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Abstract 

Increasing temperatures and changes in precipitation patterns and amounts are expected 

to increase pressures on water resources and result in decreasing water quality and 

quantity. Water utilities face the challenge to anticipate and plan for deteriorations in the 

water quality of untreated abstraction sources (so-called raw water quality) and to 

manage consequent risks, a challenge exacerbated through deep uncertainty associated 

with climate change. This research proposes a framework how to integrate effects of 

climate change on raw water quality into risk assessment and to build capacity to 

anticipate and respond to change.  

A national assessment of public water supply catchments in Scotland was used as a 

demonstration case for applying the framework. The analysis was conducted with data 

from 154 drinking water supply catchments from a period of 2011-2016. Empirical 

relationships between catchment characteristics and water quality were examined to 

understand overarching drivers, pressures, and underlying catchment sensitivities 

leading to impacts on raw water quality. Risk screenings were developed for two water 

quality indicators, colour and E. coli, and UKCP18-based climate and land use 

projections were used to identify and map catchments and areas with potential increases 

in risk.  

The screenings identified crucial controls on water quality, high risk areas, areas of 

uncertainty, and allowed first suggestions for possible response options based on 

catchment vulnerabilities. They also provided a basis for a strategic review of and 

planning for the complete supply system, by providing a starting point for transferring 

results and insights from individual sites, and by allowing for a first appraisal of long-

term sustainability of supply. By focusing on catchment integrity and resilience as a 

crucial part of climate change mitigation and adaptive management, this research 

emphasises an ecosystem-based approach as a frame for water service providers to 

achieve multiple objectives. 
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1. Introduction
“Access to safe drinking-water is essential to health, a basic human right and a 

component of effective policy for health protection.” (WHO, 2011) 

Safe and available supplies of drinking water is one of the most important ‘provisioning 

services’ from the global water cycle. It is fundamental to health and survival, but 

competes with other crucial uses, such as use of water to grow food, for transport, 

recreation and to support functioning ecosystems. Water as an integral part of the 

environment is in constant exchange with the land and atmosphere surrounding it, and 

water sources are subject to multiple pressures that impact their quality. Natural 

variations in water quality arise from geochemical mineralogical composition of rocks 

and sediments, from soil organic particulate, from biogeochemical, or microbiological 

processes. Chemical and biological contaminants harmful to humans can arise naturally, 

but humans increase contamination by concentrating natural pollutants and introducing 

synthetic materials such as plastics, radionuclides, pharmaceuticals, or many types of 

pathogens. 

Ensuring that drinking water supplies are free from microbial or chemical contaminants, 

or have concentrations below those likely to have deleterious effects on human health, is 

a basic tenet of the UN Sustainable Development Goal (SDG) 6.1, access to clean water 

for all. Regulatory standards for drinking water set an accepted risk limit and 

contaminant levels above these limits are considered unsafe to drink, leading to a need 

for water treatment prior to human consumption. Water that is free from faecal and 

priority chemical contamination is considered safely managed by the World Health 

Organisation (WHO), if it is available when needed and from a source that is located on 

the premises. In 2020, 74% of the global population used safely managed drinking 

water (WHO, 2017a). 

To ensure water safety in terms of quality, risk-based approaches are promoted by the 

WHO, proposing a framework for risk assessment and management through Water 

Safety Plans (WHO, 2017b). Water Safety Plans assess the risks to water quality from 

catchment to user and rank them to identify and prioritise control measures to reduce 

them. This relies on a thorough assessment of individual supply systems and aims at 

anticipating impacts to prevent them from occurring. 

Climate change is expected to affect water quality directly and indirectly. Rising 

temperatures and changing patterns in amount and seasonality of precipitation can for 
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example modify soil moisture, runoff generation, and consequently stream flows, 

further altering soil erosion, sediment transport, and associated carbon fluxes (dissolved 

and particulate). Ecosystem productivity and ecosystem resilience could decline, with 

indirect negative impacts on pollutant loads (Delpla et al., 2009). Indirect effects arising 

from intensified land use practices may increase pressures on natural hydrological and 

biogeochemical processes, leading to changes in water quality (Brown et al., 2015; 

Whitehead, Wilby et al., 2009). There is also the prospect of new emergent risks from 

either biological or chemical sources (Geissen et al., 2015). It is expected that these 

drivers and pressures will further challenge existing treatment infrastructure and lead to 

an increase in effort and costs for water treatment (Ritson et al., 2014).  

While water utilities can already observe trends in their water quality, and anticipate 

impacts from climate change, there remains deep uncertainty about the nature and 

magnitude of the changes (Vairavamoorthy, 2021). Climate change projections are 

inherently uncertain (IPCC, 2021). Predicting water quality outcomes then requires the 

downscaling of regional predictions to the scale of the catchment providing drinking 

water sources, an estimate of the effects of changes on the hydrology of the catchment, 

and consequences to pollutant transport and concentrations. Making predictions and 

understanding uncertainty around these as a basis for risk management and decision-

making at the individual supply system therefore requires considerable effort (such as 

monitoring/data collection, data analysis, modelling, scenario building, etc.) to 

understand the catchment system in terms of current behaviours and risks under climate 

change projections and future land management practices. 

Climate change brings the traditional risk assessment approach in the drinking water 

context that relies on identification of hazards, an estimation of their consequences, and 

their likelihoods, to its limits, as especially an estimation of likelihood is hardly 

achievable under deep uncertainty. The challenge to reliably predict a likely water 

quality range also means reliance on traditional end-of-pipe water treatment becomes 

more difficult. Planning and investment for treatment works have long lead times and 

relying on predictions could lead to being locked into an increasingly costly, and 

ultimately impossible, upgrading of treatment works to adapt to changing water quality. 

Alternatively, high investment to safeguard against eventual water quality degradations 

could prove futile if these fail to materialise. Additionally, treatment is energy intensive 

(Del Río-Gamero et al. 2020), so the challenge is further emphasised by obligations to 

reduce greenhouse gas (GHG) emissions consistent with Net Zero GHG targets. 
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Therefore, robust adaptation options that reduce reliance on technology should become 

a crucial part of a control strategy (Vairavamoorthy, 2021).  

Catchment management has raised increasing interest to support favourable water 

quality outcomes through healthy, functioning, and resilient ecosystems (WWAP, 2018) 

due to the multiple benefits that can be gained for the environment, society, and 

economy through delivery of diverse ecosystem services (Everard & McInnes, 2013; 

Grizzetti et al., 2016; Keeler et al., 2012). Pioneering schemes have been developed 

through catchment-based partnerships to improve water quality, combining drinking 

water supply, nature conservation, and amenity agendas, with the aim of achieving not 

only an economically favourable outcome, but also delivering wider benefits for the 

environment and society (Appleton, 2002; Morris & Holstead, 2013). As resilient 

ecosystems can stabilize water quality due to a buffering capacity to pressures, a 

catchment resilience approach is also particularly interesting to provide a certain 

amount of protection from climate change impacts. 

Incorporating climate change aspects into water quality management remains a 

challenge to drinking water providers. The need for a forward-looking perspective and 

anticipatory action is recognised (Garnier & Holman, 2019) and framework guidance 

available (WHO, 2017b), however practical approaches are lacking. These need to be 

able to work with current risk assessment approaches. Water Safety Plans offer the 

possibility to manage risk from climate change at the operational level for individual 

sites and systems, but water utilities also manage risks at country-level, or programme 

level, where water resource planners develop initiatives to secure a safe and reliable 

water supply, including safeguarding raw water quality. At this level, at-risk 

infrastructure is identified, and decisions made where to focus attention for risk 

reduction (MacGillivray et al., 2006), making it the appropriate level to identify overall 

strategies of incorporating climate change aspects and for risk-ranking/prioritising 

systems which are likely to need intervention to ensure threats to public health are 

minimised.  

Risk assessment for water quality is normally informed by regular monitoring of 

resources and based upon existing recognised hazards and consequent risks in specific 

catchments, together with established procedures to react to detected changes in risk 

levels. Under climate change, past trends and current status cannot adequately present 

future risk. New approaches are needed to understand how and where climate change 

could start to challenge existing systems and how risks can be managed. The idea of 
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“uniqueness of place” (Beven, 2000) recognises that each catchment system represents a 

complex and non-reproducible mix of conditions, but it limits attempts to understand 

commonalities in systems and to transfer lessons learned from in depths studies. A 

broader analytical framework to contextualise results and derive general inferences is 

needed to provide understanding of factors that make catchments vulnerable to changes 

in drivers, or hazards, and what the consequences are. 

Statistical analysis can infer specific water quality parameters based upon catchment 

characteristics (Davies & Neal, 2004; Rothwell et al., 2010) and improve understanding 

of underlying drivers (e.g., Selle et al., 2013; Shen et al., 2011, Shi et al., 2017). 

Understanding the relationships between catchment characteristics and water quality, 

and identifying certain characteristics or combinations of characteristics that are 

associated with specific water quality issues is a first step to identifying different 

vulnerabilities. This can allow to prioritise catchments where a combination of 

vulnerability and exposure to a hazard increases the risk of unfavourable water quality 

outcomes, and allow a “catchment profiling” that supports risk-ranking as well as 

transferability of insights from individual catchments. Challenges and advantages of 

finding catchment commonalities and typologies are increasingly recognised in 

hydrological sciences, highlighting the need for large-scale approaches and pooling of 

datasets to help discriminate and categorise complex cause-effect relationships 

occurring in catchments in a non-stationary climate (e.g., Beven, 2016; Kundzewicz, 

2018; Wagener et al., 2007). As it cannot be assumed that past trends will hold under 

future conditions, an additional approach to understand how changes will impact on 

water quality is a space for time substitution as used in geomorphology, where the 

spatial distribution of landform types can reflect their evolution over time, allowing a 

projection of development for certain areas (Huang et al., 2019). Using this concept, 

environmental conditions in one part of the geographical area covered may develop to 

resemble conditions already experienced in another part, which could allow conclusions 

about future development of ecosystems (Lester et al., 2014; Meerhoff et al., 2012), and 

associated water quality outcomes. 

 

1.1 Research approach and aims 

Incorporating climate change considerations into risk assessment for drinking water 

quality needs to be efficient and reflect the reality of water service providers in terms of 
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financial constraints. Water utilities have to justify investments, and the demand for 

tools that work with existing procedures and structures requires approaches that can be 

incorporated at a programme level, following familiar patterns of risk-ranking and 

prioritising. This allows focusing attention on systems where risks are perceived to be 

highest, and to include climate change aspects in the risk assessment and management 

procedures at the site level. It should also build a basis for transferability of knowledge 

between sites, and a frame for a strategic evaluation of risk management and response 

options at the strategic level of the water utility. 

This suggests a staged approach (Figure 1.1). The first stage establishes diagnostic 

water quality risk profiles for catchment-water source systems, by analysing and 

describing current water quality hazards, patterns of hazard exposure, and intrinsic 

catchment vulnerabilities, based upon available data on climate, topography, 

soils/lithology, and land use/land management factors. Thus, key risk relations, and 

their spatial and temporal dimensions, are characterised for the supply system as a 

whole. The second stage focuses on changing patterns of exposure and vulnerability 

derived from data on direct and indirect effects of climate and land use changes. This 

allows a first order ranking of systems most at risk from climate change and for 

prioritisation at programme level. At stage 3, response options can be reviewed for their 

potential and suitability. On site level, starting with individual high-risk catchments or 

groups of catchments with similar risk profiles identified at stages 1 and 2, in-depth 

analysis can be carried out where necessary to understand direct and indirect risks more 

fully, and risk control options are reviewed to ensure appropriate responses. At stage 4, 

catchments can be assessed as part of the large-scale resource system for strategic 

decisions on its sustainability. Overall strategies can be developed based on identified 

catchment groupings or profiles that suggest the need for e.g., increased monitoring and 

research to understand processes in more detail; mitigation and restoration measures 

that increase resilience; or stakeholder engagement to better co-ordinate anticipatory 

adaptation strategies. Overall sustainability can also be assessed against other policy 

objectives. Updates of the risk assessment with emerging evidence, new data and 

changed conditions are included through regular or targeted reviews and revisions of 

response strategies. 
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Figure 1.1: Schematic illustration of proposed approach. Moving through stages 1- 4 successively 

advances integration of climate change impacts into existing water supply risk assessment procedures and 

builds capacity to adapt to impacts of climate change. Stages 1 and 2 support anticipation of impacts, 

stage 3 supports evaluation of responses, and stage 4 supports evolvement to adapt.  

Appropriate tools for each of the stages are required. Risk screening offers scope for the 

large-scale approach needed at stages 1 and 2, drawing on pooled data for empirical 

modelling, while at stage 3 tools are required to support a more detailed analysis and 

risk control option identification and implementation. At stage 4, approaches and tools 

are needed that support connecting multiple overarching objectives and goals.  

The research aims to test the proposed staged approach in a national context for 

Scotland, based on Scotland’s public water supply. Thereby, the following research 

questions (RQs) are explored:  

RQ 1: How is climate change likely to impact raw water quality of Scotland’s 

public water supplies? 

The basis for exploring this question is that water quality is intrinsically linked to the 

source catchment characteristics, natural or modified through human activity. Therefore, 
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changes that catchments experience will translate into changes in water quality. 

Understanding which catchment properties influence water quality provides insight into 

catchment sensitivities, and how this makes them vulnerable to drivers and pressures. 

Looking at how pressures are projected to change then provides a basis for estimating 

potential impacts on catchments and thus water quality. To this end, the thesis explores 

the following aspects: 

Assessment 1.1: What are current water quality concerns regarding drinking water, 

how do catchment characteristics relate to these, and can water quality “profiles” be 

identified, i.e., can catchments be grouped or categorized according to similar patterns 

in current water quality and related pressures?  

