered insulin boluses. In particular, their results
show that, although in favor of complex, non-linear, pre-
dictive models (such as neural network-based regression),
no model significantly outperforms the other ones for both
real and simulated data across the different PHs in all the
cases. This can be due to the fact that each model has pros and
cons. For instance, when the PH is short, the Support Vector
Regression model results to be the most accurate. Instead,
neural network-based models, such as LSTM and FFNN are
good at making short-term predictions in hyperglycemia and
long-term predictions in hypoglycemia, respectively. More-
over, the study highlights the difficulty of predicting future
blood glucose values, especially at longer PH.

Another approach was proposed by Alfian et al. [24],
where neither insulin boluses nor meal intake were

considered in the FFNN model. Instead, FFNN input was
built exploiting a 30min sliding window across the blood
glucose values. In addition to the blood glucose values
in the previous 30min, for each window, they calculated
eight statistics (i.e. minimum, maximum, mean, standard
deviation, difference between highest and lowest, median,
kurtosis, and skewness), and these were fed as inputs to
the neural network. The adopted neural network achieved
a RMSE of 2.82mg/dL ± 1.00mg/dL, 6.31mg/dL ±

2.43mg/dL, 10.65mg/dL ± 3.87mg/dL, and 15.33mg/dL
± 5.88mg/dL, respectively considering 15, 30, 45, and 60
min as PHs. However, the model prediction did not consider
any information about nutritional factors.

Recently, some studies considered the meal occurrence as
an important input of the neural networks [40], [41]. A pos-
sible strategy is to predict all the glycemic values starting
from the time of the meal to the prediction horizon. Karim
et al. [25] implemented a FFNN to predict blood glucose
values every 2min up to 4 hours after the meal. Nevertheless,
among the 5 diabetic patients considered for the analysis, only
one was affected by T1D. The information on the content
of the meal were used in two different ways. In one, the
raw values of carbohydrates, lipids, and fibers in grams were
directly chosen as inputs for the neural network. In the other
one, a glucose absorption model [42] was computed and three
numerical parameters of the obtained curve were used as
inputs: time elapsed to the peak of the curve, time elapsed
to 50% of the peak of the curve, and rate of absorption at the
maximumof the curve. The reported results showed generally
better performance when the absorptionmodel was integrated
in the computation, with an average RMSE of 1.12mmol/L
(with PH = 60min), compared to the respective RMSE value
of 1.816mmol/L for the first approach.

It is important to note that, although previous reported
studies show that ML techniques can be successfully applied
to blood glucose prediction, none of them focused on the
impact of nutritional factors in this prediction. For this reason,
in this study the impact of several nutritional factors in the
short and middle term was investigated by ML methods.

III. MATERIALS AND METHOD
A. DATASET DESCRIPTION
In this section, the used data are presented. First the main
characteristics of the public dataset DirectNet are briefly
reported. Next, the data provided by Federico II University
Hospital are described in detail (AI4PG data).

1) DirectNet DATA
The DirectNet is a public dataset available since 2007 con-
taining CGM measurements. The data were collected with
informed consent from eligible subjects and the protocol was
approved by the Jaeb Center for Health Research as reported
in [43]. It includes data from 50 child-patients with T1D
wearing the HCLS device, Medtronic MiniMed Guardian-
RT. The Guardian-RT system was designed to measure blood
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glucose levels in a range of 40-400 mg/dL. The Guardian-RT
system acquires glucose values every 10 seconds through a
subcutaneous sensor. Then, the acquired data are averaged
and recorded at intervals of 5min. The dataset includes data
from males and females patients, aged between 3 to 7 or
12 to 18 years, with a T1D diagnosis of more than 1 year. The
blood glucose data was collected continuously every 5min
for approximately 7 days.

