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Abstract
The aging intensity functions analyze the aging property quantitatively, in the sense that
the larger the aging intensity, the stronger the tendency of aging. They are useful tools
to describe reliability properties of distributions. In the literature, the aging intensity
functions have been studied in the univariate and bivariate case but without considering
the possibility of observing a dynamic history. In this paper, the concept of aging intensity
function is extended to the multivariate case by the use of the multivariate conditional
hazard rate functions. Some properties of those functions are studied and a focus on the
bivariate case is performed. Finally, the multivariate conditional aging intensity functions
are studied for the order dependent version of the time-homogeneous load-sharing model
and a study on the comparison among surviving components in a system is provided.
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1. Introduction
Let X be a non-negative random variable with probability density function (pdf) f ,

survival function F and hazard rate function r. The Aging Intensity (AI) function of X
is defined as

L(t) = r(t)
1
t

∫ t
0 r(x)dx

= −tf(t)
F (t) log F (t)

, (1.1)

i.e., L(t) is the ratio of the instantaneous failure rate r(t) to the average failure rate in
the interval (0, t). Some useful explanations are presented in Section 2 where some basic
references are presented. The survival function and the aging intensity function are strictly
related each other, see [18] for details.

In the literature, the aging intensity functions have been mainly studied for univariate
distributions, also with reference to inverse distributions [11]. Furthermore, they have been
generalized in order to obtain some characterization results [2, 19]. Recently, the concept
of aging intensity function has been extended to bivariate, absolutely continuous and
discrete, distributions [20] without taking into consideration the possibility of conditioning
on a dynamic observed hystory. The study of aging intensity functions for multivariate
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distributions is still an open issue. In this paper, we try to fill this gap by providing
definitions of multivariate conditional aging intensity functions and studying some of their
properties. As well as the definition of aging intensity function is based on the hazard
rate function, the definition of the multivariate conditional aging intensity functions will
be based on the multivariate conditional hazard rate functions whose definition is recalled
below.

Let X1, . . . , Xn be non-negative random variables with an absolutely continuous joint
distribution. Such an assumption will be fixed along the paper. For a fixed index j ∈
[n] = {1, . . . , n} and i1, . . . , ik ∈ [n] with j /∈ I = {i1, . . . , ik}, and an ordered sequence 0 ≤
t1 ≤ · · · ≤ tk, the multivariate conditional hazard rate function λj(t|i1, . . . , ik; t1, . . . , tk)
is defined as follows:

λj(t|i1, . . . , ik; t1, . . . , tk) = lim
∆t→0+

1
∆t

P
(

Xj ≤ t + ∆t

∣∣∣∣Xi1 = t1, . . . , Xik
= tk, min

h/∈I
Xh > t

)
.

Furthermore, we use the notation

λj(t|∅) = lim
∆t→0+

1
∆t

P
(

Xj ≤ t + ∆t

∣∣∣∣∣min
h∈[n]

Xh > t

)

= lim
∆t→0+

1
∆t

P (Xj ≤ t + ∆t |X1:n > t) .

For further details about multivariate conditional hazard rate functions one may refer to
[14,15]. See also the reviews presented in the papers [15,16].

Based on the definition of multivariate conditional hazard rate functions, here we in-
troduce the multivariate conditional aging intensity functions. We observe that those
functions will depend on the dynamic history, observed up to the calendar time t, for the
random vector (X1, . . . , Xn). In particular it is defined only for the components surviving
at t and it depends on the failure times of the components which have failed before t (see
Definition 3.1). The given definition entails that the multivariate conditional aging inten-
sity functions establish the tendency to aging of random variables and allow us to make
comparisons among surviving components at a fixed time. Moreover, it is possible to ob-
serve that the tendency of aging of a component proceeds continuously with the exception
of the failure times of different components when it may undergo a sudden variation due
to the stochastic dependence of components. Hence, it is of great interest to study the
continuity of multivariate conditional aging intensity functions.

The structure of the paper is described as follows. An overview of the aging intensity
functions in the univariate case is presented in Section 2. The definition of the multi-
variate conditional aging intensity functions is given in Section 3 in which some examples
and properties are presented and a study on the continuity is provided. In Section 4,
a focus on the bivariate case with formulas based on joint survival and density func-
tions is given and a study related to Gumbel’s type I bivariate exponential distribution
is performed. The study of aging intensity for a well-known multivariate model, known
as time-homogeneous load-sharing one, is presented in Section 5 together with examples
of application of multivariate conditional aging intensity functions to make comparisons
among random variables. Finally, in Section 6 conclusions are given.