This question relates to stage 1 in the proposed approach. Moving on to stage 2: 

Assessment 1.2: How are current issues likely to be impacted by climate change due to 

catchment sensitivities, and what are consequences for other water quality issues, 

including emerging concerns?  

Drawing on results from these assessment steps under RQ 1, the thesis will further 

explore: 

RQ 2: How can risks to water quality from climate change be managed in a 

drinking water context? 

The assessment will identify gaps in knowledge and help to distinguish aleatory and 

epistemic uncertainties. To answer RQ 2, the thesis will discuss what current limits to 

knowledge are; if, where, and how these limits might be pushed, and what tools could 

help to further identify, shape, and implement adequate response strategies, thus 

enabling stage 3 and 4.  

In this context, the thesis aims to reflect on: 

RQ 3: What role does a catchment approach play in mitigating and adapting to 

climate change? 

There has been an increasing focus on catchment approaches to stabilize and improve 

water quality. The thesis will use the results of RQ 1 and RQ 2 to discuss the benefits of 

ecosystem-based adaptation, the challenges to implementing catchment management 

approach, and ways to take better advantage of the benefits that also support advancing 

multiple policy objectives. 
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The national assessment of Scotland is used to demonstrate the approach and draw 

conclusions on how a more systematic and strategic inclusion of climate change 

considerations into water quality management could be achieved. It also allows to more 

broadly reflect on the merits of 

- a dataset with extensive spatial coverage for drawing conclusions about 

temporal dimensions of risk; 

- risk-screening as a first-order risk ranking tool to facilitate the inclusion of 

future and emerging issues into established risk assessment procedures; 

- catchment profiling to contextualise results and support programme-level risk 

management and decision-making; 

- different types of modelling approaches (empirical, risk-based, process-based) 

for different stages of risk assessment 

Scotland relies on surface water sources especially for larger supply systems, rather than 

on groundwater which is a very important source of drinking water in many countries 

globally, and especially for smaller supplies (Howard et al., 2006). Nevertheless, the 

proposed framework is adaptable to different, catchment-based supply systems. Using 

Scotland as a demonstration case benefits from exploring a heterogenous landscape, 

diverse water resource management approaches, and policy recognition for improved 

risk-based approaches to help secure and maximise multiple benefits in a changing 

world (Scottish Government, 2011; Water Resources (Scotland) Act 2013). Scotland 

has the ambition to become a ‘Hydro Nation’, which seeks to use its knowledge and 

expertise to benefit the economy through innovative management practices (Muscatelli 

et al., 2020). Public-sector organisations such as Sottish Water, as the provider of public 

water supply and wastewater services, are key partners in this endeavour, pushing their 

role towards contributing to overarching policy objectives that underpin Scotland’s 

sustainable development. This research seeks to advance this by providing insights into 

approaches that support risk assessment, management, and decision-making for multiple 

benefits under deep uncertainty. 
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1.2 Structure 

The thesis is split into 7 chapters (Figure 1.2). Chapter 2 gives further background on 

relevant concepts and terms in the context of climate change and water quality, risk 

assessment, catchment management, and includes an introduction to Scotland. Chapter 

3 describes the approach to the national assessment, including data sources, preparation, 

and summary statistics for both catchment data and water quality data, and explains 

how these data are used in the research. Chapter 4 covers the analysis into relationships 

between catchment characteristics and water quality and explores possible catchment 

profiling, constituting Assessment 1.1. It includes a review of relevant literature in the 

field of catchment - water quality relationships, an explanation of the methodologies 

used for the analysis and discusses the results, also with regard to their implications for 

the further work within this research. Chapter 5 and 6 both further analyse data on 

specific water quality indicators, colour and E. coli, aiming to provide Assessment 1.2 

and resulting in risk screenings for these particular indicators. These chapters include 

some further background on current knowledge around sources and processes for these 

water quality indicators, and explain rationale and methods for the risk screenings. 

Chapter 7 more broadly discusses the results from chapter 4, 5 and 6, to reflect on 

lessons learned from the national assessment for all RQs. 
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Figure 1.2: Schematic illustration of the content and structure of the thesis. Chapter 1 introduces the topic 

and research questions (RQ). Chapter 2 provides a wider context and the background for the national 

assessment used to test the proposed framework for integrating climate change impacts into raw water 

quality risk assessment. Chapter 3 – 6 present the approach and results. Chapter 7 discusses the 

assessment in the context of the outlined RQs.  
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2. Scientific, policy and socio-economic context 

The research sits in the context of risk assessment for managing climate change impacts 

on drinking water quality, using data from Scotland’s national public water supply 

utility. This section provides necessary background on important concepts, terms, and 

literature in relevant fields. It starts with a summary of projected climate change and 

implications for water quality (2.1). It continues with an overview of risk assessment in 

general and within the climate change and drinking water context, and introduces 

approaches and tools that can support risk assessment (2.2). It reviews measures to 

protect water quality within the catchment and concepts around building resilient 

catchments (2.3), and finally explains the regulatory framework, natural and man-made 

conditions, and climate change impacts for water quality in Scotland to provide the 

context for the national assessment (2.4).   

 

2.1 Climate change and water quality 

Over the past decades it has become increasingly clear that global warming driven by 

emissions from human activities is happening and that we are experiencing changes 

unprecedented over millennia. The nature and impact of global warming will vary 

across regions, but all regions are expected to experience more hot extremes and less 

cold extremes, and most regions are expected to see intensified extreme precipitation, 

flooding, and drought events (IPCC, 2021). This has profound impacts on hydrological 

regimes with consequences for water quality.  

Water quality is determined by the catchment - the area of land from which water drains 

into a stream, river, or lake - and the properties of and complex interactions between 

atmosphere, land, and water within this area. Substances are exchanged with the air, 

soil, flora, and fauna and reach water. Human activity also influences the presence and 

concentration of substances either by introducing them directly or by influencing natural 

processes and changing the equilibrium of exchange (Boyd, 2015). Water quality will 

vary throughout the year and between places as it is influenced by the hydrological 

processes that transport water. The water quality at a point in a stream or lake, at a given 

time, is a result of the flow paths, including direct runoff, shallow flow-through (water 

residing in the ground a few days) and groundwater base flow (water residing in the 

ground for years) (Weatherhead & Howden, 2009). There are numerous physical, 

chemical, and biological variables to describe water quality, and what constitutes 
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“good” quality and which variables are used to describe it depends on the purpose 

(Boyd, 2015). In terms of drinking water, good water quality is usually defined as being 

safe for human consumption (see 2.2.2).  

 

2.1.1 Drivers for water quality 

If water quality doesn’t meet the requirements, it’s considered polluted, and origins of 

pollution can be local as well a global, natural, or man-made. Today, even remote or 

protected areas of the world are influenced by anthropogenic pressures. Emissions can 

be transported through the atmosphere, one well established effect being acidification of 

catchments through sulphur, and increasingly through nitrogen oxide from vehicle 

emissions, although heavy metals are also deposited in catchments and reach surface 

waters (Soulsby et al., 2002). Over the past years, it has also increasingly been realised 

that microplastics have been distributed globally through aquatic environments, with 

severe impacts on living organisms (Hamid et al., 2018). 

Local pressures include pollution through discharges from urban and industrial sources.  

Urbanisation is associated with deterioration in water quality due to increased sediment 

load, heavy metal and nutrient input, and bacterial pollution (Schoonover & Lockaby, 

2006). Because of the high percentage of impervious areas, pollutants on surfaces can 

get washed directly into surface waters. Pollution occurs during storm events and sewer 

overflow, through treated or untreated outfall and through diffuse sources (Borja et al., 

2006). Industries such as petrol, chemicals, paper, textiles, food processing or 

construction can cause pollution through discharges (Borja et al., 2006). Old and 

abandoned mines can discharge polluted water rich in sulphate, iron, or aluminium into 

surface waters (Robins, 2002). 

Agriculture has a direct impact on stream water quality through point and diffuse 

pollution. Arable cultivation and improved pasture are associated with increased 

nutrient runoff and have been identified as one of the major inputs for nitrogen (Allcock 

& Buchanan, 1994; Bouraoui & Grizzetti, 2014). Pesticides and bacterial pollution also 

originate from agricultural activities (Reichenberger et al., 2007, Hooda et al., 2000). 

Natural forests are generally associated with good water quality and some forest 

ecosystems, particularly high elevation cloud forests, can even provide a higher quantity 

of water (Dudley & Stolton, 2003). By contrast, plantation afforestation can have a 

number of negative impacts on water quality (Calder, 2007). Forests can deteriorate 



13 

 

stream acidity by scavenging pollutants from the atmosphere, by increasing nutrient 

uptake from the soil, through soil erosion associated with tree-planting, and drainage 

operations (Soulsby et al., 2002). Roads established for woodland management can also 

change water balance relations and hydrological response, creating new interception, 

throughflow and runoff dynamics (van Dijk & Keenan, 2007). Forestry operations 

involving the use of heavy machinery and using poor practice in site preparation, 

planting, thinning, and harvesting, and frequent disturbance through firewood and litter 

collection or overgrazing, can damage the soil, increase runoff, and mobilise sediment 

and other pollutants (van Dijk & Keenan, 2007). In contrast, afforestation with native 

woodland is thought to have almost no implication on stream acidity, although 

catchments with managed forests have shown lower levels of pollution with faecal 

coliforms than unmanaged forests, possibly due to a lowered biodiversity (Schoonover 

& Lockaby, 2006).  

A general degradation of natural habitats, especially wetlands, caused by a multitude of 

impacts including for example the introduction of invasive species or habitat 

fragmentation, reduces ecosystems’ natural ability to purify water, also leading to water 

quality degradation (Hefting et al., 2013). Bogs and fens for example act as nutrient 

retention areas, particularly for phosphorus and inorganic nitrogen originating from 

fertilizer use (Bragg, 2002). Artificial drainage of peatlands on the other hand can lead 

to high concentrations of dissolved organic carbon and of brown ferric hydrites 

(Heathwaite et al., 1993). 

Pressures on and pollution sources for catchments and water sources and their impacts 

for water quality are summarised in Figure 2.1. 
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Figure 2.1: Illustration of drivers resulting in catchment pressures, causing polluting substances to reach 

surface water bodies, and consequences for raw water quality. 

 

2.1.2 Future changes and their impacts on raw water quality 

Each of the last four decades has been successively warmer than the one before (IPCC, 

2021). Global surface temperature between 2001 and 2020 has risen by 0.99°C from the 

period of 1850-1900 (IPCC, 2021). Impacts of these changes include poleward shifts of 

climate zones in both hemispheres and a lengthening of the growing season, increases in 

extremes such as heatwaves, droughts, heavy precipitation, floods and tropical cyclones, 

alteration of hydrological regimes through changes in precipitation or melting snow, 

and many species have experienced shifts in geographic ranges, seasonal activities, 

migration pattern, abundance, and species interaction. Surface temperature will continue 

to rise over the 21st century by at least 1°C, and potentially by up to 5.7°C, with 

impacts increasing in direct relation to increases in temperature (IPCC, 2021). Climate 

change has already caused substantial damages and losses in terrestrial, freshwater, 

coastal and marine ecosystems, with deterioration of ecosystems structure and function, 

resilience and natural adaptive capacity, and associated negative socioeconomic 

impacts. Increases in frequency and intensity of extremes, and changes to streamflow 

magnitude, has led to a loss in water security and it is projected that risks associated 

with water availability and water-related hazards will continue to increase (IPCC, 

2021). In terms of water quality, climate change is expected to have direct as well as 

indirect consequences.  
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Changes in water temperature, soil temperature, and precipitation patterns affect 

concentration as well as number of substances in surface waters. An increase in water 

temperature will change physical and chemical processes, for example dissolution in 

water, solubilisation, complexation, degradation, and evaporation, leading to increased 

concentration of dissolved substances, decreased concentration of dissolved gases, and 

changes to the rate of bacteriological processes which will favour the survival of 

pathogens and lead to toxic algal blooms (Delpla et al., 2009; Watts et al., 2015). Low 

flows in summer mean that there is less water available for dilution of pollution, which 

may cause problems downstream of point sources. Increases in precipitation will likely 

lead to increased solute and sediment transport, and nutrient leaching (Watts et al., 

2015). It is also possible that climate change will cause more runoff of particulate and 

dissolved organic carbon from peatlands. Increasing trends in dissolved organic carbon 

(DOC) have been observed across the Northern Hemisphere for the past decades 

(Monteith et al., 2007; Sawicka et al., 2017), although there is no scientific consensus 

what the main drivers for increased DOC release into surface waters are (Delpla et al., 

2009). Discussed causes are increasing temperatures (Cole et al., 2002; Freeman et al., 

2001), recovery from acidification (Evans, Chapman et al., 2006; Monteith et al., 2007), 

changes in hydrology (Tranvik & Jansson, 2002), and land management and peatland 

drainage (Worrall, Armstrong & Adamson, 2007; Worrall, Armstrong & Holden, 2007; 

Yallop & Clutterbuck, 2009). Apart from the problems organic carbon itself causes for 

drinking water quality, it is also possible that DOC facilitates the transport of dissolved 

lead, titan, and vanadium in peatlands after storm events (Rothwell et al., 2007). 

Extreme weather events are known to cause water quality incidents (Khan et al., 2015; 

Young et al., 2015) and more frequent extremes are therefore concerning for drinking 

water providers.  

Indirect impacts of climate change are effects on urban, industrial, or agricultural 

activities that in turn affect water quality through distribution as well as intensity of 

pressures. Important changes in land use include a likely change in land used for 

agriculture (Brown et al., 2010, Rounsevell et al., 2006), with associated changes in 

pressures induced by agriculture. For Europe, forest areas are also predicted to increase 

(Rounsevell et al., 2006). Growing populations will increase pressures from 

urbanisation, e.g., with more frequent or more severe sewer overflow events (AECOM, 

2015), but also from industry and agriculture. Carbon emissions mitigation measures 
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can also affect water quality and quantity, for example the expansion of renewable 

energy schemes such as hydropower (Rosenberg et al., 1997).  