2) AI4PG DATA
The AI4PG dataset was provided by the Diabetes Outpatient
Clinic of Federico II University Hospital (Naples, Italy).
The dataset includes data from 25 T1D patients wearing
the HCLS, Medtronic MiniMed 670G system [44], report-
ing information on dietary habits, insulin doses, and CGM
measurements for 6/7 days [45]. Subjects were 12 males and
13 females, age (40 B1 12) years and with a duration of
diabetes in the range of (15 B1 12) years. Patients completed
at least 7-day food diaries with various information, such as
consumed food and drinks. The dataset is organized in break-
fasts, lunches, and dinners, each of them represented as time
series of pre- and post-meal glycemic levels (mg/dL). Over-
all, the dataset contains a total of 1264 meals: 398 breakfasts,
441 lunches, 425 dinners. Manual Boluses (MBs) insulin,
administered at mealtime, is reported in the dataset. The MB
insulin (mmol/L) leverages on the amount of meal’s carbohy-
drates and caloric intake computed by the patient. MetaDieta
software [46] was used to calculate energy intake, nutrient
composition, glycemic index and glycemic load. The dataset
provided glycemia values from CGM every 5min, from
30min before meal to 60min after meal. In particular, the
dataset provided an estimate of carbohydrates (g), lipids (g),
proteins (g), fibres (g) and energy intake (kcal) associated
with each meal. Use of data in the present study was approved
by the Ethical Committee of Federico II University and each
participant was informed of the study and gave their consent
to participate.

B. PROPOSED METHOD
In this work, a ML-based system, via FFNN [47], for post-
prandial blood glucose prediction at different PHs in T1D
patients is proposed. The proposed model was developed
leveraging on the results reported in [24] and [25]. In par-
ticular, based on the former, a 30min window of blood
glucose values and 8 associated statistical attributes were
considered as input. Specifically, the statistics computedwere
minimum, maximum, mean, standard deviation, difference
between highest and lowest, median, kurtosis, and skewness.
Furthermore, on the basis of [25], the number of outputs was
set equal to the number of PHs to investigate. In the present
study, 4 prediction horizons in the short and middle time were
considered to predict blood glucose values, i.e. 15, 30, 45,
60 min. A grid search strategy was implemented to set the
number of hidden layers and neurons of the FFNN. Finally,
a model that predicts at different PHs of interest was obtained.

A preliminary experiment on DirectNet data was carried
out to assess the performance of the proposed system in
blood glucose predictions. Once validated on DirectNet data,
the proposed model was applied to the self-produced AI4PG
dataset. In order to investigate the impact of nutritional fac-
tors in postprandial glycemic response, several input con-
figurations were tested. More in detail, nine scenarios were
considered.

• #1 No-insulin: the model took in input:
– glycemic values (mg/dL) from 30min before meal

until mealtime every 5min
– glycemia’s statistical attributes, that were mini-

mum, maximum, mean, standard deviation, differ-
ence between highest and lowest, median, kurtosis,
and skewness calculated on glycemia values before
each meal.

• #2 Insulin, No nutritional factor: in addition to
the aforementioned inputs, the FFNN also took
manually-administered insulin bolus MB (mmol/L)
before the meal as an input.

• Single-nutritional factors scenarios: in these scenarios,
a single nutritional factor was taken into account. More
in detail, the inputs were composed of glycemic values,
statistical attributes, insulin bolus and a nutritional factor
across the following:
– #3 Carbohydrates (g),
– #4 Proteins (g),
– #5 Fibers (g),
– #6 Lipids (g), and
– #7 Energy intake (kcal) associated with each meal.

• #8 Insulin, All nutritional factors: in these scenario, the
model was fed of glycemic values, statistical attributes,
insulin bolus and all nutritional factor simultaneously.

• #9 No insulin, All nutritional factors: the model took
in input glycemic values, statistical attributes and all
nutritional factors simultaneously, without considering
the MB insulin.

The layout of FFNN model is summarized in Fig.1,
wherein the number of the scenario is used to identify the
various input combinations. The outputs are postprandial
blood glucose values at 15, 30, 45, and 60 min.

Root Mean Square Error (RMSE) was used to evaluate the
prediction performances for each PH. RMSE is defined by
Eq.1:

RMSE =

√
1
N

∑
N

(ŷt - yt )2 (1)

where ŷt and yt are the predicted and the measured BGLs at
the time instant t , respectively; while N is the total number of
blood glucose measurements in the dataset.

IV. EXPERIMENTS
In this section a description of the conducted experiments
is reported, together with the preprocessing and the exper-
imental setup adopted. As mentioned in Section I, the aim
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FIGURE 1. The layout of the used FFNN model. The identification number of each scenario identifies each input combination. The
outputs are postprandial blood glucose values at 15, 30, 45, and 60 min.

