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Abstract: Radiomics and artificial intelligence (Al) may increase the differentiation of benign
from malignant kidney lesions, differentiation of angiomyolipoma (AML] from renal cell
carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes
of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers
and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural
networks analyze imaging data. Statistical, geometrical, textural features derived are giving
quantitative data of contour, internal heterogeneity and gray zone features of lesions. A
comprehensive literature review was performed, until July 2022. Studies investigating the
diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene
alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The
application of Al and radiomics could lead to improved sensitivity, specificity, accuracy in
detecting and differentiating between renal lesions. Standardization of scanner protocols
will improve preoperative differentiation between benign, low-risk cancers and clinically
significant renal cancers and holds the premises to enhance the diagnostic ability of imaging

tools to characterize renal lesions.
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Introduction

Renal cell carcinoma (RCCQC) is placed sixth in the
diagnosed type of cancer in men and is at the 10th
place in women.!? In recent decades, the growing
availability of non-invasive advanced radiological
techniques to investigate non-specific abdominal
and musculoskeletal pain has led to a steady
increase of incidental kidney lesions, which are
more frequently small, asymptomatic, and clini-
cally localized; indeed, up to 50% of all diagnosed
renal lesions are considered small renal masses
(SRMs; i.e. <4 cm in diameter).>> Moreover, up
to 30% are benign at final histology (i.e. after rad-
ical or partial nephrectomy),® while a non-negli-
gible proportion of these lesions have slow grow

rate. In these cases, any treatment might result in
an overtreatment.’

The current diagnostic work-up with standard
imaging tools (ultrasound, computed tomogra-
phy (CT), and magnetic imaging resonance
(MRI)!° is still hampered by a suboptimal ability
to correctly distinguish RCC from all benign
lesions in the pre-operative setting.!-13> Tissue
sampling by renal lesion biopsy has shown high
diagnostic accuracy for RCC; however, it is an
invasive procedure and difficult to perform in
some lesion localization.!%14 Renal lesion biopsy
has a high non-diagnostic rate (approximately
15% and erroneous diagnoses (approximately
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Figure 1. PRISMA methodology for identification of radiomics and renal lesions studies.

10%). This is somehow related to tumor hetero-
geneity.1>-17 Computer-aided diagnosis (CAD)
using artificial intelligence (AI) and its subset
machine learning (ML; and state-of-the-art ML
approach deep learning (DL)) are a new area of
interest in medical research.!® Radiomics aims to
help clinicians to improve the work-up and treat-
ment of several oncological diseases, by mixing
the qualitative features quantitative data obtained
through imaging tools.!1°-23 Radiomics combines
and analyses the mix of these features and data
from radiographic digital images,??> develop
descriptive and predictive models, combining
image features and phenotypes with gene and
protein signatures.?324 Specifically for kidney
lesions, radiomics, by capturing subtle features
that might escape human identification, has
shown to enhance the diagnostic, prognostic, and
predictive power of conventional radiological
techniques.%10:14:25:26. Aijm of this comprehensive
literature review is to provide a holistic overview
of the actual role of radiomics in kidney lesions
assessment and to identify the future opportuni-
ties in preoperative diagnosis of renal lesions.

Materials and methods

PubMed—Medline database and clinicaltrials.gov
were used to identify relevant, original studies
from the last 7 years (until July 2022) on the
topic. We had identified 93 research articles, of
which 49 were published in the last 7 years.
Earlier six studies has also been included in the
analysis to reflect the data from leading studies.
Data from seven ongoing clinical trials were also
evaluated. In Figure 1, we have summarized the
search methodology performed wusing the
Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines.??

Terms used for search were: kidney neoplasms,
renal cell carcinoma, Al, ML, DL, and radiomics,
evaluation, differentiation, characterization, and
assessment. Inclusion criteria were: (1) studies
applying radiomics for the study of renal masses,
(2) articles written in English language, and (3)
studies with a well-documented methodology to
allow replication. Articles not related to kidney
tumors and non-original articles (review publica-
tions, editorials, and replies to comments) were
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Figure 2. Radiomics flow analysis.

Following the
PRISMA guidelines, we have evaluated the iden-
tified studies. Published articles were analyzed if
population of patients were with kidney tumors;
intervention was the evaluation with CT, MRI,
positron emission tomography (PET-CT) and

excluded from the analysis.

contrast-enhanced ultrasound (CEUS)-based
radiomics. The comparator was the radiologists’
subjective image assessment. The aim was to ana-
lyze the role of radiomics and to assess the clinical
aspects of radiomics in kidney tumors. Data were
extracted after careful evaluation of the full text of
the articles for this analysis. The data used in our
review have been identified from each research:
author, clinical outcomes and gold standard, the
radiological modality, the prospective or retro-
spective design, the patients involved, radiomics
method and results.

Results

The search of online databases yielded results on
the topic on radiomics and kidney cancer that
could be classified in studies that searched the
differentiation of benign and cancerous tissue, of
angiomyolipomas (AMLs) from RCC, of oncocy-
toma from RCC, between different subtypes of
RCC. Also the prediction of Fuhrman grade,
response to therapy, and prediction of gene muta-
tions of molecular biomarkers have been identi-
fied. AI offers the unique opportunity to handle
the huge volume of data being created by radiom-
ics features extraction from kidney imaging and
to combine these with clinical and pathological
variables to provide even more accurate predic-
tion of the outcome discussed in previous para-
graphs. Figure 2 briefly depicts the process of
radiomics research.

-Segmentation

-Data integration

-Data analysis:
Diagnosis
Prognosis
Treatment response

Radiomic feature

Differentiation of benign from cancerous kidney
tumors

Radiomics in renal malignancy aimed to improve
the accuracy in distinguishing malignant versus
benign histology and in case of renal malignancy,
of different subtypes, to provide the best and tai-
lored management. The possibility to obtain an
abundance of quantitative features such as histo-
grams, textures, and shapes extracted via high-
throughput data from CT and MRI has surely
influenced the recent research toward this
direction. %28

