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Abstract 

This paper provides a new fast design method for robust industrial controllers via majorant systems 
in the frequency domain. The proposed methodology allows to establish several fast design techniques 
for a broad class of industrial controllers of plants with internal and/or external delays, parametric 
and/or structural uncertainties, and subject to disturbances, when an analytical model of the plant or 
data acquired from simple experimental tests are available. The provided design and control techniques 
are more general with respect to the Ziegler-Nichols ones and their numerous variants, which, in some 
cases, do not guarantee the control system stability. 

The used key idea consists in increasing the frequency response of the process to be controlled with 
the frequency response of a simpler system, also of order greater than one, with external delay, which 
allows designing, using simple formulas, controllers of PI, PID, PIDR, PI2, PI2D, PI2DR, PI2D2, 
and PI2D2R types. The designed controllers always guarantee stability margins larger than those of 
appropriate reference systems. Therefore, good performance of robustness of the stability and tracking 
precision of smooth references, with respect to parametric and/or structural uncertainties and/or smooth 
disturbances, are always guaranteed. 

The stated general methodology and various performance comparisons, also about the tracking pre- 
cision of references with bounded first or second derivative, are illustrated and validated in several case 
studies, experimentally too. 
© 2023 The Author(s). Published by Elsevier Inc. on behalf of The Franklin Institute. 
This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

h
0
a

E-mail address: laura.celentano@unina.it . 

ttps://doi.org/10.1016/j.jfranklin.2023.03.033 
016-0032/© 2023 The Author(s). Published by Elsevier Inc. on behalf of The Franklin Institute. This is an open 
ccess article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfranklin.2023.03.033&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jfranklin.2023.03.033
http://www.elsevier.com/locate/jfranklin
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:laura.celentano@unina.it
https://doi.org/10.1016/j.jfranklin.2023.03.033
http://creativecommons.org/licenses/by-nc-nd/4.0/


L. Celentano Journal of the Franklin Institute 360 (2023) 5689–5727 

1

 

t  

a
 

u  

p
 

g  

m  

[  

t  

c  

n  

o
 

u
 

t  

e  

d  

m  

t
 

i  

s  

a  

w  

a
 

o  

s  

o
 

c  

r  

a  

d  

P  

p
 

a  

p  

c
 

t  
. Introduction 

The notable diffusion of industrial proportional-integral-derivative (PID) controllers is due
o their low cost, good performance which they are able to guarantee for many plants, and
lso their ease of design. 

Indeed, it is well-known that in a large number of process control applications the most
sed controllers are of PID type, and, in several industrial cases, a large percentage is of
roportional-integral (PI) type [1 , 2 , 4-59] . 

The above considerations are the main reasons why, for almost a century, there have been
reat attention and considerable efforts to extend and improve the most commonly used tuning
ethods, which are mainly the Ziegler-Nichols (ZN) tuning rules [1] , Cohen-Coon methods

2] , the approach based on internal model control (IMC) [5 , 48] , and Tyreus and Luyben
echnique [11] , with the aim to overcome some criticisms, above all in cases where the
ontrolled system has not negligible delays [48 , 58 , 59] , uncertainties [29 , 38 , 40 , 46 , 50 , 51 , 54 , 56] ,
onlinearities [29 , 38 , 40 , 46 , 50 , 51 , 54 , 56] , and disturbances [49 , 51 , 54 , 56] , is multi-input multi-
utput (MIMO) [13 , 29 , 36 , 44 , 54 , 56] , or unstable [17 , 26 , 41 , 44] . 

Moreover, some tuning techniques based on fuzzy approaches [16 , 20 , 22 , 28 , 36 , 52] , and the
se of artificial neural networks have been proposed [29 , 57] , too. 

Recently, in [54] it has been proposed a unified approach via majorant systems in the
ime domain ( TMSs ), which allows one to easily design a family of robust, smooth and
ffective control laws, also simple to implement, of proportional - h order integral - k order
erivative (PIhDk) - type for broad classes of uncertain nonlinear MIMO systems, including
echatronic and transportation processes with ideal or real actuators and amplifies, subject

o bounded disturbances and measurement errors. 
In this paper, a new fast design method for robust industrial controllers via majorant systems

n the frequency domain ( MSs ) is proposed. The provided methodology allows to establish
everal fast design techniques for a broad class of industrial controllers of plants with internal
nd/or external delays, parametric and/or structural uncertainties, and subject to disturbances,
hen an analytical model of the plant or data acquired from simple experimental tests are

vailable. 
The proposed design and control techniques are more general with respect to the ZN

nes and their numerous variants, which, in some cases, do not guarantee the control system
tability (see Subsection 4.1 ), and consider as control system design specifications also the
nes related to the tracking of sufficiently smooth references. 

The used key idea consists in increasing the frequency response of the process to be
ontrolled, supposed asymptotically stable and with positive static gain, with the frequency
esponse of a simpler system (of order greater than one, too) with an external delay. This
llows designing, using simple formulas, controllers with a proportional action, a single or
ouble integral action, and a single or double derivative action (ideal or real), i.e., of PI, PID,
IDR, PI2, PI2D, PI2DR, PI2D2, and PI2D2R types, which allow gradually to improve the
erformance of the control system. 

The designed controllers always guarantee stability margins larger than those of appropri-
te reference systems. Therefore, good performance of robustness of the stability and tracking
recision of sufficiently smooth references, with respect to parametric and/or structural un-
ertainties and/or sufficiently smooth disturbances, are always guaranteed. 

If the considered process is not asymptotically stable, or the goal is to further improve
he dynamic performance of the control system, the design of the industrial controller can
5690 
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e made jointly with the one of a dynamic compensator with two degrees of freedom (see
3] and Remark 16 ). 

This paper also provides some methods to easily determine, theoretically or experimentally,
ood MSs , and approaches to estimate the maximum tracking error of a generic reference with
ounded first or second derivative, in presence of disturbances with bounded first or second
erivative, too. 

It is explicitly highlighted that, in the literature, there are no fast design techniques for
ontrollers of PIDR, PI2, PI2D, PI2DR, PI2D2, PI2D2R types, and the proposed control
ethod can be used also to easily design other controllers able to guarantee more stringent

erformance requirements. 
Finally, it is worth noting that the easiness of design, applying the provided techniques, is

ithin the reach of any engineer or technician in the information and industrial fields. 
The paper is organized as follows. In Section 2 , they are given the problem statement

nd useful preliminary results about the generalized gains to estimate the tracking error, the
etermination of appropriate MSs , the experimental determination of the frequency response
f a process, and the proposal of some reference control systems. 

In Section 3 , the main theorems, using the Nyquist criterion, are established about the
roposed fast design techniques for the robust controllers PI, PID, PIDR, PI2, PI2D, PI2DR,
I2D2, PI2D2R, providing some guidelines to easily design the given controllers and com-
arisons with the most commonly used tuning methods in the literature. 

Section 4 includes three groups of examples, which show the limitations of the most used
esign methods for industrial controllers available in the literature, their overcoming by the
roposed design method, and the effectiveness of the numerous industrial controllers that can
asily be designed with it. 

Finally, Section 5 outlines the main peculiarities and advantages of the provided results
nd presents the ongoing research. 

. Problem statement and preliminaries 

.1. Problem statement 

Consider a plant described by the following equations: 

˙  (t ) = A 1 (p) x(t ) + A 2 (p) x(t − τi ) + B(p) u(t − τu ) + E (p) d(t ) 

y(t ) = C(p) x(t − τy ) + D(p) d(t ) , (1)

here x ∈ R 

n is the state, u, y, d ∈ R are the input, the output, and a disturbance, respectively,
i , τu , τy ≥ 0 are the possible internal, input and output delays, respectively, p ∈ ℘ ⊂ R 

μ is the
ector of uncertain parameters, and A 1 , A 2 , B, E , C, D are matrices of appropriate dimensions.

emark 1. It is worth explicitly noting that the considered plants (1) are linear, time-invariant,
nd uncertain. Hence, the uncertain parameters p and also the delays τi , τu , τy are time-
nvariant. The class of the above systems is significant not only from a theoretical point of view
ut also from an engineering one. Indeed, many mechanical, electrical, electro-mechanical,
hermal, fluid dynamical, and medical systems can be modelled with systems of the type 

(p) ̇  x + M(p) x + N (p) u = 0 ⇒ ˙ x = − L 

−1 (p) M(p) x − L 

−1 (p) N (p) u = A (p) x + B(p) u, 

(2)
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Fig. 1. Control scheme of a process controlled with an industrial controller. 
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ith L(p) , M(p) , N (p) matrices linear with respect to some physical parameters p of its
omponents, which always present measurement errors and/or can change in the case of their
eplacement during a maintenance process. Moreover, the above mentioned systems often
ave constant delays, not always perfectly known, due to transportation phenomena and/or
emote monitoring and control devices. 