 

2.2 Risk assessment and management  

The term, or the concept of, ‘risk’ lacks a universal definition, and what risk is 

understood to mean and comprise often depends on the disciplinary context (Wassénius 

& Crona, 2022). In the simplest form, it is defined as the product of likelihood of an 

event multiplied by its consequences (Adger et al., 2018; Gormley et al., 2011), leading 

to risk matrices that allow the scoring or ranking of risks (Figure 2.2). 

 

Figure 2.2: Example of a risk assessment matrix, used to assign risk levels according to their likelihood 

and severity of consequences (reproduced from Gormley et al., 2011). 

A risk assessment under this definition then in sequence: identifies a hazard (an agent 

that may cause adverse effects), assesses the consequences, and assesses the probability, 

to characterise the risk. Especially in a climate change context however, this way of 

defining risk has been criticised for its limitations (Adger et al., 2018; Challinor et al., 

2018).  

 

2.2.1 Climate change context 

Traditional approaches to risk assessment, based on probabilities derived from historic 

data, are no longer adequate in a climate and global change context where “stationarity 

is dead” (Milly et al., 2008) and uncertainty high. Uncertainty can be defined as “any 
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departure from the (unachievable) ideal of complete determinism” (Walker et al., 2003). 

Walker et al. (2003) distinguish five levels of uncertainty between complete certainty 

and total ignorance, with level 4 (multiple plausible alternatives for which no 

likelihoods can be assigned) and level 5 (unknown future) classed as deep uncertainty. 

A distinction is also made between aleatory and epistemic uncertainty, with aleatory 

uncertainty stemming from natural variability, and epistemic uncertainty due to lack or 

ambiguity of knowledge (Maier et al., 2016). While it can be argued that all uncertainty 

is epistemic as lack of, or inadequacy of, knowledge (Der Kiureghian & Ditlevsen, 

2007), it is practicable to distinguish between uncertainty that can be reduced through, 

for example, increased data sharing, collection and analysis, and uncertainty that is 

practically not reducible.  

 

I. The concept of risk 

In view of this, the concept of risk in a climate change context has evolved over the last 

decades and is much influenced by the Intergovernmental Panel on Climate Change 

(IPCC) and its reports. From its 5th Assessment Report (2014) on, risk is defined as “the 

potential for adverse consequences for human or ecological systems”. This broad 

definition acknowledges that probabilities cannot always be quantified and that ways 

must be found to assess and manage risks despite uncertainties and complexities. In a 

climate change impact context, risks “result from dynamic interactions between climate-

related hazards with the exposure and vulnerability of the affected human or ecological 

system”. Hazard is defined as “the potential occurrence of a natural or human-induced 

physical event that may cause loss of life, injury, or other health impacts, as well as 

damage and loss to property, infrastructure, livelihoods, service provision, and 

environmental resources”. Exposure is “the presence of people; livelihoods; species or 

ecosystems; environmental functions, services, and resources; infrastructure; or 

economic, social, or cultural assets in places and settings that could be adversely 

affected”. Vulnerability is “the propensity or predisposition to be adversely affected. [It] 

encompasses a variety of concepts and elements including sensitivity or susceptibility to 

harm and lack of capacity to cope and adapt”. Risk is thus the result of the interactions 

of hazard, exposure, and vulnerability (Figure 2.3).  
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Figure 2.3: Risk characterisation by the IPCC, showing risk as the interaction of hazard, vulnerability, and 

exposure (reproduced from IPCC, 2022). 

 

II. Vulnerability and adaptation 

While these terms are defined as above in the latest IPCC Assessment Report, they are 

sometimes used with different conceptions. Vulnerability was originally defined as 

being composed of exposure, sensitivity, and adaptive capacity. In this context, 

exposure is “the nature and degree to which a system is exposed to significant climatic 

variations”. Sensitivity is “the degree to which a system is affected, either adversely or 

beneficially, by climate variability or change. Adaptive capacity is “the ability of a 

system to adjust to climate change (including climate variability and extremes) to 

moderate potential damages, to take advantage of opportunities, or to cope with the 

consequences”. Exposure has thus shifted in its conception, from focusing on impact 

(“the degree…”) to spatial conceptualisations (“the presence…”) and has become a part 

of the risk concept. Sensitivity and adaptive capacity remain important components of 

vulnerability, although focusing on harmful impacts. It is also distinguished between 

outcome, or end-point vulnerability, and contextual, or starting-point vulnerability. 

Contextual vulnerability describes the present inability to cope, while outcome 

vulnerability describes the outcome of a sequence of analyses and consequences that 

remain after adaptation has taken place (IPPC, 2014).  

Adaptation in turn is “the process of adjustment to actual or expected climate and its 

effects” (IPCC, 2014), and it involves actions spanning local, national, and regional 

scales from individuals to public bodies, governments, to international agencies (Adger 

et al., 2005). Comprehending the effectiveness of adaptation actions is hampered by 
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several factors, among them uncertainty about the future state of the world (Adger et al., 

2005).  

 

III. Resilience 

Another important concept in this context is that of ‘resilience’, a term that originally 

stems from ecology and refers to the capacity of ecosystems to absorb external 

disturbances, maintaining its functions and services. It encompasses the system’s ability 

to resist, not losing its processes and structures; and to recover, returning to its original 

state after a disturbance. The term has been taken on in social sciences and for socio-

ecological systems (Tompkins & Adger, 2004; Gallopin, 2006). Especially in the 

context of complex social systems and climate change adaptation, the concept has been 

questioned and the term has been widened to include a system’s capacity to self-

organise and adapt, and to adapt and cope, although the latter could be seen as 

impinging on the concept of adaptive capacity (McEvoy et al., 2013). There remains a 

lack of consensus around the term, and a gap between the theory of “increasing 

resilience” and understanding of how to achieve this in practice (Morecroft et al., 2012). 

The IPCC follows a wider definition of resilience, adapted from the Arctic Council: 

“The capacity of social, economic, and environmental systems to cope with a hazardous 

event or trend or disturbance, responding or reorganizing in ways that maintain their 

essential function, identity, and structure, while also maintaining the capacity for 

adaptation, learning, and transformation” (IPCC, 2014). Resilience remains an 

important concept in climate change adaptation management to avoid negative impact 

of climate change.  

 

2.2.2 Drinking water context 

The primary objective of a drinking water provider is to provide safe and sufficient 

drinking water reliably and affordably to consumers. The Bonn Charter, developed by 

the International Water Association (IWA), sets out an industry “best-practice” 

framework for water management with an emphasis on consumer interest, transparency, 

and stakeholder responsibilities, and formulates the overarching goal as “good, safe 

drinking water that has the trust of consumers” (Figure 2.4).  
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Figure 2.4: Bonn Charter framework for the delivery of safe and reliable drinking water (reproduced from 

IWA, 2004). The supply system is here shown as comprising of four major chain components: Water 

resources and sources, treatment, distribution system and consumer system, all of which are covered and 

risk assessed under Water Safety Plans, to achieve the goal of good, safe drinking water that has the trust 

of the consumers. 

Under the Sustainable Development Goal 6, Target 6.1 is to achieve “universal and 

equitable access to safe and affordable drinking water for all [by 2030]”. While there is 

no international benchmark on what constitutes affordable, it is understood that paying 

for safe drinking water “must not limit people’s capacity to acquire other basic goods 

and services guaranteed by human rights, such as food, housing, health, clothing and 

education” (United Nations General Assembly, 2015). In many countries, independent 

regulators oversee affordability of water services (WHO, 2017a). So, water utilities 

need to focus on making sure there is always enough (reliably sufficient) water that 

always meets the required quality (reliably safe), and to do this as economically 

efficiently as possible (affordably). Especially the latter part means that a risk-based 

approach is increasingly used, whereby risks from failing the objective are balanced 

against the costs of securing it.  

 

I. Standards for drinking water quality 

In terms of ‘reliably safe’, the World Health Organisation states that “safe drinking-

water, as defined by the Guidelines, does not represent any significant risk to health 

over a lifetime of consumption, including different sensitivities that may occur between 

life stages” (WHO, 2017c). The levels of contaminants that meet these requirements, or 

in other words, that constitute an acceptable level of risk, are usually set out in water 
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quality standards. There are no internationally set standards, but the WHO has produced 

guidelines that set levels for a wide range of water quality parameters, and most 

countries have standards for drinking water quality that are aligned to the WHO 

guidelines (WHO, 2017a). Such regulatory standards are the ‘reliably safe’ margins and 

water utilities are hence not necessarily concerned about improving water quality to the 

maximum possible, but to the required minimum. 

The main reason for treating drinking water is health related, and dangers to health can 

arise from microbiological pollution, and pollution with chemicals or radioactive 

substances. Apart from health however, water might also be treated for aesthetic and 

acceptability reasons to improve appearance, odour, or taste. 

Microbiological pollution, including bacteria (e.g., Escherichia coli, Salmonella), 

viruses (e.g., Hepatitis, Noroviruses, Rotaviruses) and parasites (e.g., Cryptosporidium), 

mainly originate in drinking water from human or animal faecal pollution. They reach 

water bodies in a variety of ways, e.g., through badly sited latrines and septic tanks, 

spills of slurries from farms, runoff from agricultural land or hard surfaces, or 

discharges from treatment works (Fawell & Nieuwenhuijsen, 2003). Sometimes, 

organisms also grow in source water or in water distribution systems (WHO, 2011). 

Waterborne diseases are still a significant cause of death in many parts of the world 

(Kanamori et al., 2016; Ma et al., 2022; Prüss-Ustün, 2016), and outbreaks of infectious 

diseases are the most common health risk associated with drinking water.  

Except for nitrate, chemical pollution often only becomes a health risk after an extended 

exposure of several years (WHO, 2011), as exemplified in Bangladesh and West 

Bengal, India, where arsenic naturally occurs in groundwater sources (Chowdhury et al., 

2000). Chemicals might enter the water sources from natural deposits in rocks and soils, 

from industrial sources or human dwellings, such as processing factories, mines, and 

sewage, or from agricultural activities. Some chemicals, such as trihalomethanes, also 

occur in the disinfection process (WHO, 2011). Naturally occurring chemicals of health 

concern are arsenic, barium, boron, chromium, fluoride, selenium, and uranium. Some 

chemicals that are not of health concern may however affect the acceptability as 

drinking water, such as iron or manganese. Chemicals from industrial sources that are of 

concern are mainly heavy metals and solvents and include for example cadmium, 

mercury, benzene, dichlormethane, or tetrachlorethane, among others. Chemicals from 

agricultural sources are mainly pesticides, and nitrate. Nitrate and nitrite are linked to 

methaemoglobinaemia in infants and toxicity in adults (Sharpley et al., 2009). 
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Dangers from radioactive substances in drinking water is usually much smaller than 

from microbial or chemical pollution. Radionuclides can enter water naturally or from 

man-made sources, the latter of which are usually easier to control and have lower 

radiation. Naturally occurring radionuclides are therefore of higher concern (WHO, 

2011).  

Water that has an unpleasant appearance, odour or taste is likely to be rejected by the 

consumer, even if it is safe to drink. This can be caused by biological sources or 

processes, chemicals, or during water treatment. Examples include cyanobacteria 

(causing colouration and turbidity after filtration, or compounds detectable by taste), 

chlorine (impacting taste and odour), iron and manganese (causing colouration) or 

sulphate (noticeable taste, as well as causing a laxative effect in high doses on 

unaccustomed customers) (WHO, 2011). 

There is no international binding standard of what constitutes safe water. The setting of 

water quality standards is perceived to be a national affair, and many countries have 

adopted a set of standards or guidelines for drinking water providers to protect the 

health of their citizens and ensure provision of water that is safe and acceptable for 

drinking (see Table 2.1 for examples).
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Table 2.1: Selected substances of interest in drinking water, with their sources, health implications, and standards set in the WHO drinking water guidelines (WHO, 2017c) and in the EU 

drinking water directive (Directive (EU) 2020/2184). 

Substance Source Implication for drinking water  WHO guidelines EU standard 

Arsenic Widely found in the Earth’s 

crust. Mainly low concentrations 

in water, but groundwater can 

have elevated levels. 

Can cause dermal lesions, peripheral neuropathy, skin cancer, 

bladder cancer, lung cancer. Effects on cardiovascular system 

in children.  

10 µg/l 10 µg/l 

Benzene Vehicle emissions are the main 

source for benzene in the 

environment. 

Acute exposure effects the central nervous system. Lower 

concentrations can cause haematological changes, including 

leukaemia. It is carcinogenic to humans. 

10 µg/l 1 µg/l 

Cadmium Occurs in water through 

wastewater discharges or diffuse 

pollution from fertilizers or air 

pollution. 

Accumulates in the kidneys, but no evidence of 

carcinogenicity. 

3 µg/l 5 µg/l 

Colour Predominately because of 

coloured organic matter, but also 

through iron or other metals. 

Might indicate pollution. Colour can also raise doubts about 

the safety of the water in customers and cause supply of water 

from another (potentially unhealthy) source. 

none Acceptable to 

consumers and no 

abnormal change 

E. coli  Contamination with human or 

animal faeces. 

Indicator for faecal contamination, so detection will/should 

trigger further investigation or supply stop. 

0/100 ml 0/100 ml 

Fluoride Naturally present. Elevated 

levels through dental 

preparations. 

Offers dental protection at concentrations of 0.5mg to 2mg per 

litre of water but may also cause mild dental fluorosis at 

concentrations of 0.9-1.2mg/l 

1.5 mg/l 1.5 mg/l 

Iron Naturally present or as a result of 

corrosion in pipes. 