FIGURE 2. Proposed pipeline. It is composed of two main stages: data preprocessing and ML model validation. The data preprocessing stage is composed
of the filtering step and the computation of the statistical attributes used together with the other inputs. Instead, the ML model validation stage consists
in i) dividing the preprocessed dataset into training, validation and test set, ii) scaling the data using the min-max scaler strategy, iii) tuning the model
hyperparameters leveraging on a grid search strategy, and finally iv) predicting the BGL output in several temporal horizons. The obtained prediction are
then evaluated to select the best model.

of this work was to evaluate the impact of nutritional factors
on the BGL prediction capability. To this end, a preliminary
series of experiments was carried out on the public dataset
DirectNet to experimentally validate the proposed neural
network architecture in BGL prediction task. Successively,
the proposed architecture was used on the AI4PG dataset to
evaluate the impact of the nutritional factors, individually and
together, on the BGL prediction capability (see Section III).
The main stages of the proposed pipeline are reported in
Fig. 2. After a first data preprocessing stage (filtering and
statistical attributes calculation), a classicalMLmodel valida-
tion procedure was carried out. It consisted in (i) dividing the
dataset into three parts, that were training, validation and test
set, used to train the model and to measure its performance.
Then, (ii) data were scaled to adjust the different scales of the
involved features. In the (iii) hyperparameters tuning stage,

a good set of hyperparameters for the proposed model was
searched. Finally, (iv) leveraging on prediction and evaluation
on test data, a model able to generalize on new unseen data
was provided. In the following of this paper, these stages will
be described in detail.

A. DATA PREPROCESSING
1) DirectNet DATA PREPROCESSING
From DirectNet dataset, CGM data (mg/dL) of the
12 patients with the highest number of recorded data were
considered. It was shown [29], [48] that cleaning the data
from noise significantly improves the performance. There-
fore, the same preprocessing reported in [24] consisting in
the application of the Savitzky Golay technique [49] on the
data was made. More in detail, the Savitzky Golay technique
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TABLE 1. Tuned hyperparameters and the search space adopted during
the grid search.

with a first-order polynomial and a 15-step filtering window
on blood glucose values was employed. Then, a 30-minute
sliding window across the blood glucose data was used to
construct the model input. In addition, based on [24], statis-
tical features were calculated on each window of glycemic
data and added as inputs. In particular, minimum, maximum,
mean, standard deviation, difference between highest and
lowest values, median, kurtosis and skewness were used.

2) AI4PG DATA PREPROCESSING
The blood glucose values (mg/dL), the MB (mmol/L), and
the following nutritional factors were considered: total energy
intake (kcal) of the meal, total protein (g), total carbohy-
drates (g), total lipids (g), total fiber (g). To avoid patients
with a low number of acquisitions, subjects with less than
30 meals records were removed. For the remaining patients,
only the first 100 meals were considered. Therefore, data
from 15 patients were used, for a total 1036 meal records.
Subsequently, the Savitzky Golay technique with a first-order
polynomial and a 15-step filtering window was applied on
BGLs. Therefore, glycemic values from (30min) before meal
until mealtime were used as part of inputs of the adopted
FFNN. The second part of the input was composed of the
8 statistics previously discussed, computed on preprandial
BGLs and used as network’s inputs.

B. EXPERIMENTAL SETUP
As mentioned in Section III, FFNN was used as a predic-
tor of postprandial blood glucose levels at different PHs.
In order to select optimal hyperparameters, for the adopted
FFNN model, a grid search strategy was exploited. More
specifically, Table 1 reports the tuned hyperparameters and
the search spaces. For each hidden layer of the network,
the ReLU activation function [52] was chosen. In addition,
regularization termwith weight decay (L2 penalty) parameter
was set to 0.0001, and the maximum number of epochs was
set to 1000 with a patience of 20 as an usual trade-off between
computational complexity and generalization capability [47].

The experiments were conducted both intra-subject and
inter-subject on both DirectNet and AI4PG data.