One of the first studies to assess CT radiomic fea-
tures and texture analysis in renal tumors was
performed by Yu er al.?° on a total of 119 patients.
Utilizing histogram-based features of skewness
and kurtosis, the authors reported an area under
the curve (AUC) of 0.91 and 0.93, respectively,
in differentiating renal cancer from oncocytoma
(ONC) with AUC of 0.92 in differentiating ONC
from other tumors.!%2° Analogously, Coy et al.30
reported, for 200 patients with 200 unique
masses, an AUC of 0.85 of CAD in discriminat-
ing malignant versus benign lesions. Despite the
limitations of only comparing clear cell (cc) RCC
and ONC and using two different contrast agents,
the study uncovered the high potential of radiom-
ics and ML in analyzing several texture-analysis
features to distinguish malignant from benign
kidney lesions.3! A further study by Erdim ez al.32
aimed to investigate the possibility to identify
benign from cancerous masses through CT and
ML texture analysis on a total of 79 patients with
84 renal masses (21 benign and 63 malignant).
With a total number of 198 features for unen-
hanced CT and 244 for contrast-enhanced CT,
ML based on random forest (RF) algorithm
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radiomics, yielded an accuracy in distinguishing
renal cancer from other benign renal masses
90.5% with an AUC of 0.915, which, eliminating
collinear features, increased to 91.7% and 0.916,
respectively.32 Zhou er al.3® reported, in 192
patients with renal cancer analyzed wvia the
InceptionV3 model, a DL radiomics model, an
AUC of 0.97 for region of interest (ROI) data set
and 0.93 for rectangular box region (RBR) data
set. In a larger cohort of 290 renal lesions, Sun
et al. selected 57 features to provide a classifica-
tion model of RCCs wersus other subtypes wversus
angiomyolipomas and ONCs. The resulting radi-
omic ML model yielded an AUC of 0.93-0.94 in
differentiating RCCs from fat—poor benign renal
lesions.3*35> Uhlig ez al. proposed a radiomic
approach using CT features to discriminate
malignant and benign clinical T1 renal masses,
involving 94 patients for a total of 76 malignant
lesions and 18 benign lesions. The best ML algo-
rithm was the RF, which achieved the highest
AUC, with 0.83 when compared with radiologists’
assessment (AUC =0.68). Interestingly, this result
was obtained with 18 different CT scanners, con-
firming the role of radiomics in limiting the inter-
observer and inter-machine variability and
providing good results even in a pragmatic sce-
nario.3® In another study by Nassiri ez al.,3” per-
formed on 684 patients with renal masses
confirmed at CT imaging, two radiomics predic-
tive models, the REAL AdaBoost and the RF,
reported the best predictive performance with an
AUC of 0.84 and 0.77, respectively, to distin-
guish benign from cancerous lesions overall and
for SRMs when coupled with clinical variables.
Finally, a large retrospective study by Yap et al.38
involving 735 patients, showed, for different radi-
omic features (shape-only models, texture-only
models, and combined models) increasing AUC
from 0.67 to 0.75 in distinguishing malignant
from benign renal tumors.

Similar studies have reported the efficacy radiom-
ics using MRI in discriminating benign from
malignant masses, utilizing the differences in con-
trast enhancement, heterogeneity, presence of
cystic components, and signal intensity at T1,
T2, and apparent diffusion coefficient (ADC)
map signal. Xi ez al. showed, analyzing 1162 renal
lesions, a variable AUC for different clinical radi-
omics features that ranged from 0.52 to 0.76 of
the ensemble DL model. Compared with expert
radiologists, this predictive model reported higher
accuracy, sensitivity, and specificity with, respec-
tively, 0.70 versus 0.60, 0.92 versus 0.80, and 0.41

versus 0.35.3% A smaller study by Said er al. involv-
ing 125 patients, reported, among significant
qualitative and quantitative radiomic features, an
AUC that ranged between 0.62 and 0.90, taken
singularly. The related ML model reported
instead, on validation sets, an AUC of 0.73 to dif-
ferentiate RCC from benign lesions.?® More
recently, in a 2022 study performed by Xu ez al.4!
on 217 patients, retrospectively analyzed, three
DL models, created with ResNet-18 model, were
evaluated using RF based on T2 weighted-imag-
ing (T2WI) alone, diffusion-weighted imaging
(DWI) alone, and an overlapping of the two
image data sets to differentiate benign from
malignant renal masses, yielding an AUC of
0.906 for T2WI, 0.846 for DWI and 0.925 for
the combined model. Analogously, Massa’a
et al.*? investigated whether a high number of MLL
algorithms in 160 patients retrospectively ana-
lyzed, reporting the best results for the support
vector machine (SVM) trained on T2WI (AUC
=0.79). Similar results were obtained for T1WI
4-min delayed features. Interestingly, the combi-
nation of radiomics features in this study did not
raise the performance of the ML models. A sum-
mary of current studies that aimed to differentiate
normal tissue from cancerous tissue is incorpo-
rated in Table 1.

Differentiation of AML from RCC

AML accounts for 40-55% of resected benign
renal tumors and is characterized by the identifi-
cation at the imaging of macroscopic fat sur-
rounding and ‘stuffing’ the lesion.*3 Despite this
peculiar characteristic, some AMLs could contain
low intra-tumor fat that could not be detected by
imaging.4* The accurate characterization of those
masses is, therefore, crucial due to the benign
course and favorable prognosis of AML.%
Quantitative approaches have been developed
with the aim of detecting minor alterations in
AMUL compared with RCC. One of the first stud-
ies to utilize a radiomics approach for this differ-
entiation was performed by Feng et al., which
evaluated the capabilities of 42 CT-extracted fea-
tures in a limited sample of 58 patients. In par-
ticular, 16 features were characterized by a
significant intergroup difference in correctly diag-
nosing AML. The best features were selected via
the SVM recursive feature elimination that
reached an AUC of 0.939.46 A similar study
involved 95 patients for a total of 171 histopatho-
logical results from a single institution.4” Features
were obtained from three phases, which included
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Table 1. Radiomics in studies differentiating benign from malignant kidney lesions.