From (1), using the Laplace transform, with null initial conditions, it is 

Y (s) = P (s) U (s) + P d (s) D(s) 

P (s) = C 

(
sI − A 1 − A 2 e 

−sτi 
)−1 

Be −sτe , τe = τu + τy 

P d ( s) = C 

(
sI − A 1 − A 2 e 

−sτi 
)−1 

E e −sτy + D. (3)

The aim of this paper is to provide a general design method for the industrial controllers
(s) described by 

K p + 

K i 

s 
= 

K p s + K i 

s 
(P I ) 

K p + 

K i 

s 
+ K d s = 

K d s 2 + K p s + K i 

s 
(P I D) 

K p + 

K i 

s 
+ K d 

s 

s/N + 1 

= 

k d s 2 + k p s + k i 
s( s/N + 1) 

(P I DR) 

K p + 

K i1 

s 
+ 

K i2 

s 2 
= 

K p s 2 + K i1 s + K i2 

s 2 
(P I 2) 

K p + 

K i1 

s 
+ 

K i2 

s 2 
+ K d s = 

K d s 3 + K p s 2 + K i1 s + K i2 

s 2 
(P I 2D) 

K p + 

K i1 

s 
+ 

K i2 

s 2 
+ K d 

s 

s/N + 1 

= 

k d s 3 + k p s 2 + k i1 s + k i2 
s 2 ( s/N + 1) 

(P I 2DR) 

K p + 

K i1 

s 
+ 

K i2 

s 2 
+ K d1 s + K d2 s 

2 = 

K d2 s 4 + K d1 s 3 + K p s 2 + K i1 s + K i2 

s 2 
(P I 2D2) 

K p + 

K i1 

s 
+ 

K i2 

s 2 
+ K d1 

s 

s/N + 1 

+ K d2 
s 2 

( s/N + 1 ) 2 

= 

k d2 s 4 + k d1 s 3 + k p s 2 + k i1 s + k i2 
s 2 ( s/N + 1 ) 2 

(P I 2D2R) , (4)

o control the plant Eq. (3) , using the control scheme in Fig. 1 , so as to guarantee sufficient
tability margins and track, with an acceptable precision, standard references or generic ones
ith a bounded first or second derivative. 
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emark 2. Note that, nowadays, since with the help of the new technologies is easy to im-
lement also complex output feedback controllers, a main issue is their design, not their com-
lexity. Hence, other more effective controllers can be considered, e.g., inserting in cascade to
he above considered controllers appropriate phase-lead and/or phase-lag compensators. The
esign of such more complex controllers, as it can be shown in Section 3 , can easily be made
sing the proposed control method. 

emark 3. It is worth noting that sufficiently large stability margins are needed since the
symptotically stability of the controlled system has to be guaranteed also in disturbed condi-
ions, due to unmodelled dynamics and/or unexpected parametric variations. Concerning this,
ake into account that several electro-mechanical systems are modelled neglecting the electric
ynamics, many flexible structures are modelled neglecting the high-frequency modes, nu-
erous plants have components whose parameters vary with the environmental conditions of

heir working areas (which are unforeseeable), etc. Moreover, as it is well-known (see Tables
-4 reported in Subsection 2.5 , the switching technique from open to closed loop using the
ichols chart, etc.), high values of the stability margins (which can easily be determined by

he open loop frequency response) lead to small resonance peaks of the closed-loop control
ystem and, hence, small oscillations or overshoots during the transient phases, and to not
xcessive control signals. 

emark 4. The proposed controllers are all output feedback controllers; hence, they can easily
e implemented. If the output measurement is affected by not negligible noises, the ideal
erivative actions can be replaced with real derivative actions, with an appropriate bandwidth,
sing the controllers PIDR, PI2DR, or PI2D2R. These controllers, using the proposed method,
re designed taking into account a priori the bandwidth of the real derivative actions, not
hoosing it after, as the most control methods in the literature commonly made, which can
e reason of instability. 

.2. Generalized gains to estimate the tracking error 

Concerning the tracking error of a reference having a generic waveform but with bounded
rst or second derivative, the following theorem is useful. 

heorem 1. Using the PI, PID, PIDR (PI2, PI2D, PI2DR, PI2D2, PI2D2R) controllers, the
aximum absolute value of the tracking error of a generic reference r(t ) with bounded first
erivative (bounded second derivative), in the presence of a generic disturbance d(t ) with
ounded first derivative (bounded second derivative) satisfies the following inequality: 

| e (t ) | ≤ H 1 max 

| ˙ r (t ) | + H 1 d max 

∣∣ ˙ d (t ) 
∣∣(| e (t ) | ≤ H 2 max 

| r̈ (t ) | + H 2d max 

∣∣d̈ (t ) 
∣∣), (5)

here H 1 , H 1 d , ( H 2 , H 2d ) are appropriate constants (see Eq. (9) ). 

roof. Setting 

C 1 (s) = 

⎧ ⎨ 

⎩ 

K p s + K i ( P I case ) 
K d s 2 + K p s + K i ( P I D case ) 
(k d s 2 + k p s + k i ) / ( s/N + 1) ( P I DR case ) 
5693 
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Fig. 2. Scheme to compute the generalized gains H i , H id . 
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C 2 (s) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

K p s 2 + K i1 s + K i2 ( P I 2 case ) 
K d s 3 + K p s 2 + K i1 s + K i2 ( P I 2D case ) 
(k d s 3 + k p s 2 + k i1 s + k i2 ) / ( s/N + 1) ( P I 2DR case ) 
K d2 s 3 + K d1 s 3 + K p s 2 + K i1 s + K i2 ( P I 2D2 case ) 
(k d2 s 4 + k d1 s 3 + k p s 2 + k i1 s + k i2 ) / ( s/N + 1 ) 

2 
( P I 2D2R case ) , 

(6)

rom the scheme in Fig. 1 it is 

E (s) = R(s) − Y (s) = S i (s) s 
i R(S) + S id (s) s 

i D(S) 

S i (s) = 

1 

s i + P (s) C i (s) 
, S id (s) = − P d (s) 

s i + P (s) C i (s) 
, i = 1 , 2, (7)

rom which, if the control system is asymptotically stable, yields 

 e (t ) | ≤ H i max 

∣∣d 

i r(t ) / dt i 
∣∣ + H id max 

∣∣d 

i d(t ) / dt i 
∣∣, i = 1 , 2, (8)

here 

 i = 

∫ ∞ 

0 
| w i (τ ) | dτ, H id = 

∫ ∞ 

0 
| w id (τ ) | dτ, w i (τ ) = L 

−1 ( S i (s) ) , w id (τ ) = L 

−1 ( S id (s) ) . (9)

emark 5. From Eq. (7) it easily follows that the generalized gains H i , H id , i = 1 , 2, can be
omputed with the scheme in Fig. 2 . 

emark 6. If w i (t ) ≥ 0 it is easy to prove that H i = 1 /K i , where K i = C i (0) P (0) , i = 1 , 2;
.e., H 1 is equal to the inverse of the velocity constant K v , and H 2 is equal to the inverse of
he acceleration constant K a . 

The condition w i (t ) = L 

−1 ( W i (s) ) ≥ 0 is said to be external positivity condition of the
ystem with transfer function ( t.f. ) W i (s) . In [31] , some results are reported, which easily
llow to establish the external positivity condition of W i (s) . 

emark 7. Given a reference signal r(t ) , the change of variable t = cτ yields
r / d τ = c d r / d t , and d 

2 r / d τ 2 = c 2 d 

2 r / d t 
2 
. Hence, by reducing the “velocity ˙ r (t ) ” of r(t )

he tracking error decreases. E.g., halving the “velocity” of r(t ) (i.e., assuming c = 0. 5 ), with
he PI, PID, PIDR controllers the maximum absolute value of the tracking error, if d(t ) = 0,

alves, while, with the PI2, PI2D, PI2DR, PI2D2, PI2D2R controllers the maximum absolute
alue of the tracking error, if d(t ) = 0, is the fourth part. 

Therefore, varying the “velocity ˙ r (t ) ” of r(t ) by an appropriate factor c, it is possible to
eep the tracking error within an acceptable tolerance. 
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emark 8. A reference signal r(t ) with a bounded i th derivative, i = 1 , 2, can be obtained
y interpolating a set of given points (t k , r k ) , k = 0, 1 , ..., n r , with appropriate splines or
y filtering any piecewise constant or piecewise linear signal ˜ r (t ) with a second (third)-order
lter 

˙ ζ = 

[
0 1 

− f 2 − f 1 

]
ζ + 

[
0 

f 2 

]
˜ r , 

[
r 
˙ r 

]
= ζ

 

 ̇

 ζ = 

⎡ 

⎣ 

0 1 0 

0 0 1 

− f 3 − f 2 − f 1 

⎤ 

⎦ ζ + 

⎡ 

⎣ 

0 

0 

f 3 

⎤ 

⎦ ˜ r , 

⎡ 

⎣ 

r 
˙ r 
r̈ 

⎤ 

⎦ = ζ

⎞ 

⎠ . (10)

In the last case, it is also possible to reduce the control action, in particular during the
ransient phase by suitably choosing the initial conditions of the filter and its cutoff frequency.

Note that if the filter is a Bessel one with cutoff angular frequency ω c , larger or equal to
he angular frequency of ˜ r (t ) , then r(t ) ∼= 

˜ r (t − t r ) , where t r = π/ (2ω c ) for a second-order
lter, t r = 3 π/ (4ω c ) for a third-order one. 

emark 9. Approximating the control system with a time delay of duration τδ ≥ τe the
racking error can be more effectively defined as follows: 

 (s) = R(s) e −sτδ − Y (s) , (11)

here the time delay τδ can be computed such to minimize pH r + (1 − p) H d , p ∈ [0, 1] . 
o solve the above stated problems, the following preliminaries are given. 