2. Aging intensity functions
The notion of aging intensity (AI) function has been introduced in [6] as the ratio of

instantaneous failure rate and a baseline failure rate, as recalled in (1.1). The evaluation of
the AI function for some well known models is presented in [6] where it is also introduced
the notion of average aging intensity in order to study models characterized by quasi-
constant failure rate. Some properties of AI functions are presented in [10] where, in
particular, a new stochastic order (aging intensity order) based on the AI functions is
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defined. More precisely, based on the fact that the larger the aging intensity, the stronger
the tendency to aging, a random variable X is said to be smaller than another random
variable Y in the AI order, denoted by X ≤AI Y , if LX(t) ≥ LY (t), for all t > 0. As
mentioned above, the failure rate function, or the survival function, uniquely determines
the AI function but not conversely. In fact, the AI function of a non-negative random
variable determines a family of survival functions through the relation

F (t) = exp
[
log k exp

(∫ t

a

L(x)
x

dx

)]
, t ∈ (0, +∞),

where k = F (a) for some arbitrary chosen a ∈ (0, +∞), see [18] for more details and for
the proof of this result. There are several families of distributions in which the parameter
k reduces to be one of the model. For instance, if X follows the Weibull distribution,
X ∼ W2(α, λ), with survival function F (t) = exp (−λtα), t > 0, then the AI function
is constant and expressed as L(t) = α. Then, L(t) = α determines the subfamily of
the family of the Weibull distributions with fixed parameter α and varying parameter
λ > 0. Based on these considerations, it is possible to use the shape of an estimated aging
intensity function in order to discover the underlying distribution of some data. A survey
of characterization results based on AI functions for different types of Weibull distributions
is presented in [5].

Recently, the study of AI functions has been extended to other different fields. In fact,
there has been a great interest on the study of quantile function. Then, a quantile-based
aging intensity function is introduced in [17] in which some of its properties are presented
and some stochastic comparisons of random variables are performed by using this measure.
Furthermore, the problem of the local linear estimation of the conditional aging intensity
function when the variable of interest is subject to random right-censored is analyzed in
[8].

The study of aging intensity functions has been extended to some simply systems by
preserving the assumption of independence. In [1] the authors have proved that if X is the
lifetime of a series system formed by n independent components, then the aging intensity
function of X satisfy

min
1≤i≤n

LXi(x) ≤ LX(x) ≤ max
1≤i≤n

LXi(x),

where LXi(·) is the AI function of the i-th component. About parallel systems, they
proved that if X and Y are the lifetimes of parallel systems with n and m independent and
identically distributed components, then for n > m, X ≤AI Y . However, the possibility
of considering a mode of dependence among components is not yet foreseen and, in this
perspective, the necessity of defining a more general form of aging intensity functions
emerges.

3. Multivariate conditional aging intensity functions
Definition 3.1. Let (X1, . . . , Xn) be a random vector whose components are non-negative
random variables with an absolutely continuous joint distribution. For an ordered sequence
h1, . . . , hj , I = {h1, . . . , hk} ⊂ {1, . . . , n}, k = |I|, the Multivariate Conditional Aging
Intensity (MCAI) function is defined as

Lj(t|h1, . . . , hk; t1, . . . , tk) = λj(t|h1, . . . , hk; t1, . . . , tk)
1
t

∑k
i=0

∫ ti+1
ti

λj(x|h1, . . . , hi; t1, . . . , ti)dx
, (3.1)

where 0 ≡ t0 < t1 < t2 < · · · < tk < tk+1 ≡ t, j /∈ I and minl /∈I Xl > t. In the case in
which I = ∅, the MCAI fucntion can be expressed as

Lj(t|∅) = λj(t|∅)
1
t

∫ t
0 λj(x|∅)dx

. (3.2)
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Remark 3.2. If X1, . . . , Xn are independent, then MCAI functions reduce to the classical
aging intensity functions since in this case the multivariate conditional hazard rates are
equal to the hazard rates independently of I and the order of its elements. In fact,

λj(t|i1, . . . , ik; t1, . . . , tk) = lim
∆t→0+

1
∆t

P
(

Xj ≤ t + ∆t

∣∣∣∣Xi1 = t1, . . . , Xik
= tk, min

h/∈I
Xh > t

)
= lim

∆t→0+

1
∆t

P (Xj ≤ t + ∆t |Xj > t ) = rj(t).