Author  Clinical outcomes and Imaging Study design Imaging method Results
gold standard modality No. of patients
Coy Discriminating CT Retrospective Semi-automated method using in- Characterization of ccRCC, chRCC,
etal.% benign lesions from n=200 house-developed software (U.S. FDA papRCC, oncocytoma and AML had
cancerous lesions 510K])30 AUC of 0.850, 0.959, 0.792, and 0.825
Histology (surgery)
Yu Discriminating Gl Retrospective Semi-automated method with manual  Histogram features skewness and
etal.?? benign lesions from n=119 segmentation. MATLAB software to kurtosis had the best discriminatory
cancerous lesions perform texture analysis. SVM for results (AUC=0.91 and 0.93,
Histology (surgery) classifying different tumor types respectively). ML AUC=0.91-0.92
Zhou Discriminating CT Retrospective Semi-automated method with manual ~ Model trained on slice data set
etal.3 benign lesions from n=192 segmentation. Preprocessing with reported the worst result, with an ACC
cancerous lesions Inception V3 software, pretrained on of 0.69. ROl data set reported ACC of
Histology (surgery) ImageNet and CNN models 0.97, while RBR had an ACC of 0.93
Erdim Discriminating CT Retrospective Semi-automated method with manual  RF algorithm has been identified as
et al.’? benign lesions from n=79 segmentation. Feature extraction via having good prognostic potential with
cancerous lesions MaZda software ACC of 0.905 and AUC of 0.905
Histology (surgery)
Uhlig Differentiation CT Retrospective Semi-automated method with manual AUC of RF was 0.83, better than
et al.3¢ of chrRCC and n=94 segmentation. Feature selection with expert radiologists (AUC =0.68)
oncocytoma recursive feature elimination to build
Histology (surgery) ML algorithms (RF) modeled to predict
malignancy of specific renal mass
Sun Differentiation i) Retrospective Semi-automated method with semi- SVM model achieved a SENS ranging
etal’ of chrRCC and n=290 automated segmentation via Python from 73-90% and a specificity ranging
oncocytoma v3.6.1 software. Radiomics was from 89-91.7% in distinguishing
Histology (surgery) performed on volume of interest (VOI) ~ malignant from benign lesions
Yap Differentiation CT Retrospective Semi-automated method with manual ~ Median AUCs 0.68-0.75 achieved by
etal®® of chrRCC and n=735 segmentation. 3D models used combined models
oncocytoma decision tree analysis (RF and REAL
Histology [surgery) AdaBoost)
Nassiri Differentiation CT Prospective Semi-automated method with manual  Prognostic model achieved an AUC
etal¥ of chrRCC and n=684 segmentation. VOl and decision of 0.84
oncocytoma tree analysis model (RF and REAL
Histology (surgery) AdaBoost] has been used
Said Differentiation MRI Retrospective Semi-automated method with manual ML models (RF) with best results
etal.40 of chrRCC and n=125 segmentation. OsiriX software. obtained an AUC of 0.73 in
oncocytoma Radiomics analysis was performed by  differentiate benign versus malignant
Histology (surgery) MRI physicist utilizing MATLAB lesions
Xietal.® Differentiation MRI Retrospective Semi-automated method with manual ~ Ensemble DL model reported the
of chrRCC and n=1162 segmentation highest test ACC, SENS, and SPEC,
oncocytoma also when compared with the
Histology (surgery) radiomics model
Massa’'a Differentiation MRI Retrospective Semi-automated method with semi- Best algorithm (SVM) had ACC of 0.80
et al.*? of chrRCC and n=160 automated segmentation. HealthMyne  and an AUC of 0.79
oncocytoma software
Histology (surgery)
Xu Differentiation MRI Retrospective Semi-automated method with manual Best performance of DL model
etal# of chrRCC and n=217 segmentation. ROls were manually (combination of T2WI and DWI) AUC

oncocytoma
Histology (surgery)

outlined. DL used ResNet-18 architecture
and radiomics models used RF

0.925

3D, three-dimensional; ACC, accuracy; AML, angiomyolipoma; AUC, area under the curve; ccRCC, clear cell RCC; chRCC, chromophobe RCC;
CNN, convolutional neural network; CT, computed tomography; DL, deep learning; DWI, diffusion-weighted imaging; ML, machine learning; MR,
magnetic resonance imaging; papRCC, papillary RCC; RBR, rectangular box region; RCC, renal cell carcinoma; RF, random forest; ROI, region of
interest; SENS, sensitivity; SPEC, specificity; SVM, support vector machine; T2WI, T2-weighted image; VOI, volume of interest.
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the pre-contrast, the corticomedullary, and the
nephrographic exposures.4” Successively, an
SVM algorithm has been developed to find the
best classifiers for distinguishing AML and RCC.
The best ML classifier reported an AUC of 0.96
for this purpose, significantly higher than that for
differentiating AML from non-RCC.47 With the
increasing capabilities of radiomics in discrimi-
nating AML from RCC, other studies enriched
the experience with this novel technology. Yang
et al.,*8 for example, extracted 774 radiomics fea-
tures from CT pictures to obtain the most dis-
criminative model, reporting an AUC of 0.917,
with a sensitivity of 0.66 and a specificity of 0.1,
while Ma er al.*® similarly constructed four single
radiomics analysis logistic classifiers (which
included five to seven features each one), to verify
the proper diagnosis on 84 patients (22 with AML
and 62 with RCC), reporting AUCs from 0.839
to 0.950. Analogous results have been obtained
by Nie er al. developing a radiomics nomogram
for the preoperative discrimination of AML from
RCC. The built radiomics signature obtained
promising results in the training data set (reach-
ing an AUC of 0.879), which were confirmed in
the validation set (AUC =0.846) and four in the
radiomics nomogram (AUC =0.896-0.949).
Also in this case, the number of features extracted
were culled off from a massive number of
CT-based features (over 2800).5° Interestingly, in
a retrospective study on 163 patients (118 RCC
and 45 AML), digital picture features extracted
from the unenhanced phase and fed into an ML
model were similarly able to accurately discrimi-
nate between AML and RCC, reaching an AUC
of 0.90.51 Another radiomics approach consid-
ered the role of tumor and mini-peritumor fea-
tures to differentiate AML from RCC in a study
performed by Ma et al. on 230 patients, for a total
of 58 AML and 172 RCC. With 396 radiomics
features extracted, the best results were obtained
for the nephrographic phase with an AUC of
0.726, followed by the corticomedullary phase
(AUC=-0.694). This approach overcame the
problem related to the accurate delineation of
tumoral volume of interest (VOI).52 The same
authors provided, in addition, a radiomics CT
nomogram for discriminating AML from RCC,>3
built using selected features reaching an AUC, for
this nomogram, of 0.968.5% More recently, Han
et al. performed a retrospective research in 58
patients with AML and 140 with RCC, patho-
logically confirmed, to evaluate the prognostic
value of CT radiomics in distinguishing AML
from RCC. Five classifiers were used, for a total

of 1029 features. The corticomedullary phase and
nephrographic phase achieved an adequate per-
formance (AUC=0.767 and 0.783, respec-
tively).55 Similarly, Kim eral5® assessed the
predictive role of CT radiomics in 28 AML and
56 RCC, reporting an AUC of 0.89, close to
those of experienced radiologists (AUC=0.78;
Table 2).