.3. Majorant systems 

efinition 1. Consider an asymptotically stable system with a positive static gain 

 (s) | s= jω = G (s, e −sτi ) e −sτe | s= jω = M(ω) e jϕ(ω) , (12)

aid to be of class SP G. 

 system 

ˆ 
 (s) | s= jω = 

ˆ G (s) e −sT | s= jω = 

ˆ M (ω) e j ̂  ϕ (ω) , T ≥ 0, (13)

ith 

ˆ G (s) without zeros or with negative real part zeros such that (see Fig. 3 ) 

ˆ 
 ( ω ) ≥ M ( ω ) , ˆ ϕ ( ω ) ≤ ϕ ( ω ) , ∀ ω ≥ 0, (14)

s said to be majorant system in the frequency domain ( MS ) of the system P (s) , and the
otation 

ˆ P (s) ≥ P (s) will be used. 

emark 10. As it will be shown in the following of the treatment, the condition that the
ossible zeros of ˆ G (s) have always negative real parts is needed to apply the Nyquist criterion,
ith the aim to always guarantee acceptable stability margins. 

The following Lemmas 1 - 4 hold, whose proofs are easy to be derived. 

emma 1. A system P (s) of class SP G without zeros or with negative real part zeros is a
S of itself. More in general, ˆ P (s) = K P (s) e −sT ≥ P (s) , ∀ K ≥ 1 , ∀ T ≥ 0. 
5695 
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Fig. 3. Frequency responses of the system P(s) (black) and its majorant ˆ P (s) (red). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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emma 2. Let P 1 (s) , P 2 (s) be two systems of class SP G and 

ˆ P 1 (s) ≥ P 1 (s) , ˆ P 2 (s) ≥ P 2 (s)
heir MSs, respectively. Then, ˆ P 1 (s) ̂  P 2 (s) ≥ P 1 (s) P 2 (s) . 

emma 3. Let P (s) | s= jω = M(ω) e jϕ(ω) be a system of class SP G and 

˜ P (s) | s= jω = 

˜ M (ω) e j ̃  ϕ (ω)

 system without zeros or with negative real part zeros. Then, 

ˆ 
 (s) = K 

˜ P (s) e −sT ≥ P (s) , (15)

here 

 ≥ sup 

ω≥0 

M(ω) 

˜ M (ω) 
, T ≥ max 

{
0, sup 

ω> 0 

˜ ϕ (ω) − ϕ(ω) 

ω 

}
. (16)

emma 4. Consider a system P (s) of class SP G . Setting P (s) = P 1 (s) P 2 (s) , with P 1 (s) with-
ut zeros or with negative real part zeros, then 

ˆ 
 (s) = K P 1 (s) e 

−sT ≥ P (s) , (17)

here 

 ≥ sup 

ω≥0 
M 2 (ω) , T ≥ max 

{
0, sup 

ω> 0 

−ϕ 2 (ω) 

ω 

}
, P 2 (s) | s= jω = M 2 (ω) e jϕ 2 (ω) . (18)

emma 5. Consider a system of class SP G 

 (s) = 

G 

(1 + sτ1 )(1 + sτ2 ) · · · (1 + sτn ) 
, τ1 ≥ τ2 ≥ · · · ≥ τn > 0. (19)

The following systems are MSs of the system ( 19 ): 

ˆ 
 0 (s) = Ge −(τ1 + τ1 + ···+ τn ) s , ˆ P 1 (s) = 

G 

1 + sτ1 
e −(τ2 + τ3 + ···+ τn ) s , 
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L
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P  

−

ˆ 
 2 (s) = 

G 

(1 + sτ1 )(1 + sτ2 ) 
e −(τ3 + τ4 + ···+ τn ) s . (20)

roof. The proof easily follows noting that mod ( 1 / ( 1 + jωτ )) ≤ 1 ,

rg ( 1 / ( 1 + jωτ )) ≥ −ωτ, i f τ > 0 . 

emma 6. Consider the system of class SP G 

 (s) = 

1 + sτ ′ 

1 + sτ
, τ > 

∣∣τ ′ ∣∣ ≥ 0. (21)

The following system is a MS of the system Eq. (21) : 

ˆ 
 (s) = 1 e −(τ−τ ′ ) s . (22)

roof. The proof is quite simple in the case where τ ′ ≤ 0 since it is easy to prove that
mod ( (1 + jωτ ′ ) / (1 + jωτ ) ) ≤ 1 and arg ( ( 1 + jωτ ′ ) / (1 + jωτ ) ) ≥ −(τ − τ ′ ) ω. 

The proof in the case where τ ′ > 0 follows taking into account that mod
( ( 1 + jωτ ′ ) / (1 + jωτ ) ) ≤ 1 and ϕ(ω) = atan (ωτ ′ ) − atan (ωτ ) + (τ − τ ′ ) ω ≥ 0 since
(0) = 0 and 

dϕ(ω) 

dω 

= 

τ ′ 

1 + (τ ′ ω) 2 
− τ

1 + (τω) 2 
+ τ − τ ′ = 

= (τ − τ ′ ) 
(

1 − τ

1 + (τω) 2 

)
+ τ ′ 

(
1 

1 + (τ ′ ω) 2 
− 1 

1 + (τω) 2 

)
> 0, ∀ ω > 0. (23)

emma 7. Consider the system of class SP G 

 (s) = 

G 

1 + 2 ζ/ ω n s+ s 2 / ω 

2 
n 

, ζ ∈ [0. 1 , 1] . (24)

The following systems are MSs of the system ( 24 ): 

ˆ 
 0 (s) = G 0 e 

−T 0 s , ˆ P 1 (s) = 

G 1 

1 + s/ ω n 
e −T 1 s , (25)

here G 0 , T 0 and G 1 , T 1 can be derived from Figs. 4 and 5 , respectively. 

emma 8. Consider the system of class SP G 

 (s) = 

G (1 − sτ ) 

1 + 2 ζ/ ω n s+ s 2 / ω 

2 
n 

, τ> 0 . (26)

The following system is a MS of the system (26): 

ˆ 
 (s) = 

G (1 + sτ ) 

1 + 2 ζ/ ω n s+ s 2 / ω 

2 
n 

e −s2τ . (27)

roof. The proof easily follows taking into account that mod (P ( jω)) = mod ( ̂  P ( jω)) and
atan (ωτ ) ≥ atan (ωτ ) − 2ωτ. 
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Fig. 4. Parameters of the MS ˆ P 0 (s) of the system Eq. (24) . 
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emma 9. Let P (s, p) | s= jω = M(ω, p) e jϕ(ω,p) be a system with parametric uncertainties

p ∈ ℘ ⊂ R 

μ, of class SPG ∀ p ∈ ℘. Clearly, a MS of 
	 

M (ω) e j 

 

ϕ (ω) , 
	 

M (ω) ≥ M(ω, p) , 

 

ϕ (ω) ≤
(ω, p) , ∀ p ∈ ℘, is a MS of P (s, p) , ∀ p ∈ ℘. 

emark 11. It is worth noting that, in the practice, there exist several systems with structural
ncertainties, e.g., of multiplicative and/or additive type. For such systems it is easy to provide
fficient numerical methods to determine some MSs . 

emark 12. Note that other techniques to determine a MS can be stated. E.g., some tech-
iques based on the theory of dominant poles and zeros, and the ones which approximate
he frequency response of the process, also the experimental one, using the Matlab command
nvfreqs or fmincon (see Algorithm 2 in the Appendix). 

Finally, the following theorem holds, which is a basic result for the fast design of several
ndustrial controllers. 

heorem 2. Let P (s) be a system of class SP G and 

ˆ P (s) = 

ˆ G (s) e −sT be its MS. Then, 

 e −sT ≥ ˆ G 

−1 (s) P (s) . (28)

roof. If it is posed P (s) | s= jω = G (s, e −sT i ) e −sT e | s= jω = M(ω) e jϕ(ω) and ̂

 P (s) | s= jω =
ˆ 
 (s) e −sT | s= jω = 

ˆ M (ω) e j ̂  ϕ (ω) e − jωT , from the relation 

ˆ P (s) ≥ P (s) it is 

M(ω) 

ˆ M (ω) 
≤ 1 , ϕ(ω) − ( ˆ ϕ (ω) − ωT 

) ≥ 0, (29)

rom which Eq. (28) follows. 
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Fig. 5. Parameters of the MS ˆ P 1 (s) of the system Eq. (24) . 

Fig. 6. M, ϕ of P(s) Eq. (30) and ˆ M , ˆ ϕ of the MS ˆ P (s) Eq. (31) . 

E

P  

U

P  
xample 1. Consider the system 

 (s) = 

1 

s 2 + 1 . 2s + 1 

. (30)

sing Lemma 7 , a MS of Eq. (30) is (see also Fig. 6 ) 

ˆ 
 (s) = 

1 . 25 

1 + s 
e −0. 827 s . (31)
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Fig. 7. M, ϕ of P(s) Eq. (30) ; M z , ϕ z of the not MS P z (s) Eq. (32) , obtained with the ZN’s reaction curve method. 
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t is easy to verify that the approximation of the system P (s) Eq. (30) with the first-order
lus dead time (FOPDT) system 

 z (s) = 

1 

1 + τz s 
e −T z s = 

1 

1 + 2. 00s 
e −0. 355 s , (32)

btained with the ZN’s reaction curve method (e.g., [7 , 9 , 13] , and Fig. 17 ) is not a MS of
 (s) Eq. (30) (see Fig. 7 ). 