No health concerns. Can cause colouration. none 200 µg/l 

Nitrate Naturally present, but can also 

reach water from agricultural 

activities, wastewater discharges, 

septic tanks. 

Nitrate can be reduced to nitrite in the gastrointestinal tract, 

especially in individuals with gastrointestinal infections. 

Nitrite reacts with haemoglobin, blocking oxygen release. In 

infants, this can cause cyanosis (blue baby syndrome).  

50 mg/l 50 mg/l 

Trihalomethanes Result of chlorination of organic 

matter. 

Some forms may be carcinogenic, but research is 

inconclusive. Possible increased risk of stillbirth or 

spontaneous abortion through Bromodichloro-methane. 

The sum of the ratio of the 

concentration of each to its 

respective guideline value should 

not exceed 1 

100 µg/l (total) 
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II. Water utility risk concepts 

MacGillivray et al. (2006) summarise risks posed to water providers and introduce a 

risk hierarchy explaining that risks are managed at the strategic, programme and 

operational level (Figure 2.5).  

 

Figure 2.5: Conceptual illustration of the risk hierarchy for water services providers, comprising risks on 

strategic, programme, and operational levels (reproduced from MacGillivray et al., 2006). 

At the strategic level, risk management for the water utility includes risks from 

regulatory systems, from competitors, risks from improving financial and operation 

efficiencies (business process re-engineering), from new technology, from outsourcing 

activities such as maintenance, distribution, billing etc., and from employee retention.  

On the programme level, risk management involves analysis and management of assets,  

network, catchments, and vulnerability to large-scale disasters. This involves an 

integrated, systematic process that identifies and analyses at-risk infrastructure, often 

involving a system of prioritising or risk-ranking assets and network components to 

inform and support risk reduction efforts and focus attention on the most serious threat 

to system performance. Risk screening approaches seem particularly suited for this 

level. In the context of catchments, this often means identifying and concentrating on 

areas and measures that offer the highest possibility of reducing or preventing severe 

impacts from occurring. Tools employed for these analyses include risk mapping using 

Geographic Information Systems (GIS) or, where more detailed analysis is necessary, 

model-based approaches (MacGillivray et al., 2006).  
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On the operational level, site managers have to manage treatment and distribution 

processes to ensure uninterrupted compliant supply. Failure could stem from source 

contamination, human error, mechanical failure, or network intrusion. Risks from 

failure can be examined by looking at the following components: 

- Hazard: What are the effects of failure (mainly human health implications, but 

also e.g., restrictions in water use)? 

- Exposure: What is the size and characteristics of the population effected and for 

how long? 

- Vulnerability: What is the relationship between the hazard and the exposure? 

This can then be combined to estimate the magnitude, variability, and uncertainty of the 

problem, i.e., the risk. Reliability analysis then identifies potential points of failures to 

understand where and what kind of changes are required to reduce the likelihood of the 

failure from occurring. A framework for this kind of assessment are Water Safety Plans 

as set out by the World Health Organisation.  

 

III. Water Safety Plans 

To achieve SDG target 6.1, the WHO outlines and recommends Water Safety Plans in 

their Guidelines for drinking water quality (WHO, 2017c). This “holistic approach to 

the risk assessment and risk management” includes a number of steps aimed at covering 

the supply chain from the source to tap (Figure 2.6).  

Water Safety Plans are developed for each individual supply system consisting of one or 

more water sources (surface or groundwater) and the associated catchment, the 

abstraction system, the treatment work, water storage systems and the distribution 

network. The European Union has adopted the framework by obliging member states to 

adopt a risk-based approach, however splitting it into separate risk assessments for 

catchments, supply systems (comprising abstraction, treatment, storage, and 

distribution) and domestic distribution systems (Art.7, Directive (EU) 2020/2184 of the 

European Parliament and of the Council of 16 December 2020 on the quality of water 

intended for human consumption (recast)). 
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Figure 2.6: Steps for developing a Water Safety Plan, a comprehensive risk assessment for an individual 

supply system from source to tap (adapted from Bertram et al., 2009 & WHO, 2017c). 

While the guidelines acknowledge likely impacts of climate change on water quantity 

and quality and the need to include these in the assessment, there is no explicit inclusion 

in the plans, but climate change is seen as a specific circumstance for application of the 

guidelines. However, the WHO has published separate guidance on “Climate-resilient 

water safety plans” (WHO, 2017b), describing where climate change aspects can be 

addressed within the plans: when assembling the team (module 1), when describing the 

system (module 2), when assessing hazards and associated risks under existing control 

measures (module 3 and 4), when planning additional control measures and long-term 

investment (module 5), and when preparing management procedures and supporting 

programmes (module 8 and 9). Interestingly, the EU directive 2020/2184 specifically 

mentions that risks from climate change should be considered in the risk assessment for 

the supply system (Art.9, Nr.2 (c)), but does not mention climate change for the 

catchment risk assessment. 

WHO states that the description of the system should include, among others, the 

“reliability of source yields (considering seasonal variability and variability between 

years, for example due to droughts)”; the “historical water quality data and relationship 

with source yields”, “future climate projections that could impact the water supply”, 

“water quantity and quality implications of current and projected climatic conditions”, 

and “trends in land use and population growth impacting water resources supply or 
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demand”. This means that drinking water providers need to know (1) the nature, scope, 

and uncertainty of possible changes in climate, (2) its impact on quantity and quality of 

water supply, and (3) the nature, scope, and uncertainty of (potential) control measures. 

Climate change could lead to changing the likelihood or magnitude of a problem, or it 

could lead to newly emerging issues. In WSPs, inclusion of climate change introduces 

another, temporal, dimension. In practice, this could lead to a change of the risk 

assessment score, or introduce a new score such as increasing, decreasing that 

influences a risk-ranking/prioritisation system. For example, an issue that was formerly 

not prioritised could be put onto the “review” list due to being assessed as “increasing”. 

It could also introduce a hazard that was formerly not identified.  

 

2.2.3 Approaches and tools 

Whereas risk assessment typically involves the statistical analysis of prior events 

(magnitude and frequency), the challenge for the determination of future risks depends 

on the dynamic interplay of respective hazard, exposure and vulnerability determinants 

(Viner et al, 2020). While probable changes in hazards are often acknowledged, it can 

be more challenging to incorporate temporal dynamics in exposure and vulnerability 

(Jurgilevich et al., 2017). Related to this is the complexity and inter-relatedness of 

systems, creating “cascading risks in physical systems, ecosystems, economy and 

society” (Adger et al., 2018). Policymakers need to make decisions with short-term as 

well as long-term consequences and at the intersect of different policy-areas, and ways 

to include risk transmission such as improving modelling methodologies, cross-sectoral 

modelling, qualitative approaches like analogues and scenarios, and mixing approaches 

are discussed (Challinor et al., 2018). Furthermore, it is debated how to deal with 

uncertainty as an inherent feature of risk assessment, with attempts to reduce 

uncertainties around climate predictions on the one side and arguments that accurate 

predictions are not necessary for adaptation action on the other. Instead, it is argued that 

strategies are needed that perform well over a wide range of assumptions about the 

future and are thus insensitive to uncertainties, so called robust decision processes 

(Dessai et al., 2009).  
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I. Robustness 

As in many other areas of planning, drinking water suppliers must take decisions now 

that concern long-term investments, such as upgrading or building new water treatment 

works, managing or building new reservoirs, switching to or adding new water supply 

sources, mitigating and averting impacts on water supply catchments and water bodies, 

etc. These decisions typically span a time of 40-50 years, meaning climate change 

impacts will have to be considered. There are different possible approaches that could 

be applied to come to a decision about management strategies and investments: 

optimum, precautionary, and robust approaches.  

In the optimum approach, attention focusses on the scenario that is considered the most 

likely. This approach is advised where the relationships between cause and effect are 

well characterised and understood, the values and priorities are clear, uncertainty is well 

defined, and there is a clear best answer (Lempert & Collins, 2007). However, with 

climate change, this is very rarely the case. On the contrary, the deeply uncertain nature 

of climate change projections means that decisions will have to be taken without having 

information that will reliably tell us the optimum solution. The precautionary approach 

as an approach for acting under uncertainty sets out to prevent a future harm that is 

deemed unacceptable, and prevents actions that might lead to this harm. However, it 

often leads to extremely restrictive actions without balancing multiple goals (Sunstein, 

2005). Therefore, robust approaches have been emerging that build on the maxim of 

finding solutions that deliver acceptable outcomes under a wide variety of futures. 

There are several robust decision-making frameworks that vary in their ability to 

address uncertainty and range from being static to dynamic (Walker et al., 2013). 

Among these are for example Robust Decision Making, Adaptive Policymaking, 

Adaptation Tipping Points, or Dynamic Adaptive Policy Pathways (Haasnoot et al., 

2013; Walker et al., 2013). Many robust decision-making frameworks provide means to 

include precautionary aspects while allowing an evaluation of trade-off and a discussion 

about the level of precaution (Lempert & Collins, 2007). 

Hallegatte (2009) distinguishes between several robust strategies: 

- No-regret strategies, with measures that have positive impacts even in the 

absence of climate change, for example reducing water leakage from pipes. 

-  Reversible strategies, for example infrastructure with cheap upgrade 

possibilities. 
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- Safety margins that are very low cost, for example designing infrastructure that 

can cope with the most pessimistic climate scenario from the start rather than 

retrofitting. 

- Soft strategies, including institutional and financial tools, such as long-term 

plans, insurance schemes or early warning systems. 

- Reducing the decision-making time horizon by choosing investments with a 

shorter lifespan. 

- Considering synergies and conflicts between strategies, for example adaptation 

options that are energy-intensive would not be compatible with mitigation 

policies.   

Robustness and flexibility are important criteria for decision-making under uncertainty, 

but especially when the consequences of a particular occurrence are disastrous (for 

example from contaminated drinking water), decision-makers might rather be guided by 

precaution, meaning that they will design their response under the presumption that this 

particular risk will materialize. Practically, this usually takes the form of threshold in an 

observable parameter and discard any action that threatens to exceed this threshold 

(Lempert & Collins, 2007). While precautionary approaches could lead to very costly 

measures for reducing a very small risk, measures using the precautionary approach 

may at the same time be robust (e.g., low-cost safety margins). Decision-makers will 

have to balance risk against costs and may well apply several criteria to decide on the 

best response strategy and actions.  

 

II. Models 

Models are invaluable tools to provide a basis for decision-making, but they need to be 

able to efficiently address the purpose. If the model is overly complex, it may introduce 

uncertainty, require efforts into data collection and computation that is not truly 

necessary, and effectively hinder decision-making. On the other hand, models that are 

too simple may not adequately represent key processes or be unable to address relevant 

management questions (Fu et al., 2019). There are different types of models, and many 

different individual models for water quality that could be used in the investigation of 

negative impacts of climate and land use changes on water supply catchments.  

Broadly, two uses of models can be distinguished: improve our understanding of 

catchments and water bodies, or assess different possible impacts (Fu et al., 2019). With 
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regard to the first aspect of improving our understanding, more specifically models can 

be used to identify and quantify sources of contaminants or examine the importance of 

explanatory factors. In the absence of high resolution and high frequency data, models 

can help to fill some gaps and better understand processes, and highlight areas of 

uncertainty. Regarding the second aspect, models can be used to extend information to a 

wider region, predict concentrations or loads based on altered inputs or scenarios, and 

help to develop the range of different possible outcomes based on different futures and 

uncertainties (Fu et al., 2019; Weaver et al., 2013). Models can also be used to identify 

gaps in monitoring and where further monitoring sites may be needed to improve model 

reliability, which is ultimately designed to improve understanding but could well be part 

of a strategy for mitigating and adapting to climate change. In this way, models are 

important to aid decision-making, but they need to be able to deal with the data and 

capacity that is available, their outputs need to be understandable and communicable to 

decision-makers, and they need to be transparent in what kind of information they 

provide, and don’t provide, and the uncertainty attached to it.  

Empirical, or statistical, models use observations to predict outcomes, whereas 

mechanistic, or process-based, models use theoretical understanding to mathematically 

represent processes and enable predictions under altered conditions. While there is a 

great number of process-based models available for catchment water quality modelling, 

only a few are widely used, with some more prone to be used for some regions, such as 

the suite of models developed under the Integrated Catchment model (INCA) in Europe, 

or the eWater Source platform in Australia and Asia, while the Soil and Water 

Assessment Tool (SWAT) is the most widely used model worldwide (Fu et al., 2019).  

SWAT is a catchment model that has been used to model streamflow, sediment, 

temperature, nutrient, pesticide, carbon, and pathogen processes worldwide, using a 

continuous daily time-step (Arnold et al., 1998; Du et al., 2019; Sadeghi & Arnold, 

2002). INCA was originally designed for modelling nutrient patterns in aquatic and 

terrestrial environments (Wade et al., 2002; Whitehead, Butterfield & Wade, 2009), but 

further models have been developed based on it, including for carbon and pathogens. 

While the INCA model family has been more extensively used in Europe, the 

Hydrological Simulation Program-FORTRAN (HSPF), a catchment process-based, 

lumped parameter model, is more widespread in the US. SWAT and HSPF break up the 

catchment into so-called Hydrologic Response Units, which are made up from land use 

in combination with soil type. In INCA, calculations in the terrestrial compartment are 
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performed in 1 km2 cells. The models require a digital elevation model, soil data, land 

use data, precipitation and temperature data, as well as flow and pollutant data for 

calibration and validation. The models have also been used to evaluate the impacts of 

land use and management, mitigation approaches, and climate change (Aherne et al., 

2008; Desai et al., 2011; Ghaffari et al., 2009; Harmel et al., 2010; Hevesi et al., 2011; 

Kim et al., 2018; Kiros et al., 2015; Moyer & Hyer, 2003; Oni et al., 2012; Peterson et 

al., 2011; Whitehead et al., 2016).   