For MRI, similar results were obtained. Razik
et al.,>” performed an MRI analysis to distinguish
AML, RCC, and ONC, reporting in an MRI-
based radiomics, an AUC > 0.8, with best per-
forming parameter based on the mean of positive
pixels (MPP) on DWI (AUC of 0.891). Jian
et al.’® instead, evaluated the combined use of
MRI radiomics plus urinary creatinine for this
purpose in a preliminary study, reporting the best
AUC for the T2WI model (0.874), which
increased up to 0.919 when combined with uri-
nary creatinine, proposing the addition of other
variables to radiomics approach to improve the
diagnostic capabilities. Matsumoto ez al.>® dem-
onstrated instead that the ADC map was enough
in differentiating AML from RCC via a radiomics
MRI-based approach, reporting good AUC
(0.87) in the validation group.

Differentiation between oncocytoma and RCC

Renal ONC is usually a benign solid kidney neo-
plasm, which accounts for about 3-7% of all
renal tumors.>® Despite its benign natural his-
tory and excellent prognosis, ONC is usually
treated with surgical resection due to the imag-
ing available tools to properly distinguish it
from RCC.5 Indeed, due to the substantial
overlap in imaging findings, differentiation of
chromophobe RCC (chRCC) and clear cell
RCC (ccRCC) subtypes through imaging
modalities has traditionally been challenging.69-61
Percutaneous biopsy represents a method to dif-
ferentiate ONC from RCC with the risks of
false-negative results, as well as the difficulty to
consistently discriminate between RCC and
ONC on pathology.>!7 As a result, especially
given the importance of distinguishing these two
entities with such a difference in prognosis and
tumor behavior, and to potentially avoid many
unnecessary surgeries for benign lesions, a relia-
ble non-invasive method that could properly dif-
ferentiate ONC from RCC before surgery would
be of particular clinical value. Several radiomic
approaches have been proposed to this aim,
showing promising results. Table 3 summarizes
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studies evaluating radiomics approaches for the
differentiation of ONC from RCC.

Baghdadi er al.? aimed to design and evaluate a
semi-automated method with the help of Al and
image processing. To differentiate CD117-
positive ONCs from chRCC, the authors used
convolutional neural networks (CNNs) on CT
obtained images. Tumor-to-cortex peak early-
phase enhancement ratio (PEER) evaluation had
an ACC of 95% in tumor type classification
(100% SENS and 89% SPEC) compared with
the histopathology results.

Chen ez al.%* evaluated the clinical utility of voxel
parameters of whole lesion (WL) from CECT
scans to differentiate ccRCC from kidney ONC.
When compared with single ROI-based enhance-
ment, WL enhancement did not perform well to
distinguish ccRCC from ONC (AUC of 0.78 and
0.72, respectively). A combination with histo-
gram parameters (AUC of 0.86) performed bet-
ter. According to these results, authors concluded
that the use of this method is probably not justi-
fied to be further studied to be clinically
implemented.

Coy et al.5 explored the performance of a DL
lesion classifier, using a software library from
Google (i.e. TensorFlow™ Inception), for the
differentiation of ccRCC from ONC on CT
images.?> In this pilot study, 13 classification
methods were tested, and the best performance
was obtained using the excretory phase obtaining
an accuracy of 74.4%, sensitivity of 85.8%, and
positive predictive value (PPV) of 80.1%. The
software used showed the potential of ML to dis-
criminate the cancerous ccRCC from ONC. The
experienced radiologists seemed to be able to
properly classify an ONC better than the DL
method.?>

In their study on the distinction of RCC from
benign tumors, Deng et al.%5 used histogram fea-
tures to distinguish ONC from chRCC. Entropy
seems to be a good prognosticator to differentiate
ONC from chRCC.?

Li er al.®® investigated the role of ML and CT
image features to distinguish chRCC from ONC.
In this analysis of 61 cases, five classifiers were
trained to build a model. All radiomics models
showed good diagnostic results (all AUC values
>0.85), with SVM being the best (AUC 0.96,
SENS 0.99, SPEC 0.80, and ACC 0.94),

indicating that accurate preoperative distinction
of ONC from chRCC might be eased by applying
ML to CT imaging features.

Raman ez al.%7 evaluated the possibility of differ-
entiating common renal masses (i.e. ONC,
ccRCC, cysts, and papillary RCC (papRCCQ))
using CT quantitative texture analysis and RF
methods to construct a model. Analyzing CT
scans from 99 patients, this approach demon-
strated that 90% of oncocytomas and ccRCC
could be identified with a sensitivity of 89% and a
specificity of 99%, suggesting that data acquired
from CT images can be used to accurately cate-
gorize different renal lesions, including
oncocytomas.

Sasaguri er al.%8 searched to identify the role of
biphasic CECT for the differentiation of SRM
from RCC. The diagnostic performance of the
proposed model achieved AUCs of 0.82, 0.95,
and 0.84 for differentiating ONCs from ccRCCs.

Varghese ez al.?5 explored the accuracy of quanti-
tative features obtained from CT scans. The lipid
content of lesions and the cancerous kidney tis-
sues were studied. According to their analysis—
which comprised 31 texture metrics derived with
6 texture methods, the histogram analysis did not
perform well (74% of differences could be identi-
fied). The addition of Fourier analysis improved
the results of the combined model (AUC of 0.90).
The combined model had AUC values of 0.87,
1.00, 0.91, and 0.94 (p < 0.05) for differentiat-
ing ONC from cancerous kidney lesions.

Varghese er al.® in a retrospective series of 156
patients, fast Fourier transform (FFT) has been
found to be in ONC wersus ccRCCs, in the excre-
tory phase. The heterogeneity of gray zone tex-
ture seems to be high in ccRCC when compared
with ONC.

Yu ez al.?® assessed how texture analysis of images
obtained from CECT can discriminate RCC sub-
types from ONC. In this case series of 119
patients, histogram feature can differentiate ONC
from other tumors (AUC of 0.92), and the ML
combined model did not perform better (AUC of
0.86).

Hoang er al.7° using quantitative texture parame-
ters extracted from MRI aimed to discriminate
benign and cancerous SRM. In this cohort of 41
patients, 45 imaging features were extracted,
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comprising 5 global (intensity histogram) and 40
texture features. Histogram of features could dif-
ferentiate ONC from papRCC and ccRCC (accu-
racy 77.9%, sensitivity 64.7%, and specificity
85.9%). These suggest that analysis of features
drawn from MRI can better characterize kidney
tumors subtypes.