In the same way, it is readily verify that the approximation of the system P (s) Eq. (30) with
he FOPDT system 

 a (s) = 

1 

1 + τa s 
e −T a s = 

1 

1 + 0. 669 s 
e −0. 533 s , (33)

btained with the “areas method” (as in Fig. 19 ), is not a MS of the system P (s) (see Fig. 8 ).

xample 2. Consider the system 

 (s) = 

(s + 1)(s + 50) 

(s 2 + 4s + 8)(s + 20) 
e −0. 5 s . (34)

Using Lemma 6 , a second-order MS of Eq. (34) with a zero is 

 2z (s) = 

2. 5(s + 1) 

s 2 + 4s + 8 

e −(0. 5+1 / 20−1 / 50) s = 

2. 5(s + 1) 

s 2 + 4s + 8 

e −0. 530s . (35)

emark 13. Other MSs , which maximize also the velocity constant K v = lim s→ 0 sP (s) C(s) or
he acceleration constant K a = lim s→ 0 s 2 P (s) C(s) , can be obtained using Algorithm 2 reported
n the Appendix or a similar one to maximize K . 
a 
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Fig. 8. M, ϕ of P(s) Eq. (30) ; M a , ϕ a of the not MS P a (s) Eq. (33) , obtained with the “areas method”. 

Fig. 9. Impulse Eq. (36) of area U = 1 and cutoff angular frequency ω u6 dB = 1 . 
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.4. Experimental determination of the frequency response of a process 

If no analytical model of the process to be controlled is available, a MS can be obtained
xperimentally determining the frequency response M s (ω) e jϕ s (ω) of the process with the fol-
owing algorithm. 

Algorithm 1. (Identification of the Frequency Response) 
Step 1. Force the system with the real impulse (always applicable since it does not have

n oscillatory behavior) 

 = U a 

2 te −at (36)

f area U and amplitude u M 

= 0. 368 aU (see Fig. 9 ), with a such that its “cutoff angular
requency ω u6 dB = a” is about equal to the one ω c of the system. 

Step 2. Compute the magnitude spectrum M u and phase one F u of u, and the ones M y , F y

f the corresponding output y with the Matlab command fft. 
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Fig. 10. The real impulse u(t ) = 4 2 te −4t and the response y(t ) of the system Eq. (37) to u(t ) . 

Fig. 11. Actual (-) and estimated (�) frequency responses of the system Eq. (37) . 
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Step 3. Compute the experimental gain Ms and experimental phase Fs using the following
atlab commands: 

Ms = My./Mu; 
Fs = Fy-Fu;Fs = unwrap(Fs ∗pi/180) ∗180/pi;. 

xample 3. In the following, the proposed experimental identification algorithm is illus-
rated, first considering a process without delays, and then a system with internal and external
elays. 

(a) By soliciting the system 

P (s) = 

25(s + 1) 

(s 2 + s + 10)(s 2 + 5 . 5 s + 2. 5) 
(37)

ith the real impulse u(t ) = 4 

2 te −4t the response in Fig. 10 is obtained. Using the fast Fourier
ransform (FFT) with a sampling frequency f c = 100H z, in Fig. 11 , the estimated frequency
esponse and the actual one are shown. 
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Fig. 12. The real impulse u(t ) = 3 2 te −3 t and the response y(t ) of the system Eq. (38) to u(t ) . 

Fig. 13. Actual (-) and estimated (�) frequency responses of the system Eq. (38) . 
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(b) Soliciting the system 

˙ x (t ) = 

[
0 1 

−4 −2 

]
x(t ) + 

[
0 0 

−1 0 

]
x(t − 0. 5) + 

[
0 

1 

]
u(t − 1) , y(t ) = 

[
1 0 

]
x(t ) 

(38)

ith the real impulse u(t ) = 3 

2 te −3 t the response in Fig. 12 is obtained. Using the FFT with
 sampling frequency f c = 100H z, in Fig. 13 , the estimated frequency response and the actual
ne are shown. 

.5. Reference majorant control systems 

In the following, two reference type 1 control systems and two reference type 2 ones are
roposed, which can be used to quickly design several industrial controllers. For the above
entioned systems, the main parameters concerning the stability robustness and the tracking

recision are provided. 
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Fig. 14. Reference control system. 

Table 1 
Values of m g , M ϕ , M r , H 1 for KT = π/ 6 , π/ 4, π/ 3 if L r = K e −sT /s . 

KT π/ 3 = 1 . 047 π/ 4 = 0 . 785 π/ 6 = 0 . 524 

m g [ dB ] 3.52 6.02 9.54 
M ϕ [ deg ] 30 45 60 
M r 2.62 1.47 1.01 
H 1 3.12 T 2.28 T 2.14 T 

Table 2 
Values of m g , M ϕ , M r , H 1 for KT = 1 . 304, 1 . 006 , 0. 686 if L r = K( 1 + 0. 25 T s ) e −sT /s . 

KT 1.304 1 . 006 ∼= 

1 0.686

m g [ dB ] 2.89 5.15 8.47 
M ϕ [ deg ] 30 45 60 
M r 2.97 1.57 1.00 
H 1 2.61 T 1.81 T 1.60 T 

L

L  

 

g

L

L  

 

g

L

L  

 

g

L

L  
emma 10. Consider the closed-loop control system in Fig. 14 , where 

 r (s) = K 

e −sT 

s 
= K T 

e −sT 

sT 
. (39)

The gain margins m g , the phase ones M ϕ , the resonance peaks M r , and the generalized
ains H 1 for K T = π/ 6 , π/ 4, π/ 3 are reported in Table 1 . 

emma 11. Consider the closed-loop control system in Fig. 14 , where 

 r (s) = K ( 1 + 0. 25 T s ) 
e −sT 

s 
= K T ( 1 + 0. 25 T s ) 

e −sT 

sT 
. (40)

The gain margins m g , the phase ones M ϕ , the resonance peaks M r , and the generalized
ains H 1 for K T = 1 . 304, 1 . 006 , 0. 686 are reported in Table 2 . 

emma 12. Consider the feedback control system in Fig. 14 , where 

 r (s) = K ( 1 + 7 T s ) 
e −sT 

s 2 
= K T 2 ( 1 + 7 T s ) 

e −sT 

(T s) 2 
. (41)

The gain margins m g , the phase ones M ϕ , the resonance peaks M r , and the generalized
ains H 2 for K T 2 = 0. 13 , 0 . 10 , 0. 07 are provided in Table 3 . 

emma 13. Consider the feedback control system in Fig. 14 , where 

 r (s) = K ( 1 + 4sT ) ( 1 + 0. 4sT ) 
e −sT 

s 2 
= K T 2 

(
1 + 4. 4T s + 1 . 6 T 2 s 2 

) e −sT 

(T s) 2 
. (42)
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Table 3 
Values of m g , M ϕ , M r , H 2 for KT 2 = 0. 13 , 0. 10, 0. 07 if L r = K( 1 + 7 T s ) e −sT / s 2 . 

KT 2 0.13 0.10 0.07 

m g [ dB ] 5.15 7.43 10.53 
M ϕ [ deg ] 28.42 37.78 45.16 
M r 2.21 1.59 1.35 
H 2 7 . 69 T 2 10. 00T 2 14. 29 T 2 

Table 4 
Values of m g , M ϕ , M r , H 2 for KT 2 = 0. 30, 0. 20, 0. 10 if L r = K( 1 + 4. 4T s + 1 . 6 T 2 s 2 ) e −sT /s 

2 
. 

KT 2 0.30 0.20 0.10 

m g [ dB ] 2.70 6.22 12.24 
M ϕ [ deg ] 29.03 43.08 45.59 
M r 3.11 1.38 1.50 
H 2 3 . 33 T 2 5 . 00T 2 11 . 95 T 2 

 

g
 

e
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f  

s
 

3

T  

c

C  

i

P

L  

 

f  

M

The gain margins m g , the phase ones M ϕ , the resonance peaks M r , and the generalized
ains H 2 for K T 2 = 0. 30, 0 . 20 , 0. 10 are reported in Table 4 . 

Proofs of Lemmas 10 - 13 . Parameters m g , M ϕ , M r are of easy derivation, while the param-
ters H 1 , H 2 can easily be computed using the simulation scheme in Fig. 2 . 

. Main results 

In the present section, some main theorems are established about fast design techniques
or the robust controllers PI, PID, PIDR, PI2, PI2D, PI2DR, PI2D2, PI2D2R, providing also
ome guidelines to easily design the proposed controllers. 

To this aim, in the following, only some MSs ˆ P (s) = 

ˆ G (s) e −sT with T > 0 are considered.

.1. Fast design techniques for PI, PID and PIDR controllers 

heorem 3. Let P (s) be a system of class SP G and 

ˆ P (s) = 

ˆ G (s) e −sT be its MS. Then, the
ontrol system in Fig. 1 with 

(s) = K 

ˆ G 

−1 (s) 

s 
= 

π

4T 

ˆ G 

−1 (s) 

s 
(43)

s type 1 with M ϕ ≥ 45 

◦, m g ≥ 6 dB, and a velocity constant K v = 

π
4T 

P(0) 

ˆ G (0) 
. 

roof. Multiplying both members of Eq. (28) by K/s it turns out to be 

 r (s) = K 

e −sT 

s 
≥ K 

ˆ G 

−1 (s) P (s) 

s 
= C(s) P (s) = L(s) . (44)

The proof follows taking into account that ˆ G 

−1 (s) P (s) have all negative real part poles,
rom the Nyquist criterion, Eq. (44) , the third column of Table 1 , and Fig. 15 , where
 r (ω) e jϕ r (ω) = L r (s) | s= jω and M(ω) e jϕ(ω) = L(s) | s= jω . 
Analogous results are obtained if K ∈ [ π/ 6 , π/ 3 ] /T . 
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Fig. 15. Margins of L r (s) and L(s) . 
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heorem 4. Let P (s) be a system of class SP G and 

ˆ P (s) = 

ˆ G (s) e −sT be its MS. Then, the
ontrol system in Fig. 1 with 

(s) = K ( 1 + 0. 25 T s ) 
ˆ G 

−1 (s) 

s 
= 

1 

T 
( 1 + 0. 25 T s ) 

ˆ G 

−1 (s) 

s 
(45)

s type 1 with M ϕ ≥ 45 

◦, m g ≥ 5 . 14, and K v = 

1 
T 

P(0) 

ˆ G (0) 
. 

roof. Multiplying both members of Eq. (28) by K ( 1 + 0. 25 T s ) /s it turns out to be 

 r (s) = K ( 1 + 0. 25 T s ) 
e −sT 

s 
≥ K 

( 1 + 0. 25 T s ) ˆ G 

−1 (s) P (s) 

s 
= C(s) P (s) = L(s) . (46)

The proof follows taking into account that ˆ G 

−1 (s) P (s) has all negative real part poles,
rom the Nyquist criterion, Eq. (46) , and the third column of Table 2 . 
nalogous results are obtained if K ∈ [ 0. 686 , 1 . 304 ] /T . 
rom Theorems 3 and 4 several design techniques of industrial controllers derive. 
n the following, some of the above mentioned techniques are reported. 