1) INTRA-SUBJECTIVE APPROACH
The intra-subjective approach considered each subject indi-
vidually, building a different a model for each patient. In this
case, an hold-out validation strategy was performed to val-
idate the method. In the Hold-Out strategy the dataset was

split into three non-overlapping parts: training, validation,
and testing sets. More in detail, 70% of the data was used
for training, 10% for validation, and the remaining 20% for
testing. Since the model had to predict future BGL values
relying on past ones, the temporal order of the data was
maintained during the hold-out split procedure, letting the
most recent ones in the test set. Furthermore, all data were
scaled using min-max scaling. The minimum and maximum
values were computed of the training data. The models were
trained using the training set, while the validation set was
used to avoid overfitting on the training data insofar as it
allows to select the best model in terms of generalization
capability [47]. The testing set was used for the final model
evaluation to achieve the best model for each patient.

2) INTER-SUBJECTIVE APPROACH
In the inter-subjective case, a single model was built using
data belonging to all the considered subjects, therefore all
the data were used regardless of the subject to whom they
belong. This was done to verify if and how much a model
trained using data acquired from several subjects was able to
generalize on new data. In this case, a 5-fold cross-validation
(CV)was performed to validate themethod. For each iteration
of the CV process, a portion of the training data was used as
validation set following a 70%/10% split. Furthermore, all
data were scaled using min-max scaling using the minimum
and maximum values of the training data.

Each model was evaluated on the test set by using RMSE
as described in Section III.

V. EXPERIMENTAL RESULTS
In this section the experimental results both for intra-subject
and inter-subject cases are reported. In the first part the results
on DirectNet data are shown. Next, the findings on AI4PG
data are presented.

A. DirectNet RESULTS
The model’s performance on DirectNet dataset was assessed
by calculating RMSE between actual and predicted values
at the four PHs of interest (15, 30, 45, and 60 min). As no
information on patient’s administered insulin or meal intakes
were reported inDirectNet dataset, the predictionswere based
only on daily BGL trend. Table 2 reports means and standard
deviations of the RMSEs for the blood glucose prediction.

In the intra-subjective case, the reported results are the
average on the test data of all the considered patients.
An increasing average RMSE was observed as the PH
increases, starting at 15min with 4.14mg/dL to a maximum
of 16.69mg/dL at 60min. Moreover, standard deviation
increased along with the PH (up to 5.86mg/dL), due to high
performance variability across different patients.

In the inter-subjective case, the RMSE averaged on the
5 folds is reported in Table 2. The results obtained are similar
to the subject-dependent condition, with mean of RMSE
increasing as PH increases. However, since each fold contains
data from different patients, the variability of performance
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TABLE 2. Mean RMSE with standard deviation of BGL prediction with
intra-subjective and inter-subjective approach for various settings at
different PHs on DirecNet dataset.

TABLE 3. Performance reported by the proposed approach and the
analyzed literature.

between folds was minimal, resulting in a lower standard
deviation respect to the intra-subject case.

RMSE values obtained from intra-subjective models were
comparable with the literature, as shown in Table 3. It is
important to notice that different experimental conditions,
such as preprocessing or hyperparameters setting, can in turn
affect the results, making an unbiased comparison among the
methods proposed in literature hard to be made. In spite of
these differences, preliminary results showed that the pro-
posed ML-model predicts blood glucose levels comparable
with the state-of-the-art methods reported in literature on a
CGM public dataset DirectNet. After validating the predic-
tion capability of the proposed model, the impact of nutri-
tional factors on the predictions was investigated. This aspect
is still an open issue, and it has been scarcely investigated in
literature.

B. AI4PG RESULTS
Table 4 and Table 5 report the performance of the proposed
method for intra-subjective and inter-subjective approaches,
respectively. In both cases, RMSE between the real glycemic
values at the 15th, 30th, 45th, 60th min after the meals and the
predicted ones is reported. More in detail, the intra-patient
results were averaged on the test data of the considered
patients, and Table 4 reports mean and standard deviation
(std) of RMSEs for each considered scenario. Instead, the

inter-patient results, reported in Table 5, were computed aver-
aging the RMSEs on 5-folds.