Paschall ez al.”! tested objective volumetric WL
on ADC map to improve the conventional
measurements using ROI to discriminate type I
papRCC from ccRCC and ONC. In this case
series of 55 patients, WL ADC values between
papRCC and ONC were significantly different
(p<0.001); ROC AUC of 67.6 for ONC wversus
ccRCC and 95.8 for ONC versus papRCC (sen-
sitivity of 100.0%, specificity of 10.3%, and
sensitivity of 88.5%, specificity of 93.1%, for
ONC wversus ccRCC and wversus papRCC,
respectively), highlighting the utility of this
objective methodology in providing informa-
tion on lesion heterogeneity and reducing
observer bias.

Differentiation of different subtypes of RCC

RCC involves three major subtypes (i.e. ccRCC,
papRCC, and chRCC), which differ in spatial
distribution of cellularity and vascularity at histo-
pathology.”? The ccRCC is an aggressive and
lethal carcinoma (75% of all RCCs), and has a
potential to metastasize, while the papRCC and
chRCC subtypes are less common — accounting
for about 10-15% and 5% of all RCCs, respec-
tively — and show better survival rates.”® As a con-
sequence, RCC subtyping has clinically
implications, and the use of molecular targeted
drugs will improve the differentiation of RCC
subtypes. The application of radiomics to RCC
subtyping has been reported by several studies,
and summarized in Table 4.

Kocak er al.7* aimed to extend the validity of their
results to externally validate, to allow replication
of models and the possible generalization of algo-
rithms. This used CT images and features in
combination with ML algorithms. The best per-
formance was achieved by the ANN classifier
with adaptive boosting, showing an accuracy of
84.6% for differentiation of ccRCCs from other
tumor types. The SVM classifier performed best
(ACC =69.2%) to differentiate ccRCC from
papRCC and chRCC. The best performance was
found to be related to the differentiation of
papRCC from other RCCs, while they exhibited

rather poor performance in differentiating ccRCC
or chRCC from others.

Similarly, Han ez al.”> aimed to exploit reproduc-
ible and generalizable models to differentiate the
ccRCC, papRCC, and chRCC using CT images
along with an ML algorithm. In their cohort of
169 biopsy-proven RCC cases, the DL neural
network achieved an AUC of 0.9 no matter the
identified subtype (specifically, 0.93 for ccRCC,
0.91 for papRCC, and 0.87 for chRCC), showing
promising performance in classification of RCC
— although with worse performance for chRCC

subtyping.

Li er al.7% evaluated a CT radiomics model to dif-
ferentiating ccRCC from other tumor subtypes
and to evaluate radiogenomics potential combin-
ing the imaging features and the von Hippel-
Lindau (VHL) mutation gene. Among 156
texture features extracted for each tumor, the
eight most relevant from the corticomedullary
phase were used to build the model, which had a
good AUC (0.95; ACC 0f 92.9%); moreover, five
out of eight had a strong association with VHL
mutation gene.

Raman er al.®" sought to assess the possibility of
differentiating common renal masses (i.e. ONC,
ccRCC, cysts, and papRCC) using CT texture
analysis features embedded into a model. The
model used was RF. This model correctly catego-
rized ccRCCs in 91% of patients (SENS 91%
and SPEC 97%), and papRCCs in 100% of
patients (SENS 100% and SPEC 98%), suggest-
ing CT texture analysis, in conjunction with RF
modeling, might demonstrate a potential method
to characterize renal masses.

Leng er al.”’ in their study exploring the effect of
denoising heterogeneity scores. The aim was to
distinguish AML from different subtypes of RCC.
The authors found that, with regards to ccRCC
and papRCC differentiation, the heterogeneity
scores could discriminate these two subtypes, and
that further reduction in noise improved AUC.

Yan ez al.’® investigated the diagnostic perfor-
mance of texture analysis for the discrimination of
AMUL with minimal fat, ccRCC, and papRCC on
images obtained from CT scans. According to
their analysis, excellent classification results in
terms of discrimination between ccRCC and
papRCC were obtained with nonlinear discrimi-
nant analysis (error of 0.0-9.3%), no matter
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which phase was used; on comparison with the
three scanning phases, a trend toward better
lesion classification was observed with corticome-
dullary and nephrographic phases images.

Hoang er al. 7 assessed if quantitative texture
parameters obtained from MRI could potentially
differentiate between common subtypes of RCC
(i.e. ccRCC wersus papRCC) in SRMs (i.e.
<4cm). Among the 45 imaging features
extracted, textures helped to differentiate between
subtypes of RCCs; papRCCs were differentiated
from ccRCCs with an accuracy of 77.9% (sensi-
tivity 65.5% and specificity 88%).

Li eral” used volumetric histogram analysis
from ADC maps to characterize SRMs.
Combination of mean ADC and histogram values
achieved the best AUC (0.851 with SENS of
80.0% and SPEC of 86.1%) and these results
show that the volumetric analysis could poten-
tially differentiate between certain types of kidney
masses.

Paschall ez al.”! explored the volumetric WL ADC
parameters could identify RCC. The differentia-
tion was studied for type I papRCC from ccRCC
and ONC. In their study, WL ADC could distin-
guish between papRCC and ccRCC (p<0.001),
with AUC of 95.2 (SENS of 84.5% and SPEC of
93.1%).

Fuhrman grade prediction

Fuhrman grade is an important pathological risk
factor impacting on patients’ oncological out-
comes, especially the risk of recurrence.8° Indeed,
despite this information might be achieved
through renal mass biopsy, this procedure is inva-
sive and not devoid of complications and suffers
from several limitations.'”-8! Therefore, being
able to preoperatively predict a renal mass nuclear
grade differentiation, directly by imaging, could
be of outmost importance to address the patient
to the best treatment.

With the introduction of ML, a branch of
Al-developing algorithm able to both learn and
improve by analyzing data sets, one of the main
imaging parameters adopted is texture analy-
sis.82:83 This post-processing technique, which
can be applied either to CT or MRI, allows quan-
tifying tumor heterogeneity assessing several
parameters.

Shu ez al. compared radiological features of dif-
ferent Fuhrman grade ccRCC and extracted 1029
radiomics features from corticomedullary and
nephrographic CT scans. The authors found that
11 and 24 features correlated with Fuhrman
grades. This investigational analysis confirmed
that radiomics can assess preoperatively the
Fuhrman grade of kidney lesions.8* Again, a ret-
rospective study on 290 patients with histologi-
cally confirmed 298 RCCs evaluated the levels of
entropy and texture quantification within renal
tumors at CT imaging. The authors found a sig-
nificant increase of entropy value both in clear
cell carcinoma and higher Fuhrman grade.8>

Recent evidence from studies that looked at the
role of ML also analyzed texture in MRI imaging
as well. T2 and DWI windows are usually used
and a study on 34 RCC masses demonstrated
entropy at spatial scaling factors (SSF) on DWI,
on corticomedullary phase and on nephrographic
phase to be best parameters to assess RCC grad-
ing.8¢ Accordingly, Stanzione ez al.87 developed
five algorithms including different MRI features
to predict tumor grading achieving accuracy
greater than 90%.