Then, from (3.1), we get

Lj(t|i1, . . . , ik; t1, . . . , tk) = rj(t)
1
t

∑k
i=0

∫ ti+1
ti

rj(x)dx
= rj(t)

1
t

∫ t
0 rj(x)dx

= Lj(t).

In a similar manner, we get Lj(t|∅) = Lj(t).

Remark 3.3. It is of interest to consider the comparison between two models with pro-
portional multivariate conditional hazard rate functions. In fact, this assumption brings
to models which preserve the monotonicity properties of a fixed hazard rate function. This
circumstance can be interpreted as a generalization of the classical proportional hazard
rate model introduced in [3] about the univariate case and it can be formalized as follows.
Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random vectors. If there exists a
constant a > 0 such that λ

(Y)
j (t|i1, . . . , i|I|; t1, . . . , t|I|) = aλ

(X)
j (t|i1, . . . , i|I|; t1, . . . , t|I|) for

all 0 < t1 < · · · < t|I| < t, j /∈ I = {i1, . . . , i|I|} ⊂ {1, . . . , n}, then

L
(X)
j (t|i1, . . . , i|I|; t1, . . . , t|I|) = L

(Y)
j (t|i1, . . . , i|I|; t1, . . . , t|I|).

In the following, we study the continuity of the MCAI functions associated to a fixed
component. The critical points are the ones in which the other components fail. In fact, if
we consider a time between two consecutive failures, the expression of the MCAI function
is given in (3.1) without changing the parameters and then its continuity is guaranteed
by the continuity of multivariate conditional hazard rate functions that is assured under
the assumption of absolutely continuous joint distribution. Moreover, the denominator of
MCAI function is continuous with respect to t, and a discontinuity of the function can be
caused only by a jump in the numerator. In the following proposition, an expression for
the size of the jump discontinuity is given.

Proposition 3.4. Let (X1, . . . , Xn) be a random vector with non-negative components
and I = {i1, . . . , ik} ⊂ {1, . . . , n}. Let t1, . . . , tk be the failure times of the components
i1, . . . , ik, respectively. Then, the size of the jump discontinuity at tk of the MCAI function
of component j /∈ I, is given by

Lj(tk|i1, . . . , ik; t1, . . . , tk) − Lj(tk|i1, . . . , ik−1; t1, . . . , tk−1)

= λj(tk|i1, . . . , ik; t1, . . . , tk) − λj(i1, . . . , ik−1; t1, . . . , tk−1)
1
tk

∑k−1
r=0

∫ tr+1
tr

λj(x|h1, . . . , hr; t1, . . . , tr)dx
. (3.3)

Proof. From the definition of MCAI functions, we have

Lj(tk|i1, . . . , ik; t1, . . . , tk) − Lj(tk|i1, . . . , ik−1; t1, . . . , tk−1)

= λj(tk|i1, . . . , ik; t1, . . . , tk)
1
tk

∑k
r=0

∫ tr+1
tr

λj(x|h1, . . . , hr; t1, . . . , tr)dx

− λj(i1, . . . , ik−1; t1, . . . , tk−1)
1
tk

∑k−1
r=0

∫ tr+1
tr

λj(x|h1, . . . , hr; t1, . . . , tr)dx
, (3.4)

hence, by observing that tk+1 is the point of evaluation of the MCAI function and then it
is equal to tk, the ratios in (3.4) have a common denominator and the thesis follows. �
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From the above proposition, we can conclude that the jumps of the MCAI functions, i.e.,
changes in the aging tendency, may occur only at the failure times of other components.
The failure of a component may then produce a shock for a different component. However,
not necessarily a component is affected by the failure of another one. For instance, if the
components are independent the continuity of the MCAI functions is guaranteed also
under failures. Hence, by using Proposition 3.4, we have the following corollary about the
continuity of the MCAI functions.
Corollary 3.5. Let (X1, . . . , Xn) be a random vector with non-negative components and
I = {i1, . . . , ik} ⊂ {1, . . . , n}. Then, for j /∈ I,

lim
t→t+

k

Lj(t|i1, . . . , ik; t1, . . . , tk) = lim
t→t−

k

Lj(t|i1, . . . , ik−1; t1, . . . , tk−1)

if, and only if
λj(tk|i1, . . . , ik; t1, . . . , tk) = λj(tk|i1, . . . , ik−1; t1, . . . , tk−1).