(a) Design of two PI controllers. 

If 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b 

s + a 

, (47)

sing Theorem 3 , a first PI controller turns out to be 

(s) = K p + 

K i 

s 
, K p = 

π

4T b 

, K i = 

πa 

4T b 

= K p a, K v = K i P (0) . (48)

If, instead, 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = b, (49)

sing Theorem 4 , a second PI controller is 

(s) = K p + 

K i 
, K p = 

1 

, K i = 

1 

, K v = K i P (0) . (50)

s 4b T b 
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(b) Design of two PID controllers. 

If 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b 

s 2 + a 1 s + a 2 
, (51)

sing Theorem 3 , a first PID controller is 

(s) = K p + 

K i 

s 
+ K d s, K p = 

πa 1 

4T b 

, K i = 

πa 2 

4T b 

, K d = 

π

4T b 

, K v = K i P (0) . (52)

If, instead, 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b 

s + a 

, (53)

sing Theorem 4 , a second PID controller is 

(s) = K p + 

K i 

s 
+ K d s, K p = 

aT + 4 

4T b 

, K i = 

a 

T b 

, K d = 

1 

4b 

, K v = K i P (0) . (54)

(c) Design of two PIDR controllers. 

If 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b( s/N + 1) 

s 2 + a 1 s + a 2 
, (55)

sing Theorem 3 , a first PIDR controller turns out to be 

(s) = 

k d s 2 + k p s + k i 
s(1 + s/N ) 

, k p = 

πa 1 

4T b 

, k i = 

πa 2 

4T b 

, k d = 

π

4T b 

, K v = 

πa 2 

4T b 

P (0) , 

= K p + 

K i 

s 
+ K d 

s 

1 + s/N 

, K p = k p − k i /N , K i = k i , K d = k d − K p /N . (56)

If, instead, 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b( s/N + 1) 

s + a 

, (57)

sing Theorem 4 , a second PIDR controller is 

(s) = 

k d s 2 + k p s + k i 
s(1 + s/N ) 

, k p = 

aT + 4 

4T b 

, k i = 

a 

T b 

, k d = 

1 

4b 

, K v = k i P (0) , 

= K p + 

K i 

s 
+ K d 

s 

1 + s/N 

, K p = k p − k i /N , K i = k i , K d = k d − K p /N . (58)

.2. Fast Design Techniques for PI2, PI2D, PI2DR, PI2D2, and PI2D2R Controllers 

heorem 5. Let P (s) be a system of class SP G and 

ˆ P (s) = 

ˆ G (s) e −sT be its MS. Then, the
ontrol system in Fig. 1 with 

(s) = K 

(1 + 7 T s) ˆ G 

−1 (s) 

s 2 
= 

0. 10 

T 2 
(1 + 7 T s) ˆ G 

−1 (s) 

s 2 
(59)
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s type 2 with M ϕ ≥ 37 . 78 

◦, m g ≥ 7 . 43 dB, and acceleration constant K a = 

0. 10 
T 2 

P(0) 

ˆ G (0) 
. 

roof. Multiplying both members of Eq. (28) by K ( 1 + 7 T s ) /s 2 it is 

 r (s) = K ( 1 + 7 T s ) 
e −sT 

s 2 
≥ K 

( 1 + 7 T s ) ˆ G 

−1 (s) P (s) 

s 2 
= C(s) P (s) = L(s) . (60)

The proof follows taking into account that ˆ G 

−1 (s) P (s) has all negative real part poles,
rom the Nyquist criterion, Eq. (60) , and the third column of Table 3 . 

Analogous results are obtained if K ∈ [ 0 . 07 , 0 . 13 ] / T 2 . 

heorem 6. Let P (s) be a system of class SP G and 

ˆ P (s) = 

ˆ G (s) e −sT be its MS. Then, the
ontrol system in Fig. 1 with 

(s) = K 

(
1 + 4. 4T s + 1 . 6 T 2 s 2 

) ˆ G 

−1 (s) 

s 2 
= 

0. 2 

T 2 

(
1 + 4. 4T s + 1 . 6 T 2 s 2 

) ˆ G 

−1 (s) 

s 2 
(61)

s type 2 with M ϕ ≥ 43 . 08 

◦, m g ≥ 6 . 22dB, and K a = 

0. 2 
T 2 

P(0) 

ˆ G (0) 
. 

roof. Multiplying both members of Eq. (28) by K (1 + 4. 4T s + 1 . 6 T 2 s) /s 
2 it is 

 r (s) = K ( 1 + 7 T s ) 
e −sT 

s 2 
≥ K 

( 1 + 7 T s ) ˆ G 

−1 (s) P (s) 

s 2 
= C(s) P (s) = L(s) . (62)

The proof follows taking into account that ˆ G 

−1 (s) P (s) has all negative real part poles,
rom the Nyquist criterion, Eq. (62) , and the third column of Table 4 . 
nalogous results are obtained if K ∈ [ 0. 10, 0 . 30 ] / T 2 . 
rom Theorems 5 and 6 other design techniques of industrial controllers derive. 
n the following, some of the above mentioned techniques are reported. 

(a) Design of two PI2 controllers. 

f 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b 

s + a 

, (63)

sing Theorem 5 , a first PI2 controller turns out to be 

(s) = 

K p s 2 + K i1 s + K i2 

s 2 
, K p = 

0. 7 

T b 

, K i1 = 

0. 7 T a + 0. 1 

T 2 b 

, K i2 = 

0. 1 a 

T 2 b 

, K a = K i2 P (0) . (64)

f, instead, 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = b, (65)

sing Theorem 6, a second PI2 controller is 

(s) = 

K p s 2 + K i1 s + K i2 

s 2 
, K p = 

0. 32 

b 

, K i1 = 

0. 88 

T b 

, K i2 = 

0. 2 

T 2 b 

, K a = K i2 P (0) . (66)
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(b) Design of two PI2D controllers. 

If 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b 

s 2 + a 1 s + a 2 
, (67)

sing Theorem 5 , a first PI2D controller is 

(s) = 

K d s 3 + K p s 2 + K i1 s + K i2 

s 2 

K d = 

0. 7 

bT 
, K p = 

0. 7 T a 1 + 0. 1 

bT 2 
, K i1 = 

0. 7 T a 2 + 0. 1 a 1 

bT 2 
, K i2 = 

0. 1 a 2 

bT 2 
, K a = K i2 P (0) . (68)

f, instead, 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b 

s + a 

, (69)

sing Theorem 6 , a second PI2D controller is 

(s) = 

K d s 3 + K p s 2 + K i1 s + K i2 

s 2 

K d = 

0. 32 

b 

, K p = 

0. 32T a + 0. 88 

bT 
, K i1 = 

0. 88 T a + 0. 2 

bT 2 
, K i2 = 

0. 2a 

bT 2 
, K a = K i2 P (0) . (70)

(c) Design of two PI2DR controllers. 

f 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b( s/N + 1) 

s 2 + a 1 s + a 2 
, (71)

sing Theorem 5 , a first PI2DR controller turns out to be 

(s) = 

k d s 3 + k p s 2 + k i1 s + k i2 
s 2 ( s/N + 1) 

k d = 

0. 7 

bT 
, k p = 

0. 7 T a 1 + 0. 1 

bT 2 
, k i1 = 

0. 7 T a 2 + 0. 1 a 1 

bT 2 
, k i2 = 

0. 1 a 2 

bT 2 
, K a = k i2 P (0) . (72)

f, instead, 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b( s/N + 1) 

s + a 

, (73)

sing Theorem 6 , a second PI2DR controller is 

(s) = 

k d s 3 + k p s 2 + k i1 s + k i2 
s 2 ( s/N + 1) 

k d = 

0. 32 

b 

, k p = 

0. 32T a + 0. 88 

bT 
, k i1 = 

0. 88 T a + 0. 2 

bT 2 
, k i2 = 

0. 2a 

bT 2 
, K a = k i2 P (0) . (74)
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(d) Design of two PI2D2 controllers. 

f 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b 

s 3 + a 1 s 2 + a 2 s + a 3 
, (75)

sing Theorem 5 , a PI2D2 controller is 

(s) = 

(7 s + 1)(s 3 + a 1 s 2 + a 2 s + a 3 ) / (10bT 2 ) 

s 2 
= 

K d2 s 4 + K d1 s 3 + K p s 2 + K i1 s + K i2 

s 2 

= K p + 

K i1 

s 
+ 

K i2 

s 2 
+ K d1 s + K d2 s 

2 , K a = K i2 P (0) . (76)

f, instead, 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b 

s 2 + as 1 + a 2 
, (77)

sing Theorem 6 , a second PI2D 2 controller is 

(s) = 

(1 + 4. 4T s + 1 . 6 T 2 s 2 )(s 2 + a 1 s + a 2 ) / (5 bT 2 ) 

s 2 
= 

K d2 s 4 + K d1 s 3 + K p s 2 + K i1 s + K i2 

s 2 

= K p + 

K i1 

s 
+ 

K i2 

s 2 
+ K d1 s + K d2 s 

2 , K a = K i2 P (0) . (78)