To asses the influence of nutritional factors and insulin
on the predictions, a statistical t-test was used to determine
the statistical significance of the results obtained. More in
detail, a paired t-test was used to compare the #1 No-insulin
scenario, where only blood glucose values and associated
statistics features are used, with the other ones. The statistical
significance of our results was interpreted through p-value.
In particular, if the p-value was less than significance level
α, the null hypothesis, i.e. zero mean difference between #1
No-insulin scenario and the other ones, was rejected and the
mean difference was considered statistically significant. For
this analysis, the adopted α was 0.05.

For intra-subjective approach, the t-test p-value between #1
No-insulin case and the other scenarios are also reported in
Table 4. More in detail:

• for PH = 15min, a negative statistical significance was
obtained in #2 Insulin, No nutritional factor and in #8
Insulin, All nutritional factors.

• fromPH= 30min, a positive statistical significancewere
obtained when the nutritional factors were individually
considered as input of FFNN, demonstrating that meal
composition had a significant effect on postprandial
blood glucose. As expected, #3Carbohydrates remained
the factor that abruptly impacts BGL predictions [45],
but also #4 Proteins and #5 Fibers played an important
role from 30min after the meal [53].

• nutritional factors uniformly impact on BGL prediction
when the temporal horizon was greater than or equal to
45 min.

For inter-subjective approach, as p-value was always
greater than alpha, no statistical significance was found. This
result reflects the need to model inter-individual variability.
Indeed, a significant part of postprandial glucose variability
is generally related to individual characteristics [53].

As a further validation of the obtained results, the Relative
Squared Errors (RSEs) were calculated for intra-subjective
and inter-subjective cases. The RSEs values are summarized
in Table 6: for all the experimental cases, the RSEs are
consistent with RMSEs values.

VI. DISCUSSION
As a first remark, it should be noted that the obtained results
on DirecNet and AI4PG data suggest that a single classifier
can be developed to obtain BGL predictions on multiple
temporal horizons at once, as also proposed in [25].

The aim of this study is to verify the impact of the nutri-
tional factors in the final predictions. Indeed, the importance
of the nutritional factors on the BGL reported in the litera-
ture [53] can lead toward the hypothesis that nutritional fac-
tors can affect the BGL predictions. The preliminary results
on DirecNet showed that the proposed ML-model predicts
blood glucose levels comparable with the state-of-the-art
methods reported in literature. The greatest part of the current
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TABLE 4. Experimental results in intra-subject approach for various settings at different PHs on AI4PG dataset. RMSE averaged on all the subjects with
standard deviation of BGL prediction is reported. The t-test p-values between the 1 No-insulin scenario and the other ones are also reported. In bold the
p-values less than the significance level α.

TABLE 5. Experimental results in inter-subjective approach for various settings at different PHs on AI4PG dataset. RMSE averaged on the test folds of a
5-fold CV procedure with standard deviation of BGL prediction is reported.

literature on the BGL prediction deals with proposing inno-
vative methods to improve the prediction performance. How-
ever, the importance of nutritional factors is not considered
in these works. Therefore, understanding if this hypothesis
is verified or not, could help achieving more effective BGL
predictors.

As regarding the impact of the nutritional factors, for the
intra-subjective case on the AI4PG data, it is interesting to
note that the results reported in Table 4 indicate that nutri-
tional factors uniformly impact on BGL prediction when the
temporal horizon is greater than or equal to 45 min. This
can be interpreted as a confirmation that BGL values are
influenced by nutritional factors in the middle term [45].

For shorter time, one can observe that just some of them
have an impact on BGL prediction. In particular, Proteins and
Fibers seem already give a contribution in the prediction to
30 min, in spite of they do not result in a statistically positive
influence to 15 min. The lack of performance improvements
using nutritional factors in the short term can be due to
the high correlation between the preceding and immediately
following blood glucose values, as reported in [24], [54],

and [55]. Therefore, the use of nutritional factors in the short
term may not give any improvement over using BGL values
alone. Instead, after 30 min, all the nutritional factors give a
positive impact on the BGL predictions.