Moreover, from the expression given in (3.3), it follows that the sign of the jump is deter-
mined by the difference λj(tk|i1, . . . , ik; t1, . . . , tk) − λj(i1, . . . , ik−1; t1, . . . , tk−1), since the
denominator in (3.3) is positive. Hence, the jump is upward if λj(tk|i1, . . . , ik; t1, . . . , tk) >
λj(i1, . . . , ik−1; t1, . . . , tk−1), i.e., if the failure of the component ik at time tk increases the
hazard of component j, while it is downward if λj(tk|i1, . . . , ik; t1, . . . , tk) < λj(i1, . . . , ik−1;
t1, . . . , tk−1).

4. The bivariate case
In the applications, there are several situations in which a model can be described

by two random variables with a certain mode of dependence. Hence, it is of interest to
specialize the concept of MCAI functions for bivariate distributions. In the literature, it
has been already presented a definition of the bivariate aging intensity function [20]. We
remark that this definition is different from the one considered in this paper since it is
based on the failure rates gradient defined in [7]. For a random vector (X1, X2) with joint
survival function F (·, ·), the failure rates gradient is defined as (r1(t1, t2), r2(t1, t2)) where

r1(t1, t2) = − ∂

∂t1
log F (t1, t2), r2(t1, t2) = − ∂

∂t2
log F (t1, t2). (4.1)

Hence, the existent bivariate aging intensity functions are defined as

L1(t1, t2) = r1(t1, t2)
1
t1

∫ t1
0 r1(x, t2)dx

, L2(t1, t2) = r2(t1, t2)
1
t2

∫ t2
0 r1(t1, x)dx

. (4.2)

As one can see, the above definition does not take in account the possibility of observing
a dynamic history. In the following, we extend the concept of bivariate aging intensity
by considering stochastic dependence and the possibility of observing a dynamic history.
For a random vector of dimension two, (X1, X2), we have to consider four aging intensity
functions depending on how many variables and which ones assume a value greater than
t. If X1 > t and X2 = t2 < t then we consider

L1(t|2; t2) = tλ1(t|2; t2)∫ t2
0 λ1(x|∅)dx +

∫ t
t2

λ1(x|2; t2)dx
,

if X2 > t and X1 = t1 < t we have

L2(t|1; t1) = tλ2(t|1; t1)∫ t1
0 λ2(x|∅)dx +

∫ t
t1

λ2(x|1; t1)dx
,

and if X1, X2 > t we consider

Lj(t|∅) = tλj(t|∅)∫ t
0 λj(x|∅)dx

, j = 1, 2.
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In the case in which t1 ≥ t2, the joint probability density function f(t1, t2) can be
expressed in terms of the multivariate conditional hazard rate functions as

f(t1, t2) = λ2(t2|∅)λ1(t1|2; t2) exp
[
−
∫ t2

0
(λ1(u|∅) + λ2(u|∅)) du −

∫ t1

t2
λ1(u|2; t2)du

]
.

(4.3)
From (4.3) we get

log
(

f(t1, t2)
λ2(t2|∅)λ1(t1|2; t2)

)
= −

∫ t2

0
(λ1(u|∅) + λ2(u|∅)) du −

∫ t1

t2
λ1(u|2; t2)du,

and then∫ t2

0
λ1(u|∅)du +

∫ t1

t2
λ1(u|2; t2)du = −

[∫ t2

0
λ2(u|∅)du + log

(
f(t1, t2)

λ2(t2|∅)λ1(t1|2; t2)

)]
,

where we can observe that the LHS is the denominator of L1(t|2; t2). Hence, we can
express L1(t|2; t2) in a different way as

L1(t|2; t2) = −tλ1(t|2; t2)∫ t2
0 λ2(u|∅)du + log

(
f(t,t2)

λ2(t2|∅)λ1(t|2;t2)

) . (4.4)

Then, by taking into account the following relations between the multivariate conditional
hazard rate functions and the joint density function and the joint survival function,