Process-based models require a large amount of high frequency data for calibration and 

validation. These highly parameterised, complex models also often struggle with 

overparameterization, where the model includes more parameters than are necessary 

and thus effects and processes cannot be disentangled. To address this, simpler models 

have been developed with more lumped structures, such as by Birkel et al. (2014) or 

Dick et al. (2015). Another approach to address these issues are risk-based models that 

rely on qualitative or semi-quantitative data (such as expert opinion) to represent 

processes to determine relative risk of pollution or pollution source areas. An example 

for such a risk-based model is the Sensitive Catchment Integrated Mapping Analysis 

Platform (SCIMAP). SCIMAP is a risk-based modelling framework with a distinct 

focus on hydrological connectivity (Reaney et al., 2011). The model tries to identify 

relative importance of areas contributing to a specific problem and was originally 

developed for diffuse fine sediment (Reaney et al., 2011), and later also used for 

nutrient pollution (Milledge et al., 2012) and tested for faecal indicator organisms 

(SCIMAP-FIO; Porter et al., 2017). While taking the processes into account, risk-based 

approaches do not explicitly model them and do not attempt to predict concentrations 

(Oliver et al., 2016), hence delivering no quantitative outputs. 

In catchment-scale water quality monitoring, process-based models may struggle when 

they are required to upscale processes that have been studied at field scale (Oliver et al., 

2009). Furthermore, they cannot be applied where data are non-existent or too coarse to 

provide adequate basis for calibration and validation. In this case, successful predictive 

models can be achieved with empirical modelling (Helliwell et al, 2007; Kay et al., 

2005; McGrane et al., 2014; Rothwell et al., 2010; Schoonover & Lockaby, 2006). Such 

models rely on adequate data that cover potential relevant explanatory variables and 

conditions (De Brauwere et al., 2014; Tetzlaff et al., 2012). They are particularly suited 

as screening tools to understand broad-scale drivers, assess source importance and infer 

spatial controls (Kay et al., 2010; Monteith et al., 2015).  
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III. Risk screening 

Risk assessments need to be appropriately designed to make sure that the outcome 

adequately informs the decision-making process. Risk screening as a prior step can help 

to identify the scope by focusing on the most important aspects, allowing efficient 

allocation of resources (Gormley et al., 2011). Risk screening could have the purpose to 

identify  

- which risks should be included (and which may be neglected),  

- areas or features to prioritise,  

- if enough data are available or additional evidence is needed for subsequent 

assessment,  

- which method is most suited to the problem and data, and/or 

- where immediate action is required. 

Process-based hydrological and water quality models are usually complex and highly 

parametrised which means they need considerable effort and data to set up. Risk 

screening using simpler quantitative or qualitative methods can achieve a risk ranking 

that allows identifying where the effort for more detailed assessment and planning is 

justified (Dunn et al., 2015; Sample et al., 2016). It can also give insight into the nature 

and degree of uncertainty and thus give indications of the most suitable adaptation and 

mitigation strategies. 

 

2.3 Catchment protection and management 

Functioning ecosystems have been increasingly recognised as crucial to sustain 

livelihoods, promote sustainable development, and build resilience against climate 

change (WWAP, 2018). This has led to the concept of Ecosystem-based approaches to 

Adaptation to climate change (EbA), which uses natural capital to adapt to climate 

change impacts by preserving and enhancing ecosystems (Munang et al., 2013). 

Functioning ecosystems provide a range of ecosystem services, which are “ecological 

processes or functions having monetary or non-monetary value to individuals or society 

at large” (IPCC, 2014). Ecosystem services are organised into four categories: 

supporting services (such as sustaining biodiversity), regulating services (such as carbon 

sequestration or water purification), provisioning services (such as food or timber 

production), or cultural services (such as tourism, spiritual appreciation etc.). Water 

utilities rely on two ecosystem services: water provision and water quality regulation, 
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and managing catchments and ecosystems has become of increasing interest to ensure 

supply of high water quality, with potential co-benefits.  

The concept of Integrated Catchment Management (ICM) recognises the catchment as 

the appropriate organising unit for the management of natural resources (Xenopoulos et 

al., 2003) which integrates all environmental, economic, and social issues within the 

catchment into an overall programme or strategy, in order to derive the greatest possible 

mix of benefits for the communities and future generations while preserving the natural 

resources on which they rely (Sharp et al., 2006). It is a people-orientated approach and 

seeks to engage all stakeholders in the catchment through networks and partnerships. 

EbA combines ICM with targeted restoration to promote the resilient qualities of 

complex natural ecosystems. It accepts that the future is intrinsically uncertain and that 

the most effective strategies to reduce risk are measures to improve system resilience, 

thereby ensuring that ecosystems can deliver their various services long-term. EbA 

“uses biodiversity and ecosystem services as part of an overall adaptation strategy to 

help people and communities adapt to the negative effects of climate change at local, 

national, regional and global level” (Carluer & De Marsily, 2004). It includes the 

sustainable management, conservation, and restoration of ecosystems to provide 

services that help people adapt to both current climate variability, and climate change 

(CBD, 2009). 

Using ICM and EbA to safeguard and improve raw water quality for drinking water 

offers the advantages of targeting the problem at its source, within the catchment, in a 

balanced and participatory way that has potentially much wider benefits. These wider 

benefits include for example enhanced recreational possibilities, increased biodiversity, 

reduced flooding, or increased carbon storage (Martin-Ortega et al., 2014; 

Grand‐Clement et al., 2013; Everard, 2013). Many water companies or local 

governments have realised the potential benefits of a catchment approach, and 

catchment initiatives have been increasingly employed over the past decades as a 

starting point to improve water quality and reduce treatment effort. It is difficult to 

reliably estimate quantitative outcomes of initiatives due to the complex and interlinked 

processes within catchments. However, where projects have been successful, it is 

possible to deduce benefits of such initiatives and sometimes to also put a monetary 

value on the gains made.  
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2.3.1 Catchment-based measures to improve water quality 

There are several catchment-based measures that have the potential to improve water 

quality, impacting on a number of parameters looked at in water quality (Table 2.2). 

Many of these concern land management, especially in agriculture and forestry, while 

some involve ecosystem restoration to utilise the functions for water purification these 

ecosystems offer.  

Agricultural impacts can be mitigated through land and farm management, such as 

conservation tillage, targeted and efficient application of fertilizer and manure, keeping 

livestock out of sensitive areas, or observing buffer strips and zones, and these measures 

are well documented and have been summarised for policy or guidance documents (e.g. 

Newell-Price, 2011).  

Afforestation may result in reduced pollutant loads if the new woodland replaces 

degraded agricultural land, through improved soil water infiltration and storage, 

reducing surface runoff.  However, if the soil condition is structurally and hydraulically 

poor, further degradation may occur, and a change from healthy agricultural land to 

forest can increase pollutant loads (van Dijk & Keenan, 2007). Under good 

management, the reduction of surface runoff provided by forests through build-up of 

litter and undergrowth and increased surface roughness should reduce the volume and 

character of sediment, nutrients, or salts reaching the receiving water bodies.  

Instead of converting whole areas of land to another form of land use, small strips of 

land along water courses are used to harvest the potential of unused or differently used 

land to filter pollutants. Riparian buffer strips can have a variety of forms, starting from 

unfertilized agricultural zones to a zone with different vegetation, often trees, and a wet 

zone. They trap nutrients, sediment, or pesticides from upslope areas and function by 

filtering polluted overland and subsurface flows and protecting banks against erosion 

(Mander et al., 2005). On top of this, they are seen to have wider benefits such as 

improving habitats and ecological connectivity, stream shading, carbon sequestration 

and cultural ecosystem services (Stutter, Chardon & Kronvang, 2012). However, the 

effectiveness of buffer strips is down to complex hydrological and ecological processes, 

and depends on many parameters, including characteristics of the strip itself (such as 

width, slope, vegetation height and type, density, or species composition), hydrology 

and rainfall, and sediment transport (Verstraeten et al., 2006). The retention efficiency 

of buffer strips is best when polluted water enters it in short events, i.e., during intensive 
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rainfall or intensive thaws), and when buffer zones consist of different plant 

communities and oil complexes (Mander et al., 2005). It is necessary to place the strip 

where runoff from agricultural land enters the stream directly (Verstraeten et al., 2006). 

Buffer strips also have a finite lifespan to retain phosphorus (Stutter, Chardon & 

Kronvang, 2012) and can start releasing phosphorus into the stream under some 

conditions, for example when the input is below a certain threshold (Mander et al., 

2005). As buffer strips require some land and have, on a landscape scale, lower 

effectiveness than measures on the field (Verstraeten et al., 2006), they are probably 

best employed in a catchment approach when used as a final step in a number of 

mitigation measures.  

Wetlands such as fens, swamps, bogs, or salt marshes, are susceptible to changes in the 

quantity and quality of water and even small hydrological changes can lead to major 

changes in plant communities (Acreman et al., 2007). The loss or degradation of 

wetlands leads to loss of functions, and restoring their natural characteristics and 

function, or constructing new wetlands, is employed to help regain the services they 

deliver, but restoring wetlands requires a good understanding of the hydrology 

underpinning them with questions remaining about water availability at required times, 

the utility of reconnecting river channels to floodplains, and the impact of restoration on 

the hydrological functions of wetlands (Acreman et al., 2007). It is also important to 

consider the context of the wetland in the landscape, as it has been suggested that 

individual restoration projects that are not taking the whole catchment into account can 

achieve only limited impact on water quality and biodiversity in the landscape 

(Richardson et al., 2011). Contrary to the restoration of natural wetlands, constructed 

wetlands have been tools for water treatment since the 1950s. These are often 

hydrologically disconnected from the surrounding landscape; however, wetlands that 

are constructed as part of the landscape have the potential to produce not only a water 

quality benefit, but also provide carbon sequestration, noise screening, or biodiversity 

benefits at substantially lower cost than treatment (Doody et al., 2009; Everard & 

McInnes, 2013).  

Damaged and degraded peatlands have a number of environmental impacts, including 

biodiversity loss, declines in water quality, peat erosion and increasing carbon fluxes. 

Drained peatlands have been shown to release larger concentrations of nitrogen, carbon, 

phosphorus, sediments, and metals into discharge waters (Wilson et al., 2011). Habitat 

restoration projects often try to permit vegetation recovery by raising water levels, 
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involving the blocking of drains. While studies are ambiguous on success and speed of 

recovery of peatland, they show that there is potential for improvement of water quality 

alongside other ecosystem services gains such as carbon storage, increased biodiversity, 

and cultural services (Armstrong et al, 2010; Grand-Clement et al., 2013; Martin-Ortega 

et al., 2014; Wilson et al., 2011). 

Reducing runoff from urban areas can be achieved through measures known 

collectively as Sustainable Urban Drainage Systems, where water is retained or slowed 

down before reaching surface waters. Management practices to prevent pollution from 

urban areas to reach water bodies can be structural, such as rainwater retention and 

pollutant removal systems (e.g., ponds, infiltration trenches, or grassed swales), or non-

structural (e.g., street cleaning, minimization of impervious areas, rainwater reuse 

facilities, green roofs) (Barbosa et al., 2012).  
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Table 2.2: Summary of usual effects of catchment-based mitigation measures on water quality for selected parameters, their cost to landowners, and other ecosystem services 

(+ = positive effect, - = negative effect, 0 = neutral).  

Measure Water quality parameter effected Cost 

effect 

Ecosystem Services effected References 

 N P Microbial Metals & 

chemicals 

Turbidity Colour  Suppor-

ting 

Provi-

sioning 

Regula-

ting 

Cultural  

Measures to 

increase 

fertilizer/manure 

efficiency 

+ + +  +  +     

Newell-Price, 2011; 

Reichenberger et al., 2007; 

Gooday et al., 2014; 

Schoumans et al., 2014; 

Buckley & Carney, 2013; 

Kay et al., 2009; Randall 

et al., 2015; Liu et al., 

2013 

Buffer strips 

 
+ + + + +  -  -   

Soil and crop 

management, e.g., 

conservation 

tillage, cover crops 

+ + + + + + -/01     

Livestock 

management, e.g., 

optimising diets, 

reducing time in 

the field 

+ + +  + + -/+2     

Optimising 

infrastructure, e.g., 

position of feeder, 

watering troughs, 

gates 

+ + +  + + -/0     

Land use changes 

in agriculture, e.g., 

from arable to 

extensive grazing, 

woodland 

 

+ +  + +  - +/0 -  +/0 

 
1There might be an initial outlay to implement the measures, but they are cost neutral in the long run  

2Keeping livestock indoors may induce costs as well as necessitate good management to prevent pollution to water courses from the animal housing; optimising animal diet 

can save costs 
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SUDs + + + + +  n/a   + + 
Herngren et al., 2005; 

Barbosa et al., 2012 

Forest 

management 
+ +  +   n/a +   + 

Van Dijk & Keenan, 2007; 

Calder, 2007; Nisbet et al., 

2011 

Vegetated riparian 

buffer strips 
+ 

+/

-3 
+ + + + n/a +  + + 

Tang et al., 2012; 

Broadmeadow & Nisbet, 

2004; Stutter, Chardon & 

Kronvang, 2012; Mander 

et al., 2005; Verstraeten et 

al., 2006; Anbumozhi et 

al., 2005 

Wetland 

restoration 
+ + + + +  -/+4 + 0/-5 + + 

Acreman et al., 2007; 

Fisher & Acreman, 2004; 

Richardson et al., 2011; 

Wilkinson et al., 2014; 

Grand‐Clement et al., 

2013; Martin-Ortega et al., 

2014; Moxey & Moran, 

2014; Holden, 2005; 

Wallage et al., 2006; 

Armstrong et al., 2010 

 
3Riparian buffer strips need to be managed for P retention and can release P if they have reached their retention capacity or when P input is reduced 

4Although there are costs associated with restoration, research suggest that benefits may outweigh the restoration costs 

5The effect on provisioning services will depend on what use the land was put to before restoration 
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2.3.2 Examples from the drinking water sector 

Taking a catchment approach to improve or stabilize raw water quality is increasingly 

recognised in the drinking water industry to secure water supply in the long-term and save 

costs in water treatment. The number of catchment projects in the drinking water sector has 

increased and while it is difficult to assess their effectiveness e.g., in terms of how much 

costs are being saved in comparison to traditional approaches, or in terms of long-term 

benefits, it is possible to draw general conclusions from the outcomes and lessons learned. 