Yin ez al. developed and tested an ML model and
images from CECT to predict Fuhrman grade of
ccRCC. In 25 patients, SVMRadial, RF and
Bayesian models had the best prognostic ability to
predict Fuhrman grade of ccRCC using radiom-
ics from CECT images.88

Finally, semantic segmentation is gaining popu-
larity®® and promising results have been achieved
to differentiate different RCC subtypes.®0
Nevertheless, studies able to underline the role of
semantic segmentation to differentiate nuclear
grading are still based on the pathological
sample.9!

Prediction of gene mutation molecular

biomarkers through radiomics

Radiogenomics integrates multi-scale genome
data, with the help of refined CAD systems to
develop imaging possibilities to assess the combi-
nation of imaging data with genome-related cel-
lular data.?-96

Lee er al.®" evaluated 58 kidney cancer patients
(including 12 patients with metastatic disease)
using a radiomics algorithm with images from CT
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scans assessing progression of pT1 RCC.
Combining radiomics parameters with gene
expression data gathered from whole transcrip-
tome sequencing (WTS). Four radiomic features,
which included histogram features, gray-level co-
occurrence matrix (GLCM), and the ratio of vox-
els from ROIs, were trained to prognose metastasis
of patients. In addition, heterogeneous gene sig-
natures correlated with these radiomics features
were identified. These findings barred out the use
of radiogenomics to highlight patients who could
have an additional benefit from adjuvant therapy
or metastases in pT1 RCC.

Two retrospective studies assessed more granu-
larly specific mutations and CT-based texture
radiomics, such as BAP1 mutations. The first,
reported an AUC of 0.77 highlight BAP1 muta-
tion.?® The second study assessed radiomics fea-
tures extracted from CT scans of 65 ccRCC
tumors, achieved a SENS, SPEC, and ACC of
90.4%, 78.8%, and 81% to predict BAP1 muta-
tion (AUC =0.89).99 The gene encoding the pro-
tein polybromo-1 (PBRM1) mutation has been
investigated with radiomics analysis with a good
AUC of 0.925.100 Previously, one trial studying
ccRCC tumors found an AUC of 0.85 for VHL,
PBRMI1, and BAPI1 genes.!! Gene mutations
BAPI1 has been investigated in 78 tumors from
The Cancer Genome Atlas, (AUC = 0.71 for
prediction of BAP1 within the CT nephrogenic
scan images.102

Studies investigating treatment response of

renal masses using radiomics

Assessing the prediction of response to target
therapies is paramount for clinical decision-mak-
ing in metastatic RCC (mRCC) patients.
Targeted therapies and immunotherapies have
demonstrated a promising efficacy in mRCC, yet
it remains challenging to delineate subgroups of
responsive patient, despite the existence of several
scores (e.g. International Metastatic RCC
Database Consortium [IMDC] risk score) and
biomarkers (e.g. PBRM1).26:103104 A deeper
knowledge and evaluation of response/resistance
status would lead to personalized algorithms,
which can potentially avoid adverse events of
unnecessary treatments — with a subsequent posi-
tive effect on patients’ quality of life — optimize
resources, save time (e.g. unresponsive patients to
certain therapies could be switched earlier to
other treatments) to improve survival outcomes.

Antunes er al.19 attempted to test how well radi-
omics analysis perform on integrated positron
emission tomography/magnetic resonance imag-
ing (PET/MRI) in the assessment of metastatic
RCC and response to Sunitinib. Their findings
suggests that radiomics from PET/MRI have a
potential to identify structural and functional
modifications that can influence the response to
tyrosine kinase inhibitor (TKI) therapy, thus
identifying radiomics analysis as a modality for
characterization and evaluation through PET/
MRI.

Bharwani ez al.196 sought to explore whether TKI
therapy (i.e. Sunitinib) can influence sequential
gene changes in mRCC patients and its correla-
tion with overall survival (OS), by prospectively
assessing DWI and multiphase contrast-enhanced
MRI as biomarkers of outcomes. In this case
series of 20 patients, 47% of patients had a modi-
fication mean ADC following treatment, despite
no correlation with outcome was found. Patients
with higher baseline AUC (low; i.e. proportion of
the tumor with ADC values < 25th percentile of
the ADC histogram) and greater-than median
AUC-low increase, reported a reduced OS (haz-
ard ratio (HR) = 3.67, 95% confidence interval
(CI)=1.2310.9; p=0.012 and HR =3.72,95%CI
=0.98-14.21; p=0.038, respectively), indicating
that DWI-MRI can be a possible biomarker for
OS_106

Boos et al.197 evaluated median versus mean atten-
uation gathered from histograms of 19 RCC
patients receiving Sunitinib or Sorafenib response
assessed by CT scans. Authors found that distri-
bution curves correlated themselves with out-
comes (RECIST criteria were employed); lesions
with —44 Hus, had a partial tumor response while
those greater than —41 Hus, reported tumor
progression.35

The study by Goh eral.l98 aimed to evaluate
tumor textures on CT images correlation with
PFS in 39 patients with mRCC - different sub-
types —who received multiple TKIs (i.e. Sunitinib,
Cedirinib, Pazopanib, or Regorafenib). By ana-
lyzing 87 metastatic lesions prior and after ther-
apy, authors have found a lower texture entropy
and higher uniformity after immunotherapy.
Texture uniformity has been shown to be an inde-
pendent predictor of progression (p=0.005).
According to these data, authors suggested that
tumor heterogeneity could have the potential to
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Table 6. Radiomics in ongoing trials investigating kidney lesions.

NCT number and topic Status and no. Intervention Outcome

of patients
NCT04271254 - Recruiting PET/MRI Aims to establish the role of PET and MRI to define
PET/MR characterization of - 17 the molecular subtypes of ccRCC. The imaging
RCC12 features and the fraction of tumor cores will be

analyzed?