λ1(t|∅) =
− ∂

∂t1
F (t1, t)|t1=t

F (t, t)
, t ≥ 0,

λ2(t|∅) =
− ∂

∂t2
F (t, t2)|t2=t

F (t, t)
, t ≥ 0,

λ1(t|2; t2) = f(t, t2)
− ∂

∂t2
F (t, t2)

, t > t2 ≥ 0,

λ2(t|1; t1) = f(t1, t)
− ∂

∂t1
F (t1, t)

, t > t1 ≥ 0.

the MCAI function can be written as

L1(t|2; t2) =

tf(t,t2)
∂

∂t2
F (t,t2)

∫ t2
0

− ∂
∂t2

F (u,t2)
∣∣∣
t2=u

F (u,u) du + log
(

F (t2, t2)
∂

∂t2
F (t,t2)

∂
∂v

F (t2,v)|
v=t2

) . (4.5)

About L1(t|∅) we can get in a similar way the following expression:

L1(t|∅) =
−t

∂
∂t1

F (t1,t)
∣∣∣
t1=t

F (t,t)

∫ t
0

− ∂
∂t1

F (t1,u)
∣∣∣
t1=u

F (u,u) du

. (4.6)

The expressions in (4.5)–(4.6) are useful in the sense that they allow to obtain expressions
for MCAI functions without involving the multivariate conditional hazard rate functions
which may be of difficult evaluation and they are based only on joint probability density
and survival functions. In the following subsection, the MCAI functions are obtained for
a family of bivariate distributions by applying (4.5)–(4.6).
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Figure 1. Plot of L1(t|∅) and L1(t|2; 1) with θ = 0.25 (blue), 1/3 (red), 0.5
(yellow), 0.75 (violet) and 1 (green).

4.1. Gumbel’s type I bivariate exponential distribution
In this subsection, the MCAI functions of a well-known bivariate distribution, the Gum-

bel’s type I bivariate exponential distribution, are obtained. This kind of distribution has
attracted the interest of researchers since it has a wide range of applications including
competing risks, extreme values, failure times, regional analyses of precipitation, and re-
liability [9].

Let us consider the Gumbel’s type I bivariate exponential distribution with parameter
θ ∈ [0, 1]

F (x, y) = 1 − e−x − e−y + e−(x+y+θxy), x, y ≥ 0,

whose joint density and survival function are respectively expressed as

f(x, y) = e−(x+y+θxy) [(1 + θx)(1 + θy) − θ] ,

F (x, y) = e−(x+y+θxy).

About the failure rates gradient (4.1), we have

r1(x, y) = 1 + θy, r2(x, y) = 1 + θx,

and then from (4.2) we obtain

L1(x, y) = 1, L2(x, y) = 1. (4.7)

Now, we aim to compute the bivariate aging intensity functions defined here. We use
(4.5) to evaluate the aging intensity function L1(t|2; t2) and we get

L1(t|2; t2) = −t [(1 + θt)(1 + θt2) − θ]

(1 + θt)
(

θt2
2

2 − t − θtt2 + log
(

1+θt
1+θt2

)) . (4.8)

If θ = 0 we are in the independent case and (4.8) reduces to L1(t|2; t2) = 1 as the aging
intensity function of the exponential distribution is equal to 1.

By using (4.6) we can express L1(t|∅) as

L1(t|∅) = 2(1 + θt)
2 + θt

. (4.9)

In Figure 1 we plot the aging intensity functions related to component 1 for different
choices of θ. For L1(t|2; t2) we choose the value t2 = 1 and so the function is plotted for
t ≥ 1.
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The size of the jump at time t2 for the MCAI function of component 1 is given by

L1(t2|2; t2) − L1(t2|∅) = −t2
[
(1 + θt2)2 − θ

]
(1 + θt2)

(
θt2

2
2 − t2 − θt2

2

) − 2(1 + θt2)
2 + θt2

= 2[(1 + θt2)2 − θ]
(1 + θt2)(2 + θt2)

− 2(1 + θt2)
2 + θt2

= −2θ

(1 + θt2)(2 + θt2)
,

i.e., it is a negative jump with the exception of the case θ = 0 in which there are indepen-
dence and the continuity of the MCAI function.