A key example for a catchment approach, and the economic benefits associated with it, is the 

New York City Watershed Agricultural Program. The drinking water in New York comes 

from the Catskill, Delaware and Croton systems. Based on the quality of the water supply, 

New York City has a temporary exemption, currently running until 2027, to use unfiltered 

water from the mostly forested Catskill-Delaware system that provides 450 million litres of 

water daily to the population of New York City, making up 88% of the supply (NYC DEP, 

2022). In the 1980s, the water quality began to decline due to pressures from intensified 

farming and forestry, and holiday home development. In order to preserve the area and to 

ensure that the water coming out of these catchments for the city stayed of high quality, the 

New York City Watershed Memorandum of Agreement was signed in 1997, setting out a 

programme for land acquisition by New York City as well as regulations and provisions for 

activities within the watershed. They address mainly wastewater treatment, septic systems, 

and storm water pollution (Willett & Porter, 2001). The measures are aimed at conserving the 

natural forest and reducing or eliminating commercial activities that have deteriorating effect 

on land and water. In addition, agricultural activities are controlled through the Watershed 

Agricultural Council, who implement the Whole Farm Planning. In this voluntary approach, 

individual farms and their impact on water quality are assessed and a plan to reduce the 

impact is developed. The Watershed Agricultural Council is farmer-run and financed by New 

York City and achieved a high participatory rate of 93% within five years (Appleton, 2002). 

Turbidity and faecal coliform standards are being continuously met at a reservoir at the 

endpoint of the system, and research at another reservoir indicated that phosphorus loads 

decreased by 50% and 17% for dissolved and total phosphorus respectively (Kousky, 2015). 

In 1990, the city estimated that putting in a filtering system would cost US$ 4 to 8 billion, 

while today it is estimated to cost US$ 8 to 12 billion, with annual running costs of US$350 

million. This would be double the costs of water rates in the city, and substantially more than 

costs of US$ 1.5 billion for the measures under the Memorandum up to 2010 (Kousky, 2015). 



40 

 

 

Benefits to farmers have been named as increased fertilizer efficiency, saving of farmer time, 

and increased herd health. Participating in the programme also means they are exempt from 

New York City’s regulation, and it helps them to meet federal regulations, while preserving 

their autonomy (Kousky, 2015). 

Several private water suppliers in England have started catchment projects, dealing with 

similar but slightly different issues and approaches. United Utilities in the Northwest of 

England faced the problem of water colouring due to peatland degradation as well as to 

pollution from agricultural activity (United Utilities, 2022). Their Sustainable Catchment 

Management Programme (SCaMP) began in 2005 with the aim to improve water quality 

while simultaneously benefit wildlife. The first phase of the project ran until 2010 and 

realised moorland restoration, woodland management, farm infrastructure improvements and 

watercourse protection. SCaMP 2 ran from 2010 to 2015 and enlarged the area of 

intervention and focused on changing farming practices. SCaMP 3 then ran from 2015 to 

2020 and focused on high priority areas in terms of increasing issues around water quality 

and potential for successful intervention and established drinking water safeguard zones. 

Measures carried out under SCaMP included restoration of blanket bog by blocking drainage 

ditches and gullies, restoration of eroded and exposed peat, restoration of hay meadows, new 

woodlands, scrub planting, restoration of heather moorland, improving livestock housing, 

new waste management facilities, livestock fencing, and assistance to farmers to enter Higher 

Level Stewardship schemes. The scheme also includes a monitoring programme. Overall, the 

effects are seen as beneficial with significant effects on water quality, e.g., colour production 

is stable or slightly decreasing over the monitored period for most sites (United Utilities, 

2022). Estimates for the value created through the restoration efforts have been put at £152 

per hectare and year for unmanaged moorland habitat, and £180 per hectare and year for new 

woodland (Morris & Holstead, 2013). 

South West Waters entered into a partnership with the Devon Wildlife Trust, the Cornwall 

Wildlife Trust, the Westcountry Rivers Trust and the Exmoor National Park Authority to 

implement the Upstream Thinking project. The project started in 2010 and focused on two 

main elements: changing farming practices through advice and grants to farmers, and 

peatland restoration. Grants for farmers can be used to improve slurry storage, livestock 

fencing, alternative water sources, or pesticide management including new equipment.  

Within the programme, over 2780 ha of peatland were restored, and research carried out by 

the University of Exeter showed that the restored bogs release a third less water during storm 
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events in shallower peats and two thirds in deep peat, and only about one third of dissolved 

organic carbon compared to pre-restoration (SWW, n. d.). South West Water envisaged a 

spending of £9.1 million, but estimate the benefit:cost ratio at 65:1 over 30 years (Morris & 

Holstead, 2013).  

Yorkshire Water focuses on restoration of peatland, as upland, peatland dominated 

catchments are the main drinking water catchments. This includes blocking of gullies and 

grips, seeding with nurse crops such as grasses and covering with heather brash, and has been 

carried out on 3250 ha of degraded peat. Yorkshire Water has also been part of ancient 

woodland restoration projects. As a result, habitat has improved for a range of bird, fish, 

reptile, plant, and dragonfly species, as well as for the red kite which have been released and 

produced 430 young birds in the area (Morris & Holstead, 2013). 

Wessex Water work with farmers and land managers through catchment advisors and 

financial assistance for farmers. They estimate that this approach costs them one sixth of a 

more traditional engineering approach (OFWAT, n. d.). 

The mineral water brand Vittel belongs to Nestlé Waters and its water stems from a spring in 

the French Vosges mountains. Towards the end of the 1980s, the water quality deteriorated 

due to nitrate input from agricultural practices in the Vittel catchment. This posed a threat to 

the company as it might have lost the right to market the water as “natural mineral water” and 

suitable for infant feeding. Vittel in consequence increased its ownership of land in the 

catchment to 45%, mainly by buying land from retiring farmers. However, buying more land 

was not possible and not practical, as the French law made it necessary to keep the land in 

agricultural use and the right to choose farming practices would be with any tenant of Vittel. 

The company therefore started to negotiate with farmers and to form individual contracts that 

obliged farmers to employ specific agricultural practices in return for financial compensation, 

financing of equipment, free tenancy of the Vittel owned land, and free technical advice. The 

contracts ran over a duration of 18 to 30 years (Depres et al., 2008). The situation was 

initially difficult as there was a lack of trust between the company and the farmers that 

manifested itself for example in attempts to value the change of farming practices. This was 

mainly overcome by Vittel contracting a research team to advise on the kind of measures to 

be taken to achieve the desired outcome. The research team played a mediating role, 

gathering data about each farm and developed feasible solutions together with the farmers, 

integrating their concerns (Depres et al., 2008). Vittel achieved to contract with 92% of the 
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farmers, covering 96% of the targeted area. The main mitigation measures included the 

elimination of corn crops on their farms, a ban on pesticides, compost of all animal waste and 

fertilization through composted manure, limitation of livestock density and farmyard 

management (Depres et al., 2008). Although the whole process, including purchase of land, 

designing the contract process, compensation to farmers and monitoring of compliance, cost 

Vittel more than €24 million over seven years, this is seen as lower than the potential damage 

would have been if Vittel had lost the right to market the water from this source as natural 

mineral water (Depres et al., 2008). Nestlé Waters also adopted this approach subsequently in 

other companies, so a learning benefit was generated. 

These projects had the explicit goal of achieving better raw water quality for drinking water 

purposes and save costs on treatment, thereby making the supply of clean water meeting the 

statutory requirements cheaper and more secure. They show positive outcomes not only for 

water quality but also for a range of other ecosystem services and stakeholders (Table 2.3). 

For some of the projects, economic benefits have been observed or estimated, such as the 

anticipated a benefit to cost ratio of 65:1 from the Upstream Thinking project through savings 

on treatment costs, and the New York City example also demonstrates significant savings in 

treatment costs. Stakeholders other than water companies also often benefit, either by saving 

through the implemented practices or by being compensated for a reduction in income. Other 

economic benefits can also arise from enhanced ecosystem services such as fisheries, 

tourism, or recreation. Apart from cost savings and new economic opportunities, the projects 

often have wider, and non-economic, benefits. These include for example increased 

biodiversity or enhanced carbon storage, increased landscape aesthetics or reduced flooding.
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Table 2.3: Overview of described projects specifically designed for improving raw water for drinking water purposes. 

Project Measures taken Named benefits 

Agricultural 

practices/ 

Farm 

management 

Afforestation/ 

forest 

management 

Habitat 

restoration 

To water company To stakeholders 

NYC (USA) 

✓ ✓  

Avoidance of estimated costs of filtering system: 

US$ 4 billion + and running costs of US$ 

350million/a, versus spent US$ 1.5 billion 

Tailored best practices plans for farms, leading 

e.g., to savings in e.g., fertilizer costs, reduced 

time spent 

Creation of recreational areas 

SCaMP (UK) 

✓ ✓ ✓ Reduced and stabilized levels of DOC in raw water 

Increased suitability of habitats for biodiversity 

development (improving the quality of SSSI) 

Possible positive impact on flood attenuation 

Upstream 

Thinking 

(UK) 

✓  ✓ Anticipated benefit to cost ratio 65:1 £20,000 cost savings on average per farmer 

Yorkshire 

Water 

Strategy (UK) 

 ✓ ✓  Improved SSSI sites and enhanced biodiversity 

Wessex Water 

Catchment 

Management 

(UK) 

✓   Estimated cost reduction of 83%  

Vittel (France)  

✓   

Avoidance of financial losses and reputational 

damage by retaining the right to market water as 

‘natural mineral water’ 

Enlargement of farms through Vittel land 

Compensation payments 

Free technical advice 
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2.3.3 Catchment management and climate change mitigation and adaptation 

As the reality of climate change has become increasingly clearer over the past years, 

pledges to reduce greenhouse gas emissions and moving towards “Net Zero” have 

increased on international, national, and local level (Deutch, 2020), as have initiatives to 

mitigate and adapt to climate change. Measures are often distinguished as either engineered 

(‘grey’) or nature-based (‘green’) solutions (Seddon, Daniels et al., 2020). Nature-based 

solutions (NbS) work with natural systems to address societal challenges such as mitigating 

and adapting to climate change, and include actions that protect, restore, and manage 

ecosystems (Chausson et al., 2020). These measures are likely to have a range of other 

effects on ecosystem services, among them water quality regulation (Seddon, Chausson et 

al., 2020). While many water utilities as well as policy makers have recognised the 

potential for catchment-based approaches to increase water quality and have started 

initiatives as described above, practical examples of using a catchment approach under the 

umbrella of EbA or NbS to specifically increase ecosystem resilience to climate change for 

water quality purposes are rare, or not well documented or accessible, and its effectiveness 

is difficult to assess due to the future dimension those projects naturally incorporate.  

Generally, the evidence base for the effectiveness of EbA is weak and scattered, with much 

of it grey literature or anecdotal evidence (Doswald et al., 2014; Reid et al., 2018). Doswald 

et al. (2014) and Chausson et al. (2020) used systematic mapping protocols to catalogue 

available evidence of the effectiveness of EbA or NbS. Both reviews included studies that 

varied widely in their primary focus and the observed and reported effects (climate impacts, 

GHG mitigation, economic, social, and ecological effects, multiple benefits, and 

comparison to alternative approaches). They found that most studies showed positive 

effects towards reducing climate change impacts, and more reported multiple benefits 

rather than trade-offs, although there may be a bias due to non-reporting of negative 

outcomes (Doswald et al, 2014; Chausson et al., 2020). In a more specific review on the 

wider benefits of natural flood management, Iacob et al. (2014) also reported that the 

majority of included studies found net positive results. Where the comparison was made, 

most studies concluded nature-based solutions to be as effective, or more, than alternative 

approaches. However, the authors also pointed out that most studies failed to make such as 

comparison or to examine broader societal, ecological, and economic effects (Chausson et 
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al., 2020). This may be because these effects are hard to quantify (Doswald et al., 2014; 

Reid et al., 2018). 

Water quality regulation seems to be among the ecosystem services that are ambiguously 

affected depending on the measure taken, with positive and negative effects taking place, 

while most negative effects were connected to water availability (Iacob et al., 2014; 

Chausson et al., 2020). This highlights that measures with a primary focus on water quality 

need to be implemented carefully but carry the potential for multiple benefits.  

 

2.4 Drinking water in Scotland 

There are more than 125,000 km of river and over 25,500 lakes, or lochs, in Scotland 

(Critchlow-Watton et al., 2014). These vary greatly in size and natural conditions and hence 

have variations in water quality. Although water is overall abundant in Scotland, multiple 

uses compete over water resources. While most rivers and lochs are in “good” condition 

under the Water Framework Directive (WFD; see 2.4.1), anthropogenic influences degrade 

water sources, including for drinking water purposes. Many of the lochs that have degraded 

water quality are affected by land management practices or acidification, and rivers are 

affected by agriculture, hydropower schemes and urbanisation (Critchlow-Watton et al., 

2014).  