NCT03996850 - Recruiting 99mTc-sestamibi To evaluate the role of technetium 99m sestamibi
SPECT/CT for the - 100 SPECT/CT SPECT/CT on patients management
characterization of renal
masses'!?
NCT04295174 - Recruitment  Fluorodeoxyglucose To evaluate fluorodeoxyglucose PET/CT in staging
KIDSTAGE- Staging of kidney completed PET/CT of secondary determination from renal neoplasia
cancer using dual time PET/CT - 70 and to investigate the role of cfDNA for follow-up
and other biomarkers' of renal cancer patients
NCT03470285 - Recruiting mpMRI To assess diagnostic accuracy of mpMRI
Multiparametric MRI for - 500
diagnosing small renal tumors
(IRMKO1])115
NCT02526511 - Recruiting Perfusion MRI The diagnostic ability of perfusion MRI to predict
Perfusion magnetic resonance - 50 cancerous versus benign kidney confined lesions
imaging in diagnosing patients
with kidney tumors'1é
NCT03821376 - Recruiting CEUS To correlate CEUS findings with the Fuhrman
Correlation of renal mass - 40 grade of RCC

pathologic grade and CEUS™

ccRCC, clear cell RCC; CEUS, contrast-enhanced ultrasound; cfDNA, cell-free DNA; CT, computed tomography; FDG, ¢ fluoro-D-glucose; mpMRI,
multiparametric MRI; MRI, magnetic resonance imaging; PET, positron emission tomography; RCC, renal cell carcinoma; SPECT, single-photon

emission CT.

main ongoing trials exploring radiomics and its
ability to establish the stage and grade of RCC.

Comparison of Al algorithms used in

radiomics studies

Al algorithms are defined as mathematical mod-
els of computers that allow the hardware to learn
and work independently.!!® The ML algorithms
are classified into four major categories: super-
vised, unsupervised, semi-supervised, and rein-
forcement learning.!!® Supervised learning uses
labeled data and collection training data to
accomplish a task.!?0 Decision tree, random for-
est, SVM, naive Bayes, linear regression, and
logistic regression are most frequently used in
medical application area.!'® Unsupervised learn-
ing performs clustering, which means they sort
the unlabeled data points into pre-defined clus-
ters. The data point has to belong to one cluster
with no overlap. There can be more than one data

point in any given cluster, but a data point cannot
belong to more than one cluster, without human
intervention.!1%121  K-means clustering and
Gaussian mixture model are the most common
employed learning methods that uses unlabeled
data to develop models and to extract generative
features, groupings in results, and exploratory
purposes.!19-121 Both supervised and unsuper-
vised algorithms, such as K-nearest neighbor,
neural networks, and reinforcement learning
algorithms are being used in the evaluation of
medical images. In this study, the identified arti-
clesused supervised ML algorithms. Furthermore,
we will summarize the results and comparison
derived from these studies. Some studies did not
use any ML algorithms to analyze the variables
obtained.o%7177-79,105-108 SV Mg are identified as
the most used algorithms used for classification in
the analyzed studies.3%36:42:46:47,51,55,66,74 \¥hen
trained, the learning process searches to differen-
tiate between two data sets (for example, benign
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from malignant kidney tumors or to differentiate
between certain tumor types and some of them to
predict gene mutation or response to therapy).
The data used to train and learn SVMs are not
entirely used for this purpose. Just the closest data
between two support vectors, which makes it a
linear algorithm, that is useful when the two data
sets are clearly separated. When data are per-
turbed, the performance is reduced.!??123 The
latest developed Al algorithms are artificial neural
networks (ANNs) that modulate the human brain
functions.!24* ANNs were developed and used in
several renal radiomics studies for the differentia-
tion of chRCC and oncocytomas® and with
adaptive boosting for differentiating non-cc-
RCCs from cc-RCCs.’* ANNs have artificial
nodes, in layers that can have different transfer
functions. The performance is good when data
are of great quantity, as in real life and have the
ability to identify and model complex relationship
among data. The drawbacks are represented by
the training that results in relative minimum and
not absolute minimum of the error function and
the overfitting of data because it lacks the ability
to generalize data (it is relatively easy to observe
their effect when the performance of training and
test data sets starts to split in opposite direc-
tions).125 Two studies used ANNSs%%74 achieving
best results in AUC along with SVMs, and two
used CNNs%2:75 having the advantage of not using
hand-crafted features from experts. RFs algo-
rithms combine predictive data of decision trees
(forests) in one model. Each decision tree learns
from data that are chosen randomly and calcu-
lates the average of the predictions as the final
result.126 RF has advantage of dealing with non-
linear data and can reduce the variables space to
emphasize the value of each feature.!?” It has
been used in vast number of studies that ana-
lyzed radiomics and kidney tumors. RFs obtained
the best AUC in the articles published on radi-
omics and kidney lesions.32-3%:38 [Lasso regression
(least absolute shrinkage and selection operator
regression) is one of the algorithm models that
modify and push regression coefficients to the
nil value and improves the interpretability and
can select important predictors for the studied
pathology.128:129 In the renal lesions, radiomics
studies were used to reduce overfitting with
gOOd results.49‘53’55’70’”1

The advancements in the study of radiomics
and ML algorithms are huge, but still approxi-
mately 30% of studies used traditional algo-
rithms for comparison.>1:66,101,130-132 Therefore,

direct comparisons have not been published in
the literature so far. More data are required for
a more precise evaluation and generalization of
the best ML algorithms to be used in radiomics
research.

Current limitations and the future of Al and
radiomics

Generally, when researchers develop Al models
that can be applied to the analysis of radiomic fea-
tures extracted from images,!33 they must con-
sider the robustness and standardization of the
proposed model.13* We have found that a rather
high number of researches have been performed
using non-robust features.!3> Current imaging
methods are not standardized, whether we talk
about CT or MRI. All technical specifications of
using different CT phasing, contrast enhanced or
not, and also the classifiers used to discriminate
between different radiomics features applied to
analyze the gray zone levels of the studied renal
lesions (SVM, histograms, and others) are not
validated independently. Currently, the lack of
internal and external validation of the proposed
models cannot lead to the generalizability of these
methods.