(e) Design of two PI2D2R controllers. 

f 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b ( s/N + 1) 2 

s 3 + a 1 s 2 + a 2 s + a 3 
, (79)

sing Theorem 5 , a PI2D2R controller is 

(s) = 

(7 s + 1)(s 3 + a 1 s 2 + a 2 s + a 3 ) / (10bT 2 ) 

s 2 ( s/N + 1 ) 2 
= 

k d2 s 4 + k d1 s 3 + k p s 2 + k i1 s + k i2 
s 2 ( s/N + 1 ) 2 

= K p + 

K i1 

s 
+ 

K i2 

s 2 
+ K d1 

s 

s/N + 1 

+ K d2 
s 2 

( s/N + 1 ) 2 
, K a = k i2 P (0) . (80)

If, instead, 

ˆ 
 (s) = 

ˆ G (s) e −sT , ˆ G (s) = 

b ( s/N + 1) 2 

s 2 + as 1 + a 2 
, (81)

sing Theorem 6 , a second PI2D2 controller is 

(s) = 

(1 + 4. 4T s + 1 . 6 T 2 s 2 )(s 2 + a 1 s + a 2 ) / (5 bT 2 ) 

s 2 ( s/N + 1) 2 
= 

k d2 s 4 + k d1 s 3 + k p s 2 + k i1 s + k i2 
s 2 ( s/N + 1) 2 

= K p + 

K i1 

s 
+ 

K i2 

s 2 
+ K d1 s + K d2 s 

2 , K a = k i2 P (0) . (82)

emark 14. Realization of PID, PI2D (PI2D2) controllers requires the measurements of y
nd ˙ y ( y, ˙ y and ÿ ) . If the measurement of y is affected by a large bandwidth error, especially
5710 



L. Celentano Journal of the Franklin Institute 360 (2023) 5689–5727 

Fig. 16. Control of a plant with a dynamic compensator and an industrial controller. 
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t medium frequency, instead of using a real derivative action to obtain ˙ y ( ̈y ) , it can directly
e measured ˙ y or, alternately, measured ÿ and estimated ˙ y using an optimal estimator (see e.g.,
55] ). In this regard, note that nowadays, in many cases, the direct measurement of speed,
nd even acceleration, can easily be achieved with accurate economic sensors. 

It is also worth noting that, if a controller is designed using the ideal derivative action, as
n ZN-like methods and its numerous variants, and the ideal derivative action is replaced by
 real derivative one, the control system can be unstable. 

emark 15. To design a controller, for a process P (s) of class SMG , with a real derivative
ction, useful to reduce the effect of the measurement error and/or moderate the control action,
t can be determined a MS 

ˆ P N (s) of P (s) with a numerator factor equal to ( s/N + 1 ) i , i = 1 , 2,

sing one of the following methods: 

Method 1 . If ˆ P (s) ≥ P (s) it is easy to verify that ˆ P N (s) = 

ˆ P (s) e −is /N ( s/N + 1 ) i ≥
 (s) , i = 1 , 2. 

Method 2 . If ˆ P (s) ≥ P (s) / ( s/N + 1 ) i it is easy to verify that ˆ P N (s) = 

ˆ P (s) ( s/N + 1 ) i ≥
 (s) , i = 1 , 2. 

A MS 

ˆ P (s) of P (s) , if Method 1 is used, or of P (s) / ( s/N + 1 ) i , if Method 2 is used, of
ypes 

b 

s + a 

e −sT , 
b 

s 2 + a 1 s + a 2 
e −sT , 

b 

s 3 + a 1 s 2 + a 2 s + a 3 
e −sT , (83)

uch to maximize one of the following parameters a 
bT ≡ K v , 

a 2 
bT ≡ K v , 

a 
bT 2 ≡ K a , 

a 2 
bT 2 ≡

 a , 
a 3 

bT 2 ≡ K a depending on the controller to design, can easily be determined from the an-
lytical or experimental frequency response of P (s) (see Algorithm 2 in the Appendix, and
emark 21 ). 

emark 16. If the plant is not asymptotically stable or the goal is to more improve the
ontrol system performance, the control can be made with an industrial controller and a
ynamic compensator with two degrees of freedom as shown in the scheme in Fig. 16 . 

Concerning the above matter, note that if P (s) = b(s) /a (s) , for d = 0 it is 

 DC (s) = Y (s) / U c (s) = b(s) γ (s) / (a(s) α(s) + b(s) β(s)) . (84)

Hence, if b(s) and a(s) are coprime polynomials with a compensator of order ν =
eg (a) − 1 it is possible to assign at will all the poles and ν zeros of P DC (s) . Clearly, using
 compensator of order smaller than deg (a) − 1 , in many cases, it is possible to transform
he plant in a system of SP G class, which can effectively be controlled with an industrial
ontroller designed with one of the proposed methods. 
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In both cases, the parameters of the compensator can be chosen such to optimize the

arameters of the MS , e.g., minimizing (K v − ˆ K v ) 
2 

or (K a − ˆ K a ) 
2 
, where ˆ K v ( ˆ K a ) is the

esired value of K v ( K a ) of the open loop control system. 
In both cases, the parameters of the compensator can be chosen such to optimize the

arameters of the MS , e.g., maximizing K v or K a of the open loop control system. 

.3. Guidelines for a fast design for industrial controllers and comparisons 

.3.1. Design of industrial controllers with the proposed method 

The proposed method, always applicable to the broad class of systems Eq. (1) , can be
rticulated as follows. 

Step 1. Starting from the frequency response of the system to be controlled P (s) , which is
etermined analytically, or experimentally applying to P (s) a real impulse (always applicable
ince it does not have an oscillatory behavior), P (s) is approximated with one of the following
Ss : 

ˆ 
 0 = be −sT , ˆ P 1 = 

b 

s + a 

e −sT , ˆ P 20 = 

b 

s 2 + a 1 s + a 2 
e −sT , ˆ P 21 = 

b 1 s + b 2 

s 2 + a 1 s + a 2 
e −sT , 

ˆ 
 30 = 

b 

s 3 + a 1 s 2 + a 2 s + a 3 
e −sT , ˆ P 31 = 

b 1 s + b 2 

s 3 + a 1 s 2 + a 2 s + a 3 
e −sT , etc . , 

r with the systems having an additional numerator factor of the type (1 + s/N ) i , i = 1 , 2.

his can be made using Lemmas 1 - 9 , or Algorithm 2 in the Appendix which maximizes K v ,
r a similar one such to maximize K a . 

Step 2. With the parameters of one of the determined MSs , using the provided simple
ormulas, the corresponding controllers are designed, which can be not only of the type PI,
ID, but also of PIDR, PI2, PI2D, PI2DR, PI2D2, and PI2D2R types, depending on the
etermined MS . 

emark 17. It is worth noting that 
- with the proposed controllers the gain and phase margins are always greater than or equal

o the ones deduced from Tables 1-4 in Subsection 2.5 , which are a function of the chosen
alue of K T or K T 2 . 

If, for very complex systems, the stability margins should be too high then they can be
educed by choosing greater values of K T or K T 2 , obtaining smaller tracking errors, at least
t steady-state. 

- Control system performance, also concerning the maximum tracking error of a generic
eference, but with first or second bounded derivative, improve by increasing the order of the

S . 
- If the generalized gains H i , H id are computed with the scheme in Fig. 2 then it is possible

o estimate the tracking errors of references with bounded first or second derivative and keep
hem within acceptable values by varying the reference velocities (see Remark 7 ). 

.3.2. Design of industrial controllers with the most used methods available in the literature
As highlighted in the Introduction, in the literature there exist numerous fast design control

ethods for industrial controllers, mostly of PI and PID types. 
Most of them mainly work according to the following two procedures. 
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Procedure 1 (Open Loop) 
Step 1. The step response W −1 (t ) of the process to be controlled P (s) is analytically or

xperimentally determined, and P (s) is approximated, with various methods which use only
 −1 (t ) , with the t.f. P a (s) = 

G 

1+ sτ e −sT of a FOPDT system. 
Step 2. The parameters of the controllers PI and/or PID are computed, from parameters

, τ, T , with empirical formulas or optimizing specific quality indices. 

rocedure 2 (Closed Loop) 
Step 1. It is determined the gain K pc of a proportional controller which causes a persistent

scillation of period T o in the closed loop. 
Step 2. The parameters of the controllers PI and/or PID are computed, from parameters

 pc , T o , with empirical formulas or optimizing specific quality indices. 

emark 18. As regards, it is worth noting that, at the best of the author’s knowledge, in
he literature it is not available any theoretical result which guarantees that the closed loop
ontrol system, with the controllers designed using one of the above methods, have always
cceptable performance, e.g., the basic one of the asymptotic stability. 

Moreover, in some cases, the design formulas fail (e.g., if τ = 0 the value of K p , with
he ZN open loop tuning rules and PID tuning rule using ITAE criterion - ITAE: Integral of
he Time-weighted Absolute Error -, is equal to zero, etc.). In addition, Procedure 2 is not
lways applicable since some systems are asymptotically stable for all the values of K p > 0
nd, hence, do not have a persistent oscillation. Furthermore, there exist also systems that,
y increasing K p , have a divergent aperiodic mode and not a persistent oscillation. 