5. Aging intensities for time-homogeneous load-sharing models
In this section, we focus attention on a special class of models known as time-homogeneous

load-sharing (THLS) models. First, we consider models for which the multivariate condi-
tional hazard rate functions does not depend on the times t1, . . . , tk so that the instanta-
neous risk of a given unit only depends on the current time and on the set of surviving ones.
This class of models is known as load-sharing models. The random vector (X1, . . . , Xn) is
distributed according to a load-sharing model if, for I ⊂ [n], k = |I| ≥ 1 and j /∈ I, there
exist functions µj(t|I) such that, for all 0 ≤ t1 ≤ · · · ≤ tk,

λj(t|i1, . . . , ik; t1, . . . , tk) = µj(t|I). (5.1)
Moreover, it is possible to consider models in which the functions µj(t|I) depend on the
order of the elements of I. This different version of the load-sharing model was recently
studied in [4] and named order dependent load-sharing model (ODLS). We remark that
load-sharing models can be seen as a particular case of ODLS models. Furthermore, a load-
sharing model is said to be time-homogeneous if the multivariate conditional hazard rate
functions do not even depend on the time t. Hence, (X1, . . . , Xn) is distributed according
to a THLS model if there exist non-negative numbers µj(I) and µj(∅) such that, for all
t ≥ 0,

µj(t|I) = µj(I), λj(t|∅) = µj(∅). (5.2)
For further details and related properties of load-sharing and THLS models one may refer
to [12, 13]. Of course, it is possible to introduce the ordered version of THLS models. In
this case, we have an order dependent time-homogeneous load-sharing model (ODTHLS)
and the parameters µj(I) are expressed as µj(i1, . . . , ik).

Let (X1, . . . , Xn) be distributed according to an ODTHLS model, then λj(t|i1, . . . , ik; t1,
. . . , tk) = µj(i1, . . . , ik) and the MCAI functions can be expressed as
Lj(t|i1, . . . , ik; t1, . . . , tk) (5.3)

= tµj(i1, . . . , ik)∑k
i=0

∫ ti+1
ti

µj(h1, . . . , hi)dx

= tµj(i1, . . . , ik)∑k
i=0(ti+1 − ti)µj(h1, . . . , hi)

= tµj(i1, . . . , ik)
t1µj(∅) + (t2 − t1)µj(i1) + · · · + (tk − tk−1)µj(i1, . . . , ik−1) + (t − tk)µj(i1, . . . , ik)

In the case in which X1:n > t we have to consider Lj(t|∅) that is given by

Lj(t|∅) = µj(∅)
1
t tµj(∅)

= 1. (5.4)

Proposition 5.1. Lj(t|∅) = 1 for all t > 0, j = 1, . . . , n if, and only if, λj(t|∅) is constant
for all j with respect to t.
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Proof. If λj(t|∅) is constant for all j then we have shown in (5.4) that the MCAI functions
related to the empty set are constant and equal to 1. Conversely, let us suppose Lj(t|∅) = 1
for all t > 0, j = 1, . . . , n. Then, from (3.2) we have

λj(t|∅)
1
t

∫ t
0 λj(x|∅)dx

= 1,

and then

λj(t|∅) = 1
t

∫ t

0
λj(x|∅)dx.

By the mean value theorem for definite integrals we get

λj(t|∅) = λj(t̃|∅),

where t̃ ∈ (0, t). Hence, λj(t|∅) can not be strictly monotone in an arbitrary small interval
and then it has to be constant. �

In the following theorem, a characterization of ODTHLS models is given in terms of
MCAI functions. In particular, in this case the MCAI functions are constant and equal to
1 or hyperbolas.

Theorem 5.2. Let (X1, . . . , Xn) be a random vector with non-negative components. Then,
(X1, . . . , Xn) is distributed according to an ODTHLS model if, and only if, the MCAI
functions can be expressed as

Lj(t|∅) = 1,

Lj(t|i1, . . . , ik; t1, . . . , tk) = t

(t − tk) + C(i1, . . . , ik; t1, . . . , tk)
, (5.5)

where C(i1, . . . , ik; t1, . . . , tk) = t1µj(∅)+(t2−t1)µj(i1)+···+(tk−tk−1)µj(i1,...,ik−1)
µj(i1,...,ik) > 0 is constant

with respect to t.