However, it is interesting to notice that using together
all the considered nutritional factors in the input leads to a
lower impact on the performance respect to using just one
nutritional factor at once. For example, in Table 4 using all
the analyzed nutritional factors there is a lower improvement
respect to using only the lipids. This can be due to at least
two possible reasons: the former is that the proposed model
is subject to the Peaking Phenomenon [47], [56] where, for
training sets of finite size, the performance of a given model
does not keep on improving as the number of features (in this
case, the nutritional factors) is increased. The latter, instead,
can be due to a negative interaction between nutritional fac-
tors in the predictions.

Consistently with the findings in [45], [53], and [57],
it results that some nutritional factors (such as fibers and
lipids) can have a greater impact in middle term prediction
respect to other ones.
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TABLE 6. RSE results in intra-subjective and inter-subjective approach for the different PHs on AI4PG dataset.

For the inter-subject case, instead, from Table 5 one can
observe that no nutritional factor contributes in improving the
BGL predictions significantly. This can be due to the subjec-
tive response of each single patient with respect to nutritional
factors, making hard to build a inter-subject classifier able
to find relationships between nutritional factors and BGL
shared among different subjects. In other words, postprandial
glucose responses seem strongly related on individual char-
acteristics of the subject. This is consistent with the findings
in [53], [58], and [59], reporting that, in general, the human
postprandial glucose response is almost constant in the same
subject, while it changes across different ones.

The obtained findings contribute to the advancement of
knowledge on the timing of the effects on blood glucose of
the different nutritional factors. The time dependence of the
predicting value of the nutritional factors is evident with very
early effects of carbohydrates but also early effects of proteins
and immediately after of lipids and energy intake. Therefore,
understanding the contribution over time by different nutri-
ents with AI could compensate for more complex kinetic
studies. Moreover, a better knowledge of nutritional factor
impact should be used to enhance the algorithms driving
insulin infusion rate in hybrid closed loop systems, and the
individual insulin bolus calculation.

VII. CONCLUSION
The aim of this research work was to experimentally inves-
tigate the impact of nutritional factors on the capability to
obtain postprandial BGL predictions, in the short and middle
term after a meal, by machine learning methods. In par-
ticular, the impact of nutritional factors such as carbohy-
drates, proteins, lipids, and fibres, as well as meal energy
intake, on postprandial blood glucose response was inves-
tigated. A series of experiments to predict BGLs was car-
ried out on the self-produced AI4PG dataset containing both
CGM measurements and meal nutritional factors of a set
of patients. Experiments were made using a Feed Forward
Neural Network model as predictor. Initially, the model was
validated with a preliminary experiments on the well-Known
DirectNet dataset, obtaining performance results comparable

with the current literature. Next, an analysis on the predic-
tion performance on the AI4PG was conducted, taking into
account also several nutritional factors as input.

In particular, nutritional factors were considered
individually as inputs to the proposed system to the aim
of investigating the impact of each of them. Furthermore,
a final experiment on the adoption of all the nutritional factors
together as input was investigated.

The results suggested that information about nutritional
factors can be significant for middle-term postprandial BGL
predictions, but these information have to be used in a sub-
ject dependent way. This approach is in agreement with a
patient centered vision to support precision medicine. Hence,
a customized system is required to meet the individual needs
of the subject. The recent literature already proposed some
prototypes of personalized devices [60]. On the other hand,
an alternative machine learning strategy could be based on
transferring the knowledge among different inter-subjective
datasets, such as in the case of Transfer Learning methods
(e.g., [61], [62]).

This study focused on the impact on BGL predictions
of several nutritional factors considered individually or all
together. However, the impact of different scenarios also
should be considered. This can be investigated considering
classical features selection strategies or more recent eXplain-
able Artificial Intelligence (XAI) methods [63], [64], able
to give explanations about the input-output relationships of
an AI system. Indeed, despite of XAI systems are usually
used in other tasks, such as image classification [64], [65]
and text classification [66], recent literature is investigating
on the use of XAI methods also on different type of signals,
as biological ones [67]. Furthermore, literature [68], [69],
[53] reports that nutritional factors can have a significant
impact in longer time predictions, since the shape of glucose
response can be significant also over 6 h from the meal.
Therefore, further studies have to be carried out to investigate
prediction performances of ML systems in longer temporal
horizons. In addition, the adoption of more advanced neural
networkmodels, such as recursive (LSTM) and convolutional
architectures, can help produce better results.
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