The reason of dimension reduction in radiomics
is a method to increase the modeling perfor-
mance using the highly relevant, robust, or
uncorrelated features. This can lead to data per-
turbations!3¢ and contamination!?” and add bias
to validation purposes. ML classifiers can select
features during model development’ and limit
the biases of validation techniques. DL uses end-
to-end automatic pipelines and in radiomics, the
robustness and selection of features is not prop-
erly understood. The currently used ML models
did not make it clear as to which one of those are
better to be used or what combination of imaging
methods should be used (contrast enhanced or
not). In depth, analysis of the most appropriate
Al method to be applied (or combinations)
should be studied further. MRI seems to have
less ability to provide a good evidence for the use
in radiomics. The DL methods provide good evi-
dence that support further research for clinical
use especially with its combination with genom-
ics data (radiogenomics).3> Only a few studies
assessed the comparison between traditional bio-
markers and radiomics in terms of clinical valid-
ity.47,51,99,101,130,131 Radiomics is able to evaluate
large data sets, but the manual predefinition of
metrics limits its performance.
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Discussion

The novelty that radiomics can provide more
objective interpretation of images to limit the sub-
jective image interpretation of radiologists with
the aim of improving renal tumor diagnostic
accuracy'# is gathering more followers and this
research is keen to provide deeper insights on the
possible use and clinical practice translation.
There is an important percentage of renal lesions
(up to 30%)° that are benign at histopathology
result for patients that underwent partial or radi-
cal nephrectomy and this is one of the reasons
that radiomics is seen with the potential to
improve the preoperative detection of benign
tumors. Al and its subset ML is increasingly used
in radiomics analysis for assessing renal lesions.
Being a new area of research and development,
there are still a lot of challenges that limit the
implementation in current practice. When we
look at the studies that analyzed the role of radi-
omics in differentiating benign from cancerous
tissues, we see that all identified articles have ret-
rospective design, and another limitation is due to
the small number of images or patients included
in studies, that also still need manual delineation
and contouring of ROIs or VOIs, and having
semi-automated method of analysis. Also using
different scanners, protocols for obtaining images,
Al software for texture, shapes, and volumetric or
geometrical analysis of big data limits the possi-
bility of properly defining gray zone features. Al
through ML and DL may even go few steps fur-
ther and may help to automize the acquisition
and reporting of ultrasound, CT scans, and MR
images. The first step in the process of reducing
the workload and costs was kidneys volumetric
analysis, which, for instance, can now be com-
pletely performed by DL algorithms both on
ultrasound!3%13° and CT scans.!4%14! This can
improve the accuracy of images pre-processing
for subsequent radiomics features extraction.!4!
Moreover, accurate volumetric segmentation of
kidneys and tumor is pivotal when nephron spar-
ing surgery is planned in patients with kidney
cancer.14?

Models trained and validated indicate a roughly
big difference in AUCs obtained from these stud-
ies (from 0.64 to 0.97). These can lead to the
conclusion that by using different Al algorithms
and mathematical models for statistical analysis
(most used: RF, SVM, logistic regression, and
linear discriminant analysis) show that radiomics
still is an area of intense research and has limita-
tions in understanding the fundamentals of how

Al and ML can improve the outcomes of studies.
The comparison of the Al models with expert
radiologist need to be further improved in pro-
spective studies and we believe that future result
will show the ability, especially of DL algorithms,
to ease the clinical embrace of radiomics and Al
Al may be the key to provide fast, reliable reports
from all radiologists, reducing inter-reader varia-
bility, and to obtain improved reading accuracy.
Conclusions are indeed subjective due to the
radiologist’s interpretation and experience.l43.144
Toda er al.'¥> demonstrated that DL algorithms
in contrast-enhanced CT have high accuracy for
the diagnoses of SRMs with both internal and
external validation. Manual or semi-automated
segmentation have been used in most of the stud-
ies (either on CT or MRI platforms); Kart ez al.,!4®
using national databases of whole-body MR
imaging from United Kingdom and Germany,
developed and trained an automated segmenta-
tion DL model for abdominal organs; and Zhao
et al.'¥" clinically assessed assisted compressed
sensing technology in renal MRI imaging with an
Al algorithm that can adjust scanner settings to
improve image acquisition and automatically
adjust images to patients’ movements, and can
allow ultra-fast MR imaging acquisition.

Good accuracies have been reported>33 and one
author3® implemented a DL method to study a
variety of kidney lesions to mimic the real world
and clinical practice setting. ccRCC tumors have
a poorer prognosis than other types of renal
tumors, such as papillary RCC or chRCC.
Therefore, the preoperative differentiation of
related tumors using ML-based radiomics inter-
pretation could lead to differentiation of non-
ccRCCs from ccRCCs, and could achieve an
accuracy of up to 89.9%.3* Grading of tumors
assessed by radiomics and Al studies can be
affected by sarcomatoid features, but nonetheless
studies developed to differentiate this aspect with
poor accuracy of only 55%.132 Due to recent
advancements in genomics and radiomics, radiog-
enomics could improve the identification of
aggressive tumors and hence establishing tailored
treatment. The encountered genomic alterations
in ccRCC could be heavily studied due to the rar-
ity of mutations and the stability of sample and
radiomics and Al models.!48 Studies showed good
AUC:s, specificity, sensitivity and accuracy, espe-
cially for RF algorithm but in the evaluation of
biologic aggressiveness.?%:100 Many of the studies
were not externally validated, Al systems will
need further training and independent validation
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to limit the risk of low generalizability.!4%150 DL,
provides good evidence that support further
research for clinical use (ROI data set reported
ACC of 0.97 while RBR had an accuracy of
0.93).33 Despite the interesting results highlighted
in this review, it is worth noting that due to some
main issues — mostly related to the paucity of tri-
als, the lack of homogeneity of data, especially
with regard to ROI and end-points of these stud-
ies — evidence on the ability of radiomics in the
evaluation of response to TKIs is premature for
its integration into routine clinical practice at the
present time. Summarizing the evidence, we can
state that the imaging methods are not standard-
ized, either CT or MRI, including all specifica-
tions of using different CT phasing, contrast
enhanced or not, and also the classifiers used to
discriminate between different radiomics features
applied to analyze the gray zone levels of the stud-
ied renal lesions. The ML models will have to be
better trained with vast amounts of data, and
which is better to use will have to be determined
by future studies. In depth analysis of the most
appropriate Al method to be applied (or combi-
nations) should be studied further. MRI seems to
not have the ability to provide reliable evidence
for the use of radiomics.

Conclusion

Al evidence so far indicates a strong association
with improved sensitivity, specificity, accuracy
in detecting and differentiating between renal
lesions, and its algorithms that can adjust scan-
ner settings to improve image acquisition (espe-
cially the gray zone levels) and standardization
of scanner protocols between institutions will
improve preoperative differentiation between
benign, low-risk cancers and clinically signifi-
cant renal cancers. Radiomics holds the prem-
ises to enhance the diagnostic ability of imaging
tools to characterize renal lesions, but integra-
tion in clinical practice will have to be preceded
by standardized radiomics models and method-
ology, and future prospective external validation
of obtained data and their comparison with
existing traditional, well-validated tools, will
have to be performed prior to further integration
in current practice.
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