Proof. If (X1, . . . , Xn) is distributed according to an ODTHLS model, then Lj(t|∅) = 1
and

Lj(t|i1, . . . , i|I|; t1, . . . , t|I|)

= tµj(i1, . . . , ik)
t1µj(∅) + (t2 − t1)µj(i1) + · · · + (tk − tk−1)µj(i1, . . . , ik−1) + (t − tk)µj(i1, . . . , ik)

= t

(t − tk) + t1µj(∅)+(t2−t1)µj(i1)+···+(tk−tk−1)µj(i1,...,ik−1)
µj(i1,...,ik)

,

and then, by letting C(i1, . . . , ik; t1, . . . , tk) = t1µj(∅)+(t2−t1)µj(i1)+···+(tk−tk−1)µj(i1,...,ik−1)
µj(i1,...,ik)

we get the result.
Conversely, by Proposition 5.1, if Lj(t|∅) = 1 for all t > 0, j = 1, . . . , n, then λj(t|∅) =

µj(∅) is constant for all j. Let us now consider the case in which |I| = 1. We have

Lj(t|i; t1) = tλj(t|i; t1)∫ t1
0 λj(x|∅)dx +

∫ t
t1

λj(x|i; t1)dx

= tλj(t|i; t1)
t1µj(∅) +

∫ t
t1

λj(x|i; t1)dx
,

and then by the assumptions
tλj(t|i; t1)

t1µj(∅) +
∫ t

t1
λj(x|i; t1)dx

= t

(t − t1) + C(i; t1)
. (5.6)
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From (5.6), we get

(t − t1)λj(t|i; t1) + C(i; t1)λj(t|i; t1) = t1µj(∅) +
∫ t

t1
λj(x|i; t1)dx, (5.7)

and, by differentiating both sides of (5.7) with respect to t, we obtain

λj(t|i; t1) + λ′
j(t|i; t1) + C(i; t1)λ′

j(t|i; t1) = λj(t|i; t1),

which is equivalent to
(1 + C(i; t1))λ′

j(t|i; t1) = 0. (5.8)
Since C(i; t1) > 0, in order to satisfy (5.8), λj(t|i; t1) needs to be constant, λj(t|i; t1)
= µj(i). Moreover, if in (5.7) we take the limit t → t+

1 we get

C(i; t1) = t1µj(∅)
µj(i)

.

By induction, we can consider the case in which |I| > 1 and we obtain

tµj(i1, . . . , ik)
t1µj(∅) + (t2 − t1)µj(i1) + · · · + (tk − tk−1)µj(i1, . . . , ik−1) +

∫ t
tk

λj(x|i1, . . . , ik; t1, . . . , tk)dx

= t

(t − tk) + C(i1, . . . , ik; t1, . . . , tk)
.

By following the same steps of the case |I| = 1, we get that λj(t|i1, . . . , ik; t1, . . . , tk) needs
to be constant,

λj(t|i1, . . . , ik; t1, . . . , tk) = µj(i1, . . . , ik),

C(i1, . . . , ik; t1, . . . , tk) = t1µj(∅) + (t2 − t1)µj(i1) + · · · + (tk − tk−1)µj(i1, . . . , ik−1)
µj(i1, . . . , ik)

.

�

It is of interest to study what happens for the MCAI functions of surviving components
in the failure time of other ones. From Proposition 3.4, the sign of the size of the jump for
ODTHLS model is determined by the difference µj(i1, . . . , ik) − µj(i1, . . . , ik−1), and, in
particular, the continuity of the MCAI function is given by the condition µj(i1, . . . , ik) =
µj(i1, . . . , ik−1).

5.1. Comparisons among surviving components
In this subsection, we show an application of MCAI functions. For the sake of simplic-

ity, we consider coherent systems whose lifetimes are distributed according to ODTHLS
models. We use the MCAI functions to make comparisons among surviving components
and to discover which component ages faster than the others.

Let us consider a coherent system S formed by three components X1, X2, X3 and whose
lifetime TS is described as

TS = min{X1, max{X2, X3}}.

1

2

3
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Let us suppose that the component 2 failed at time t1 and that at time t > t1 the compo-
nents 1 and 3 are still working, i.e., the system is still working. Moreover, (X1, X2, X3) is
distributed according to an ODTHLS model and the parameters of interest are expressed
as

µ1(∅) = 2, µ3(∅) = 1,

µ1(2) = 2, µ3(2) = 2.