 

2.4.1 Regulatory framework  

While Scotland as part of the UK is no longer a member of the European Union, acts and 

regulations that were created to comply with European legislation are still in force. The 

drinking water quality directive of the European Union (Directive (EU) 2020/2184 of the 

European Parliament and of the Council of 16 December 2020 on the quality of water 

intended for human consumption (recast)) sets minimum standards for drinking water 

quality that need to be implemented in the member states. The directive obliges all member 

states to take all necessary actions to ensure that water intended for human consumption 

(water used for drinking, cooking, food preparation and other domestic purposes as well as 

water used in any food production) is ‘wholesome and clean’,  meaning ‘free from any 

micro-organisms and parasites and from any substances which, in numbers or 
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concentrations, constitute a potential danger to human health’ and meeting the standards set 

for microbial and chemical parameters in Annex I of the directive. In Scotland, the original 

drinking water quality directive was implemented through the Public Water Supplies 

(Scotland) Regulations 2014, and the Water Intended for Human Consumption (Private 

Supplies) (Scotland) Regulations 2017 for larger private supplies. Smaller private supplies 

(serving only domestic premises and less than 50 persons in total) are regulated through the 

Private Water Supplies (Scotland) Regulations 2006. The Cryptosporidium (Scotland) 

Directions 2003 specifies how the supplier must respond to the risk from the 

Cryptosporidium parasite as well as sampling requirements. 

Further legal documents that constitute the legal framework for drinking water in Scotland 

are the Water (Scotland) Act 1980 and the Water Industry (Scotland) Act 2002. The Water 

(Scotland) Act 1980 established the duty of the water authorities to supply wholesome 

water. The Water Industry (Scotland) Act 2002 created the Water Industry Commission, the 

Drinking Water Quality Regulator (DWQR) and Scottish Water. Scottish Water is the 

public water supplier and replaced the previous Water and Sewerage Authorities. The 

Water Industry Commission for Scotland is the economic regulator for the Scottish water 

industry, and as such sets charges to customers, facilitates competition and monitors and 

reports on economic performance. The DWQR is responsible for ensuring that the duties of 

the public supplier are complied with and supervises the enforcement by local authorities 

over private suppliers. To this end, the DWQR is given powers to obtain information and 

power of entry, inspection, and enforcement, as well as emergency powers to force the 

supplier to carry out work to make the water safe for human consumption. 

Other actors involved in drinking water regulation are the Scottish Environment Protection 

Agency (SEPA) as being responsible for environmental protection. SEPA is the regulator 

for Scottish Water regarding any of the environmental aspects, including for example water 

abstraction and wastewater treatment and discharge. Next to the economic regulator, 

customers are also represented through the customer forum and consumer futures, through 

which customer views and interests are identified and voiced. The Scottish Public Services 

Ombudsman is responsible for investing complaints about public services, including 

Scottish Water (Figure 2.7). 
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Figure 2.7: Actors involved in the regulation of the Scottish public drinking water supply (reproduced from 

Scottish Water, 2022). 

Apart from direct legislation for drinking water, raw water quality (the water going into the 

treatment works), is influenced by water quality legislation for other purposes. Several 

pieces of legislation made in the EU directly aim at improving overall water quality, others 

set quality standards for specific areas of water use. The former includes the Water 

Framework Directive, which is an overarching piece of complex legislation aiming at 

improving water quality for different uses (e.g., aquatic ecology, valuable habitats, drinking 

water and bathing water), using an integrated approach with the catchment, or river basin, 

as the basic unit. Surface water bodies are required to reach “good ecological status” as 

well as “good chemical status” as set out in the directive, with more stringent requirements 

for specific protection zones designated for other uses (such as drinking water and bathing). 

Groundwater bodies should be protected from anthropogenic influences by a prohibition of 
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direct discharges and through monitoring to enable reversal of any deterioration. Within the 

river basins, the status of water bodies is first determined before the effectiveness of 

measures under other existing legislation is assessed, and further actions decided if deemed 

necessary to achieve the objective of good status. The analyses as well as measures are laid 

out in detailed river basin management plans, which are developed including information 

and consultation of the public. The WFD is implemented in Scotland through the Water 

Environment and Water Services (Scotland) Act (WEWS) 2003, supplemented by the 

regulations for river basin management planning (The Water Environment (River Basin 

Management Planning: Further Provision) (Scotland) Regulations 2013, and The Cross-

Border River Basin Districts (Scotland) Directions 2014) and the Water Environment 

(Controlled Activities) (Scotland) Regulations 2011. WEWS establishes the process to 

create River Basin Management Plans, putting SEPA in charge of producing and 

implementing the plans. Scotland has two major river basins, Scotland and the Solway-

Tweed (including parts of Northern England), which are divided into eight and two sub-

basins respectively. The status of the water bodies identified in these catchments is 

determined, standards are set for the concentration of pollutants, the level of flows in rivers, 

from lochs, and the physical structure to determine the status, which can be high, good, 

moderate, poor, or bad. The current standards are laid out in the Scotland River Basin 

District (Standards) Directions 2014 and the Solway Tweed River Basin District 

(Standards) (Scotland) Directions 2014.  

Related legislation aiming to reduce certain types of pollution are the nitrates directive 

(Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters 

against pollution caused by nitrates from agricultural sources), the priority substances 

directive (Directive 2013/39/EU of the European Parliament and of the Council of 12 

August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority 

substances in the field of water policy) and the urban waste water treatment directive 

(Council Directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC)). 

The aim of the nitrate directive is to reduce and prevent nitrogen pollution of waters from 

agricultural sources. To this end, member states are obliged to identify waters that are 

affected by pollution, and to designate as nitrate vulnerable zones (NVZ) such areas that 

contribute to the pollution of these waters. Member states must further establish a code of 
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good agricultural practice to be voluntarily implemented by farmers, and action 

programmes for the nitrate vulnerable zones.  

In Scotland, the Action Programme for Nitrate Vulnerable Zones (Scotland) Regulations 

2008 apply to farms in NVZs and set out rules for the management of fertilizer and manure, 

e.g., each farm has to have a fertilizer and manure management plan, rules about storing 

manure or the application of nitrogen fertilizer. There is also a code of good agricultural 

practice (Prevention of Environmental Pollution from Agricultural Activity), setting out 

measures to reduce pollution and actions that are mandatory for farmers in NVZs, actions 

that are required to receive Single Farm Payment (now replaced by the schemes under the 

Scottish Rural Development Programme) and actions that are voluntary. Apart from trying 

to reduce nitrates through the nitrate directive, the EU targets a list of substances called 

priority substances through the priority substances directive, which sets environmental 

quality standards for 33 priority substances. Priority substances include for example 

hazardous and toxic compounds or metals.  Special measures are to be taken by member 

states to reduce pollution from these priority substances. The directive was implemented in 

Scottish law through amendments to WEWS. The Council Directive of 21 May 1991 

concerning urban wastewater treatment (91/271/EEC) specifies minimum standards for the 

treatment of municipal wastewater, with the objective to protect the environment from 

adverse effect through these waste waters. The Urban Waste Water Treatment (Scotland) 

Regulations 1994 implement this directive in Scotland. 

The bathing waters directive (Directive 2006/7/EC of the European Parliament and of the 

Council of 15 February 2006 concerning the management of bathing water quality) and the 

shellfish directive (Directive 2006/113/EC of the European Parliament and of the council of 

12 December 2006 on the quality required of shellfish waters) set standards for specifically 

designated water bodies. The bathing water directive regulates the monitoring and 

classification of bathing waters, the management of bathing water quality, and the provision 

of information on bathing water quality to the public. The directive is implemented in 

Scotland through the Bathing Waters (Scotland) Regulations 2008, which lays out the 

duties of SEPA with regard to monitoring and safeguarding the water quality in bathing 

waters. The shellfish directive is designed to protect aquatic habitat of bivalve and 

gastropod molluscs (e.g., oysters, mussels, cockles, scallops, clams). Member states are to 
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designate shellfish waters which need to comply with the standards set for water quality. 

The directive is implemented in Scotland by the Surface Waters (Shellfish) (Classification) 

(Scotland) Regulations 1997, together with the Surface Waters (Shellfish) (Classification) 

(Scotland) Direction 2012.  The direction sets out the latest waters classified as shellfish 

waters. Efforts to improve the water quality in bathing and shellfish waters to comply with 

the directives will also benefit raw water quality for drinking water, and vice versa; this can 

for example be observed by the fact that changes in the catchment e.g. through the priority 

catchments rural diffuse pollution programme (see 2.4.5) led to improvements in bathing 

water quality. Similarly, investments made by Scottish Water in water and drainage 

infrastructure under the Quality & Standards programme have shown a positive effect on 

bathing water quality (SEPA, 2015). 

 

2.4.2 Drinking water supply and quality 

Presently in Scotland, 2.57 million households and over 150 000 businesses are provided 

with water from the public supply network. Scottish Water provides 1.53 billion litres of 

water daily and operates 237 water treatment works (Scottish Water, 2021). Sources of 

water supply are reservoirs, lakes, rivers, or groundwater. Apart from the type of source, 

the characteristics of the catchment influence the quality of the water entering the treatment 

works. Water of higher quality, as often found from springs and boreholes, may need only 

simple filtering followed by disinfection, whereas lowland surface water sources will 

normally require some more extensive treatment as it contains more pollutants. The type of 

treatment is determined by the raw water quality data (Scottish Water, 2020). Water quality 

of the public supplier is tested at the water treatment works, within the distribution system 

and at consumer’s taps. Testing at customer’s taps is for 51 parameters and compliance is 

generally very high; in 2020, 99.95% of samples tested at the consumer’s tap adhered to 

standards (DWQR, 2021a).  

Although most people in Scotland are served by the public supplier, around 180,000 people 

(3.3% of the population) rely on private water supplies for their drinking water (DWQR, 

2021b). These vary in size and can serve from one household to thousands of people, and 

the quality of water from private supplies can also vary considerably. Sources of private 

water supplies are rivers and streams, private reservoirs, wells, boreholes, and springs. 
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Private water supplies must be sampled by the local authorities either every year (for bigger 

supplies with 50 or more people or more than 10 m3 of water) or within 28 days upon 

request by the owner or user (for smaller supplies). The bigger, or “regulated” private 

supplies must also be risk assessed every five years. In 2020, only 38% of the regulated 

supplies were sampled, and of these, 9% did not meet the standard. Of the sampled smaller 

supplies, 13.3% failed. E. coli was detected in 12.3% of the tested regulated supply samples 

(DWQR, 2021b).  

 

2.4.3 Raw water quality 

Water quality is influenced by the pathways water takes through landscapes and hence 

characteristics including soil, rock and vegetation. Ecologically, the water that corresponds 

to the naturally occurring ecosystem would constitute “good” water quality – normally this 

means a progression of increasing trophic status and hence changing ecosystems further 

downstream (Ferrier et al., 2001). This may however not correspond to “good” water 

quality defined for drinking water through standards.  

 

I. Natural conditions 

The retreat of the ice formations after the last glacial period heavily impacted on the 

topography of Scotland. The highlands of Scotland show many over-steep slopes, over-

deepened valleys, and complex suits of glacial and periglacial drift deposits (Soulsby et al., 

2002). The east coast by contrast is mainly characterized by gentle hills. Scotland has a 

maritime climate with major air circulation from West to East, so that the altitudes of the 

highlands provide a barrier to the westerly airflow from the Atlantic, leading to large 

precipitation in the West of Scotland (over 4000 mm/year in some of the highest western 

areas) to less excessive rainfall in the East (as low as 600 mm/year). Precipitation occurs 

throughout the year with peaks in winter. In high areas, up to 30% of precipitation occurs as 

snow. Actual evaporation rates are typically between 350 and 400 mm/year, and 

evapotranspiration can be high in the summer months, depleting soil water stores and 

reducing river flows (Johnson & Thompson, 2002). Temperature differences are most 

extreme in the Cairngorm Mountains.  
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In geological terms, Scotland can be divided into five distinct parts that show a Southwest 

to Northeast trend and that are separated by faults (the Moine Thrust, the great Glen Fault, 

the Highland Boundary Fault and the Southern Upland fault), many of which are still 

recognisable in the landscape (Figure 2.8).  Starting from the Northwest, the first three are 

commonly grouped together as the Highlands which are dominated by igneous and 

metamorphosed igneous and sedimentary rocks. Further to the Southeast are the Midland 

Valleys with mainly non-metamorphosed sediments and lastly the Southern Uplands with 

predominantly weakly metamorphosed sedimentary rocks (Langan & Soulsby, 2001; 

Gillespie et al., 2013). Water can move through the pores of sedimentary rock or through 

fractures, whereas in igneous and metamorphosed rock water can only flow through 

connected open fractures (Gillespie et al., 2013). 

Solutes in water are derived from precipitation or dry fallout from the atmosphere, or from 

the passage of water trough biomass, soils, and rock (Trudgill, 1986). The topography, 

together with the geological and climatic conditions of Scotland provide the basis for the 

distribution of soils and for hydrological regimes, which underpin the water quality 

characteristics of Scottish surface waters. As soils act as a reservoir for rainfall and a 

channel for transferring rainfall to surface waters, as well as a buffer against atmospheric 

input and a supplier of nutrients and medium for plant growth, soils are a crucial influence 

on water quality. Soils in Scotland are mostly highly organic (Figure 2.9) and acidic 

(Figure 2.10), reflecting the underlying acidic geology (Langan & Soulsby, 2001). 
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Figure 2.8: Scotland's bedrock geology (reproduced under the Open Government Licence v3.0 

(http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/) from Gillespie et al., 2013). 
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Figure 2.9: Organic carbon content in Scotland's topsoil. Reproduced from Lilly et al., 2012. 
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Figure 2.10: Median pH of Scotland's topsoil. Reproduced from http://ukso.org/static-maps/soils-of-

scotland.html [03/12/2022]. 
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The most common types of soil are peat, gley soils, brown forest soils, and podzols. These 

four types of soils account for almost 90% of Scotland’s soils (Scotlandguides, 2020). On 

exposed mountain tops, soils are usually very shallow as soil formation is slow. These soils 

are very susceptible to pressures and are unlikely to recover naturally when eroded or 

polluted. Peats are a deep layer of organic matter when vegetation decays slowly and 

accumulates due to waterlogged conditions. Peat soils hold a substantial amount of all of 

Scotland’s soil carbon. Gley soils are also poorly drained but do not accumulate organic 

matter. Podzols are well drained but develop on acid conditions where nutrients get washed 

out, in contrast to brown forest soils which are well drained and fertile, meaning they are 

favorable for agriculture. Where these occur are the principal areas in Scotland where 

arable agriculture is possible.  