. Examples 

This section presents three groups of examples, which illustrate the proposed control design
echniques, and show their superiority over the most know methods available in the literature,
n terms of applicability, performance, and numerousness of the industrial controllers which
an be designed. Moreover, some experimental validations are given. 

.1. First group 

In this subsection, some examples are provided, which show that the PI and PID controllers
esigned with the most known methods available in the literature, in some cases, make the
ontrol system unstable. 

xample 4. Consider the process 

 (s) = 

24(s + 4) 

(s + 2)(s + 6)(s 2 + 4s + 16) 
e −sT p . (85)

The approximation obtained with the ZN’ reaction curve method in the hypothesis that
 p = 0 is shown in Fig. 17 . 

The respective PI and PID controllers, designed with the ZN formulas, and the correspond-
ng stability margins are 

 PI ( s ) = 5 . 7401 + 8 . 0589 /s , m g = − 1 . 181dB , M ϕ = −5 . 625 deg 
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Fig. 17. Approximate model of the process Eq. (85) , case T p = 0, obtained with the ZN’ reaction curve method. 

Fig. 18. Step responses of the control system of the plant Eq. (85) , case T p = 0, using the PI and PID controllers 
(86) designed with the ZN’ reaction curve method. 
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( s ) = 7 . 6535 + 16 . 1178 /s + 0. 9085 s, m g = 13 . 071dB , M ϕ = 13 . 040 deg . (86)

As it can be noted, using the PI controller in Eq. (86) , the control system is unstable,
hile with the PID controller the phase margin of the control system is very small (see also
ig. 18 ). 

It is easy to verify that if T p = 0. 5 , using the ZN method, the designed PI and PID
ontrollers, and the corresponding stability margins are 

 PI ( s ) = 1 . 8481 + 0 . 8354 /s , m g = 2 . 977dB , M ϕ = 96 . 182 deg 

 PID 

( s ) = 2 . 4641 + 1 . 6708 /s + 0 . 9085 s, m g = − 1 . 088dB , M ϕ = −36 . 975 deg . (87)

Hence, using the PID controller in Eq. (87) the corresponding control system is unstable.

xample 5. There exist other plants which cannot be controlled using a controller designed
ith the ZN method. E.g., the control systems of the following processes: 

 (s) = 

1 

s 2 + 2ζ s + 1 

e −s , ζ ≤ 0. 5 , P (s ) = 

4 

s 3 + 3 s 2 + 6 s + 4 

e −sT p , T p ∈ [0. 5 , 2. 5] (88)

ontrolled with a PID designed with the ZN tuning rules are unstable. 
In addition, it is easy to verify that the control systems of the process 

 (s) = 

4 

s 3 + 4s 2 + 7 s + 4 

e −6 s (89)
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Fig. 19. Approximate model of the process Eq. (89) with the “areas method”. 

Fig. 20. Step response of the system Eq. (90) . 
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pproximated with the “areas method” (see Fig. 19 ) and controlled with the respective con-
rollers PI ITAE and PID ITAE [23] are unstable. 

Furthermore, the control systems of the plant 

 (s) = 

6400(s 2 + 10s + 100) 

( s 2 + 2s + 20 

2 )(s 2 + 2s + 40 

2 ) 
e −0. 2s , (90)

hose step response is shown in Fig. 20 , controlled with the PID controllers designed with
he ZN open loop tuning rules, Cohen-Coon rules, PID tuning rule using ITAE criterion, and
rocedure 2 are all unstable. 

.2. Second group 

Now, some examples are given, which show the better performance of the PI and PID
ontrollers designed with the proposed method with respect to the ones of the PI and PID
ontrollers designed using other well-known methods. 

xample 6. Consider the simple process described by 

 (s) = 

1 

s 2 + 2s + 1 

. (91)
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Fig. 21. Approximate model of the process Eq. (91) with the ZN’ reaction curve method. 

Fig. 22. Approximate model of the process Eq. (91) with the “areas method”. 
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The approximate models obtained with the ZN’ reaction curve method and the “areas one”
re shown in Figs. 21 and 22 , respectively. 

A MS 

ˆ P N (s) of the process Eq. (91) , taking into account Remark 9 , is 

ˆ 
 N (s) = 

s/ N + 1 

s 2 + 2s + 1 

e −s/N , N > 0. (92)

The PID controllers related to P Z (s) and P A (s) , designed with the ZN formulas, respectively,
nd the PIDR controllers related to 

ˆ P N (s) with N = 20, 50, designed using Eq. (56) , the
orresponding stability margins and the constants H 1 are 

 P Z ( s ) = 11 . 5787 + 20. 5502 /s + 1 . 6310s, m g = inf, M ϕ = 29 . 252 deg , H 1 = 1 . 036 

 P A ( s ) = 1 . 4930 + 0. 9853 /s + 0. 4053 s, m g = inf, M ϕ = 68 . 295 deg , H 1 = 1 . 409 

 ˆ P 20 ( s ) = 30 . 6305 + 15 . 7080 /s + 14 . 1764 

s / (s/ 20 + 1) , 

 g = 86 . 1242dB , M ϕ = 56 . 712 deg , H 1 = 0. 09266 

 ˆ P 50 ( s ) = 77 . 7544 + 39 . 2699 /s + 37 . 7148 

s / (s/ 50 + 1) , 

 g = 71 . 4407dB , M ϕ = 56 . 711 deg , H 1 = 0. 03706 . (93)

In Fig. 23 , the step responses of the control systems using the controllers Eq. (93) are
hown. 

xample 7. Consider again the system Eq. (85) with T p = 0. A first-order MS which max-
mizes K v , the corresponding PI and PID controllers, stability margins and generalized gain
5716 
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Fig. 23. Step responses of the control systems with the controllers Eq. (93) . 

Fig. 24. Step responses of the control system of the plant Eq. (85) , case T p = 0, with the PI and PID controllers 
(95) designed with the proposed method. 
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ˆ 
 1 (s) = 

1 . 363 

s + 2. 359 

e −0. 3715 s (94)

 PI ( s ) = 1 . 5513 + 3 . 6592 /s , m g = 7 . 756dB , M ϕ = 59 . 601 deg , H 1 = 0. 749 

 PID 

( s ) = 2 . 4075 + 4 . 6596 /s + 0 . 1834 s, m g = 11 . 040dB , M ϕ = 56 . 646 deg , H 1 = 0. 694. (95)

In Fig. 24 , the step responses of the control systems obtained with the PI and PID con-
rollers (95) designed with the proposed method are shown. 

A PI2D2R controller, with N = 30ω c 
∼= 

90, of the system Eq. (85) with T p = 0, the cor-
esponding stability margins and generalized gain are 

 PI2D2R (s) = 

1 . 58 s 4 + 21 . 2s 3 + 112. 4s 2 + 361 . 7 s + 441 . 5 

( s/ 90 + 1 /s ) 2 s 2 

 g = 12 . 44dB , M ϕ = 39 . 76 deg , H 2 = 0. 00470. (96)

In Fig. 25 , the control system response to a ramp signal with the PI2D2R controller
q. (96) is shown. From the above mentioned figure, the very small value of H 2 , and good
tability margins can be deduced that the control system performance with the designed
I2D2R controller are optimum. 
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Fig. 25. Response of the control system of the plant Eq. (85) , case T p = 0, to a ramp with the PI2D2R controller 
Eq. (96) . 

Fig. 26. Step response of the control system of the plant Eq. (90) with the PID controller designed with the proposed 
method. 
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emark 19. Note that the control system of the plant Eq. (85) with T p = 0. 5 with the PID
ontrollers designed both using a first-order MS and a second-order one has good performance.

xample 8. Consider again the system Eq. (90) . It is easy to verify that the step response of
his controlled system with the PID C(s) = 0. 0001662 + 0. 56443 /s + 0. 00042438 s, designed
sing the proposed method, is shown in Fig. 26 . Moreover, the corresponding stability margins
nd generalized gain are m g = 8 . 17dB , M ϕ = 86 . 57 deg , H 1 = 1 . 77 . 

.3. Third group 

Some significant examples are provided to show that, using the proposed method, numerous
ontrollers can easily be designed, also when an analytical model of the plant is not available,
ith stability margins of the control system always larger than prefixed values and acceptable

racking errors of a broad class of references. 
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Fig. 27. Step response of the control system with the PIDR controller Eq. (99) . 

Fig. 28. Electric analog model of a process. 
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xample 9. Consider the process with internal and external delays 

˙  (t ) = 

[
0 1 

−4 −2 

]
x(t ) + 

[
0 0 

−1 0 

]
x(t − 0. 5) + 

[
0 

1 

]
u(t − 1) , y(t ) = 

[
1 0 

]
x(t ) . (97)

A second-order MS , with a zero in N = 10ω c 
∼= 

30, which maximizes K v , obtained with
he Matlab command invfreqs, the corresponding PIDR controller, stability margins and gen-
ralized gain are 

ˆ 
 (s) = 

0. 94563(s/ 30 + 1) 

s 2 + 1 . 4858 s + 4. 536 

e −1 . 0411 s . (98)

 PIDR ( s ) = 1 . 0648 + 3 . 6188 /s + 0 . 7623 s / ( 1 + 1 / 30s ) 

 g = 6 . 243dB , M ϕ = 47 . 9274 deg , H 1 = 2. 243 . (99)

In Fig. 27 , the step response of the closed-loop control system using the PIDR controller
q. (99) is shown. 

xample 10. Consider the model of a process whose analog electric circuit is shown in
ig. 28 . 