The aging intensity functions of components 1 and 3 at time t are expressed as

L1(t|2; t1) = 2
1
t [2t1 + 2(t − t1)]

= 1,

L3(t|2; t1) = 2
1
t [t1 + 2(t − t1)]

= 2t

2t − t1
.

Then, we have

L3(t|2; t1) > L1(t|2; t1) ⇔ 2t

2t − t1
> 1 ⇔ 2t > 2t − t1 ⇔ t1 > 0,

and so the component 3 suffers more than 1 the failure of component 2 by aging faster.
Moreover, we can observe that the MCAI function of component 1 is constantly equal
to 1 and hence continuous also at time t1, in fact µ1(∅) = µ1(2). Furthermore, since
µ3(2) > µ3(∅), we expect an upward jump for the MCAI function of component 3 at time
t1, that is

L3(t1|2; t1) − L3(t1|∅) = 2t1
2t1 − t1

− 1 = 1.

We can do comparisons among surviving components without fixing the values of pa-
rameters. In this case, about the aging intensities, we have

L1(t|2; t1) = tµ1(2)
µ1(∅)t1 + µ1(2)(t − t1)

,

L3(t|2; t1) = tµ3(2)
µ3(∅)t1 + µ3(2)(t − t1)

.

Then, we can compare the aging intensities as

L3(t|2; t1) > L1(t|2; t1) ⇔ tµ3(2)
µ3(∅)t1 + µ3(2)(t − t1)

>
tµ1(2)

µ1(∅)t1 + µ1(2)(t − t1)

⇔ µ3(2)
µ3(∅)t1 + µ3(2)(t − t1)

>
µ1(2)

µ1(∅)t1 + µ1(2)(t − t1)

⇔ µ3(∅)t1 + µ3(2)(t − t1)
µ3(2)

<
µ1(∅)t1 + µ1(2)(t − t1)

µ1(2)

⇔ µ3(∅)t1
µ3(2)

+ (t − t1) <
µ1(∅)t1
µ1(2)

+ (t − t1)

⇔ µ3(∅)
µ3(2)

<
µ1(∅)
µ1(2)

.

We can observe that the comparison is not dependent on t1 and t. We remark that, when
we compare the aging intensities of ODTHLS components the dependence of t is always
lost whereas if the number of failed components is greater than one, the times of failure
will be involved in the comparisons. In fact, from Equation (5.5), we can easily deduce
that the comparison is based on the value of C(i1, . . . , ik; t1, . . . , tk) which is a constant
with respect to t.
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Let us consider a coherent system S formed by four components X1, X2, X3, X4 and
whose lifetime TS is described as

TS = min{max{X1, X2}, max{X3, X4}}.

1

2

3

4

Let us suppose that the component 2 failed at time t1, the component 4 failed at time
t2 > t1 and that at time t > t2 the components 1 and 3 are still working, i.e., TS > t.
Moreover, (X1, X2, X3, X4) is distributed according to an ODTHLS model. The aging
intensity functions of components 1 and 3 at time t are expressed as

L1(t|2, 4; t1, t2) = tµ1(2, 4)
µ1(∅)t1 + µ1(2)(t2 − t1) + µ1(2, 4)(t − t2)

,

L3(t|2, 4; t1, t2) = tµ3(2, 4)
µ3(∅)t1 + µ3(2)(t2 − t1) + µ3(2, 4)(t − t2)

.

Then, we can compare the aging intensities as
L3(t|2, 4; t1, t2) > L1(t|2, 4; t1, t2)

⇔ µ3(2, 4)
µ3(∅)t1 + µ3(2)(t2 − t1) + µ3(2, 4)(t − t2)

>
µ1(2, 4)

µ1(∅)t1 + µ1(2)(t2 − t1) + µ1(2, 4)(t − t2)

⇔ t1
µ3(∅)

µ3(2, 4)
+ (t2 − t1) µ3(2)

µ3(2, 4)
< t1

µ1(∅)
µ1(2, 4)

+ (t2 − t1) µ1(2)
µ1(2, 4)

.

6. Conclusion
In this paper, the notion of multivariate conditional aging intensity (MCAI) function is

introduced by using the multivariate conditional hazard rate functions. Some properties of
MCAI functions are presented and an application to the load-sharing model is presented.
This new kind of aging intensity takes into account the dependency among random vari-
ables and then it will be useful in concrete applications which will be the subject of future
studies.
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