In the hypothesis that R 1 = R 2 = 10�, R L = 15�, C 1 = C 2 = 10m F, L = 2H, it is 

˙  = 

⎡ 

⎣ 

−20 10 0 

10 −10 −100 

0 0. 50 −7 . 50 

⎤ 

⎦ x + 

⎡ 

⎣ 

10 

0 

0 

⎤ 

⎦ u, y = 

[
0 1 0 

]
x ⇒ 

 (s) = 

100s + 750 

s 3 + 37 . 5 s 2 + 375 s + 1750 

. (100)
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Fig. 29. Experimental prototype of the control system. 

Fig. 30. Experimental response y s (t ) to the real impulse u s (t ) . 
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Suppose that the model Eq. (100) is unknown, but only the degrees m and n of the
umerator and denominator of P (s) are known. 

Hence, to design robust and effective industrial controllers, the first step is the experimen-
al identification of P (s) . To this aim, by using an industrial PC equipped with a 12 bits
nput/output data acquisition board by National Instruments and Matlab Real-Time Windows
arget with a 1 kHz sampling frequency (see Fig. 29 ), the real impulse u s = 1 . 5 × 13 

2 te −13 t 

s applied to the circuit in Fig. 28 , obtaining the response y s of Fig. 30 . 
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Fig. 31. Experimental frequency response M s , F s . . 
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By compensating the delay due to the digital hardware and using the FFT, the experimental
requency response M s , F s of the circuit is obtained and shown in Fig. 31 . 
inally, using the Matlab code 
s = Ms. ∗exp(j ∗Fs ∗pi/180);[nums dens] = invfreqs(Hs,ws,1,3,[]);Ps = tf(nums, dens), the esti-
ated model turns out to be 

 s (s) = 

96 . 15 s + 726 

s 3 + 36 . 96 s 2 + 369 s + 1713 

, (101)

hich is reliable, taking into account the measurement errors of the parameters
 1 , R 2 , R L , C 1 , C 2 , L, and of y s . 

To realize digital PIDR and PI2DR controllers or to make more robust the corresponding
ontrol systems, to the aim of the controllers design, it can be considered the model 

 (s) = 

96 . 15 s + 726 

s 3 + 36 . 96 s 2 + 369 s + 1713 

e −sT p , T p = 1 ms. (102)

A second-order MS , with a zero in N = 10ω c 
∼= 

120, of the system Eq. (102) , which max-
mizes K v , obtained with the Matlab command invfreqs , the corresponding PIDR controller,
tability margins and generalized gain are 

ˆ 
 2 (s) = 

80. 634(s/ 120 + 1) 

s 2 + 17 . 694s + 148 . 038 

e −0. 007617 s , K v = 80. 226 (103)

 PIDR ( s ) = 21 . 050 + 189 . 310 /s + 1 . 103s / ( 1 + 1 / 120s ) = 

numc (s) 

denc (s) 
 g = 19 . 21dB , M ϕ = 53 . 35 deg , H 1 = 0. 0168 > 1 / K v = 0. 0125 . (104)

Instead, the PI2DR controller of ˆ P (s) , the corresponding stability margins and generalized
ain are 

 PI2DR ( s ) = 

1 . 139 s 3 + 41 . 53 s 2 + 546 . 7 s + 3162 

( s/ 120 + 1) s 2 
= 

numc (s) 

denc (s) 
 g = 18 . 84dB , M ϕ = 43 . 99 deg , H 2 = 0. 000783 > 1 / K a = 0. 000746 . (105)
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Fig. 32. Time histories of r(ct ) , ̇  r (ct ) , ̈r (ct ) with c = 1 . 

Fig. 33. Time histories of the experimental errors e (ct ) for c = 0. 5 , 1 , 2 with the designed PIDR controller. 
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The designed analog controllers can be digitalized with the following Matlab code: 
[Ac Bc Cc Dc] = tf2ss(numc,denc);[Ac Bc] = c2d(Ac,Bc,1e-3); . 

By controlling the system in Fig. 28 with the designed digital controllers, using the indus-
rial PC in Fig. 29 , the tracking errors of the references r(ct ) , c = 0. 5 , 1 , 2, (see Fig. 32 ) are
eported in Figs. 33 and 34 . 

Since max (| ̇  r (ct ) | ) = 8 c, max (| ̈r (t ) | ) = 16 c 2 , theoretically, it is 

 e (ct ) | ≤ H 1 max ( | e (ct ) | = 0. 1344c , with P I DR control l er (106)

 e (ct ) | ≤ H 2 max ( | e (ct ) | = 0. 0125 c 2 , with P I 2DR control l er. (107)

As it can easily be verified, the actual tracking errors, unless the quantization errors and
oises, satisfy relations Eqs. (106) , (107) . 

Finally, it is worth noting that with the proposed PIDR controller the obtained tracking
rror is almost null in correspondence of the time intervals in which the reference signal is
5722 
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Fig. 34. Time histories of the experimental errors e (ct ) for c = 0. 5 , 1 , 2 with the designed PI2DR controller. 

Fig. 35. Frequency responses M(ω, R L , L) , φ(ω, R L , L) (black), and behaviors of 
	 

M (ω) and 

 

φ(ω) (red). (For inter- 
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5

 

m

lmost constant, while, using the designed PI2DR controller, the tracking error is almost null
n correspondence of the time intervals in which the reference signal is almost linear. 

emark 20. Suppose to replace the components R L and L with other ones affected by er-
ors of ±10% and ±20% with respect to their nominal values, respectively. In Fig. 35 ,

he behaviors of 
	 

M (ω) ≥ M(ω, R L , L) and 


 

φ(ω) ≤ φ(ω, R L , L) are reported in red, which
an be used to redesign the above controllers. Since max 

R L ,L 
( δM ( ω, R L , L) | dB ) = 1 . 23 dB and

ax 

R L ,L 
( δφ( ω, R L , L) ) = 7 . 76 deg it is that the stability margins of the control system with the

ontrollers designed with the nominal values of R L and L are reduced a little and, hence, the
ontrol system performance using these controllers continue to be good. 

. Conclusions 

In conclusion, the main peculiarities and advantages of the obtained results can be sum-
arized as follows. 
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(1) A new fast, general and systematic design control method via MS is provided. It allows
one to design industrial controllers with a proportional, integral or double integral,
derivative or double derivative (ideal or real) actions of PI, PID, PIDR, PI2, PI2D,
PI2DR, PI2D2, PI2D2R types, which allow gradually to improve the performance of
the control system. 

(2) The proposed method can easily be applied to control systems with internal and/or
external delays and with parametric and/or structural uncertainties and disturbances,
also when an analytical model of the plant is not available, but data acquired from
simple experimental tests are available. 

(3) Some methods to easily determine, theoretically or experimentally, good MSs (of order
greater than one, too) are provided; moreover, some methods to estimate the maximum
tracking error of a generic reference with bounded first or second derivative, also in the
presence of a generic disturbance with bounded first or second derivative, are given. 

(4) The proposed control methodology can be used also to easily design other controllers
able to guarantee more stringent performance requirements. 

(5) The simplicity of design is within the reach of any engineer or technician in the infor-
mation and industrial areas. 

The ongoing research aims at extending the proposed results to MIMO uncertain plants
ith internal and/or external delays, parametric and/or structural uncertainties, and subject to
isturbances. 
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ppendix 

In this appendix, an algorithm to compute a MS of the type ˆ P (s) =
 ( s/N + 1) i e −isT / (s 2 + a 1 s + a 2 ) , i = 1 , which maximizes K v , using Method 1, is pro-
ided. 

Algorithm 2 

Step 1. Choose the cutoff angular frequency N of the real derivative action on the basis
f the cutoff angular frequency ω c of the process P (s) , the bandwidth, and the amplitude of
he derivative of the measurement error e (t ) = r(t ) − y(t ) . 

Step 2. Compute the static gain G, the cutoff angular frequency ω c , the resonance angular
requency ω r , the resonance peak M r of P (s) | s= jω = M(ω) e jF (ω) , and the maximum delay
 M 

= sup 

ω> 0 
(−F (ω) / ω) . 

Step 3. Compute the frequency response H ( jω s ) = P ( jω s ) in the points 

 s = 

{
[ ω c / 1000 , ω c / 2 , ω c , 2ω c ] , if M r < 1 . 1 G 

[ ω r / 1000 , ω r / 2 , ω r , 2ω r , 4ω r ] , if M r ≥ 1 . 1 G . 

Step 4. For τ ∈ [0, T M 

] compute, using the Matlab command invfreqs or fmincon , the
ptimal interpolation W τ (s) = βτ/ (s 2 + a 1 τ s + a 2τ ) of H τ = H ( jω s ) e jω s τ with the conditions
 1 τ > 0, a 2τ > 0, βτ > 0. 
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Step 5. Maximize K v ≡ a 2τ / (b τ T τ ) with respect to τ , where b τ = sup 

ω> 0 
( M( ω) / M τ (ω)) βτ ;

 τ = sup 

ω 

( ( F τ (ω) − F (ω) ) /ω ) ; M τ (ω) e jF τ (ω) = W τ (s) | s= jω . 

Step 6. The MS turns out to be ˆ P (s) = b ( s/N + 1) i e −isT / (s 2 + a 1 s + a 2 ) , T = T o + i/N ,

here b, a 1 , a 2 , T o are the values of b τ , a 1 τ , a 2τ , T τ in correspondence of the optimal value τo

f τ computed at step 5. 

emark 21. Similar algorithms can be established to determine other MSs (e.g., with the
oal to maximize K a ). 
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