Soil characteristics, along with climatic and topographic conditions, form the basis for 

assessing viable land uses for regions, called land capability assessment. In Scotland, the 

land capability assessment for agriculture distinguishes seven major classes (Bibby et al., 

1991), ranging from land class (LC) 1 as capable of producing high yields of a wide variety 

of crops, to LC 7, with extremely severe climate restriction leading to very limited use for 

agriculture. Generally, LCs 1-3.1 are defined as ‘prime’, although land classed as 3.2 is also 

capable of sustaining the production of crop (Table 2.4). Scotland has only few areas of 

prime land, mainly along the East coast, and along the Central belt (Figure 2.11).  

Table 2.4: Description of LC classes for Scotland, adapted from Brown et al. (2008). 

Class Category Climate limitations Land use 

1 Prime Non or very minor Very wide range of crops with consistently high 

yields 

2 Prime Minor Wide range of crops, except those harvested in winter 

3.1 Prime Moderate Moderate range of crops, with good yields for some 

(cereals and grass) and moderate yields for others 

(potatoes, field beans, other vegetables) 

3.2 Non-prime Moderate Moderate range of crops, with average production, 

but potentially high yields of barley, oats, and grass 

4.1 Non-prime Moderate-severe Narrow range of crops, especially grass, due to high 

yields but harvesting may be restricted 

4.1 Non-prime Moderate-severe Narrow range of crops, especially grass, due to high 

yields but harvesting may be severely restricted 

5 Non-prime Severe Improved grassland, with mechanical intervention 

possible to allow seeding, rotavation or ploughing 

6 Non-prime Very severe Rough grazing pasture only 

7 Non-prime Extremely severe Very limited agricultural value 
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Figure 2.11: Land capability classification for agriculture of Scotland. Reproduced from http://ukso.org/static-

maps/soils-of-scotland.html [last accessed 03/12/2022]. 
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Lowland and upland areas present a marked difference in hydrology, induced by the 

differences in topography and climate. Upland areas with steep slopes and high 

precipitation, and mainly covered with peat or podzolic soils that have limited storage 

ability, are usually highly responsive to rainfall events and show rapid runoff responses. 

Baseflows are normally low, although groundwater aquifers can exert a strong influence on 

stream flows in some areas. Snowmelt in spring can contribute to major flood events, next 

to intense summer rainfall events or prolonged rainfall on already saturated ground. 

Lowland areas with less marked reliefs and sedimentary underlying rocks or extensive drift 

deposits, have less flashy runoff regimes and a stronger contribution of groundwater to 

stream flow (Langan & Soulsby, 2001). 

The upland areas of Scotland provide the headwater sources for the major river systems and 

so are key to quantity and quality issues essential to sustainable management of water 

resources. Maintaining high water quality of the upland water resources is hence essential 

to the sustainable management of water resources. The flashy nature of upland waters 

means that water quality can be very variable over time, mainly because of the different 

pathways the water takes during storm events and during low flow periods, because of 

dilution or concentration effects in storm events, and because of the importance of 

groundwater sources to the baseflow. Generally, water from upland areas is oligotrophic 

and nutrient concentration is low. River systems that drain the main areas of granite are 

acid sensitive and have a low alkalinity (Soulsby et al., 2002). Average alkalinity, pH and 

base ion concentrations are highest in summer baseflows and lowest in winter storm events, 

but there are marked variations in seasons between the years e.g., through wet summers and 

freezing conditions in winter when winter baseflows occur. Atmospherically derived 

chloride and sulphates tend to be highest in concentration in the winter months. Nitrate also 

tends to peak in winter reflecting the low biotic uptake. Many parts of the Scottish 

highlands are acid sensitive and high in precipitation, leading to high levels of atmospheric 

deposition that outstrip the buffering capacities of catchments (Soulsby et al., 2002), 

although there have been signs of recovery over more recent years (Battarbee et al., 2014). 

Although many upland areas are N-limited and hence nitrogen tends to be sequestered by 

the ecosystems, there are indications that nitrate losses to surface waters are occurring 

(Chapman et al., 2001). While this is the general picture, it is important to remember that 

individual catchment hydrology is complex – some catchments for example are much more 
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groundwater dominated, which means they deviate from this flashy runoff regime rule, 

while in others metamorphosed calcareous rocks are present, so that alkalinity is much 

higher.  

Groundwater quality varies in Scotland, depending on the age of the water. Groundwater 

ranges from young, weakly mineralized water to older and moderately mineralized water. 

Some waters derive from rainfall that predates the industrial and agricultural revolutions 

and show near pristine quality, others are modern in origin and rich in nutrients and organic 

chemicals (Robins, 2002). Groundwater recharge potential is highest in the west of 

Scotland where rainfall is high, however recharge is inhibited by steep topography, 

widespread till cover and inadequate transmissive properties of older basement rocks. Most 

shallow groundwaters are actively recharged and relatively young. Discharge as baseflow 

to surface waters can influence the quality of low stream flows, e.g., by buffering acidic 

water. Most Scottish groundwater resources are shallow and unconfined, so they are 

generally vulnerable to point source and diffuse surface pollution. The most common 

contaminant in Scottish groundwater is nitrate, corresponding to the areal extend of 

agricultural land uses (MacDonald et al., 2017). 

 

II. Anthropogenic pressures 

Land use in Scotland has changed throughout history, the major change being the loss of 

woodland which was replaced by moorland, grassland, and pasture (Edwards & Ralston, 

1997). Land use in Scotland is characterised by a split between upland and lowland areas, 

with lowland areas being predominantly used for arable cultivations or improved grassland. 

Upland areas are mainly maintained as heather moorland, reflecting the acidic soils which 

are favourable for the main heather species Calluna vulgaris. These landscapes are very 

important from a touristic perspective, as being often perceived as typically Scottish. In 

wetter conditions, heather moorland is replaced by peatland communities, and along the 

river valleys by forest and woodland, especially on steeper slopes where the soil is better 

drained. Forests are predominantly monoculture plantations with exotic species, although 

the use of indigenous species, and of afforestation with semi-natural or natural woodland is 

rising. Grasslands tend to be unimproved at more elevated areas and increasingly improved 

moving to lower elevations. Urban areas are concentrated around four major hotspots 
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(Glasgow, Edinburgh, Dundee, and Aberdeen). Population density itself is low compared to 

other European countries. 

As upland areas play a crucial role as drinking water sources, the management of upland 

areas is also a key factor in drinking water quality. Heather moorland is mainly managed 

for sheep and grouse/deer shooting. Large numbers of deer maintain the moorland character 

and prevent tree cover. High grazing pressures by deer also often lead to compacted tracks 

which cause erosion problems and sediment delivery into streams. Deer grazing in the 

riparian area of streams causes concerns over microbiological pollution (Soulsby et al., 

2002). For grouse shooting, heather moorland burning is often practiced to encourage a 

mosaic pattern. When natural features such as streams are used to restrict fires, riparian 

areas are burned which increases erosion. Together with moorland drainage, burning 

changes the hydrology of the land by reducing the runoff response time and vegetation 

removal and thus induces erosion (Bragg, 2002), leading to increased sediment and total 

organic carbon input (causing colouration of water). However, it needs to be pointed out 

that the effect of burning on dissolved organic carbon in surface water is somewhat unclear. 

Studies looking at the effect of burning regimes either through laboratory experiments, plot 

studies or catchment scale studies are contradictory, some identifying burning as the main 

driver for colour and others seeing no increase in DOC through burning (Holden et al., 

2012). The effect of burning can often not be clearly disentangled from the effect of 

vegetation cover, or the stream water data cannot be reconciled with the available data from 

peatland soils (Holden et al., 2012).  

Recreational activities in the Scottish Highlands are increasing, including hill walking, 

climbing, skiing, mountain biking, and motor sports. These activities impact on water 

quality in several ways. Firstly, the fact that activities usually peak at a certain time can 

challenge rural treatment plants, especially in summer months when low flows reduce the 

dilution ability (Soulsby et al., 2002). Secondly, to reach remote areas, road maintenance is 

required, including road salts in winter with subsequent runoff. This also includes other 

pollutants such as hydrocarbons and heavy metals. Lastly, in areas with few sanitation 

facilities, there is potential for pathogens from humans to enter surface waters (Soulsby et 

al., 2002).  
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Forests in Scotland are mainly commercially used and can in places cover the whole of 

some upland catchments. Bad management of forests can contribute to water quality 

deterioration through drainage and harvest and maintenance operations and increasing 

acidity, nutrient leaching, and sediment loads (Forestry Commission, 2017). Native, 

unmanaged woodland however is thought to be beneficial to water quality, although these 

have shown higher levels of pollution with faecal coliforms (Schoonover & Lockaby, 

2006).  

Most agricultural pollution occurs in the productive arable areas of eastern Scotland. About 

a third of the nitrogen input in catchments are exported to surface waters (Poor & 

McDonnell, 2007). Nitrogen is imported into a catchment through agricultural use of 

fertilizers and manure, and through sewage emissions and atmospheric deposition. Most 

areas in the uplands however are used for sheep grazing, which is associated with increased 

levels of erosion and fine sediment delivery to streams (Soulsby et al., 2002). Sheep dips 

(pesticide solution into which sheep are immersed to control external parasites) can also 

have an impact if they are discharged or leak into surface waters, or when draining off the 

sheep (Hooda et al., 2000). It can be observed that except for acidification, water quality is 

directly related to population density and the intensity of human activity (Gilvear et al., 

2002).  

 

2.4.4 Effects of future changes 

The annual mean temperature in the UK has increased by 0.9% for 1991-2020 compared to 

1961-1990, with all months and seasons seeing an increase, and annual average rainfall has 

increased by 6% (Kendon et al., 2021). The largest increases have been seen across 

Scotland with 2008-2017 being on average 11% wetter than 1961-1990 (Met Office, 2019). 

Temperatures are projected to further increase in the UK under the high emission scenario, 

with 0.7°C to 4.2°C in winter and 0.9°C to 5.4°C in summer. Changes in UK averages for 

precipitation are projected at -1% to +35% for winter and -47% to +2% for summer (Met 

Office, 2019). Overall, winters are projected to become warmer and wetter and summers 

hotter and drier, with more frequent droughts (Gosling, 2014). Snow cover and its duration 

are projected to decrease in Scotland (ASC, 2016). 
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Reduced summer rainfall in combination with higher summer temperatures are likely to 

lead to reduced runoff and low flows, and more and more severe droughts, whereas an 

increase in winter rainfall can lead to higher runoff and flows, increased catchment wetness 

and an increase of flooding and soil erosion. Rising temperatures overall will lead to an 

extension of the growing season and rising water temperatures. All of these will affect 

vegetation and species, the landscape and society. Shifts in the spatial range of species can 

already be observed, for example cold-loving species in Scotland that have lost habitat at 

the margins of their southern range. The reduced snow cover is affecting composition of 

montane vegetation with a shift towards more homogenous, less diverse communities 

(ASC, 2016).  

Changes in temperature and precipitation change the concentration of substances in surface 

water through altered physical and chemical processes. Higher temperatures probably lead 

to increases in dissolved substances and decreases in dissolved gases (Delpla et al., 2009), 

while changes in flow also influence substance concentration. Low flows in summer could 

be especially problematic as they lead to lower dilution potential. The pattern of 

precipitation also influences solute and sediment transport, with droughts and higher 

precipitation in winter inducing more erosion and nutrient leaching (Panagos et al., 2017; 

Poggio et al., 2018). Peatlands, which are especially important for drinking water supply, 

are very sensitive to changes in soil moisture regimes and warmer and drier conditions 

could put pressure on already stressed peatland habitats and induce increased release of 

carbon, leading to water colouration (ASC, 2016).  

Effects of climate change on human activities and land use will also influence water 

quality. It is envisaged that increases in temperature will make some areas in Scotland, 

especially those currently marginal for cultivation, more suitable for arable agriculture, 

while areas currently being used for crop growth could become more prone to drought 

conditions (Brown et al., 2010). The potential for expansion of prime agricultural land is 

estimated at 20-40% by the 2050s for Scotland, while 40-50% of prime land could have 

moderate to severe drought risk (ASC, 2016). Grassland productivity will benefit from 

warmer temperatures particularly in the marginal upland areas, while it may decline in the 

drier areas in eastern Scotland. These changes will likely result in changes to water quality 

at catchment scale and in standing waters through increased input of organic and inorganic 
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fertilisers and chemicals leading to increases in nitrogen, phosphorus, and pesticides 

(Pakeman et al., 2018). Arable cropping is also associated with increases in soil erosion and 

suspended sediment in water (ASC, 2016). Pasture is associated with higher pathogen 

contamination and contamination with suspended solids, phosphorus, ammonia, nitrate, and 

organic carbon (Pakeman et al., 2018). 

Land use changes, which are a main driver for water quality alterations, will respond 

directly not only to climate change but also prompted by government policies and 

commitments. There are for example commitments to raise forest cover, enhance and 

protect biodiversity, or increase energy generation from renewable energy in Scotland. The 

extent to which the implementation of these targets contributes to water quality 

improvements or deterioration will mainly depend on how sensitively this is carried out 

with regard to sustainability and to water sources. 

 

2.4.5 Catchment initiatives to improve water quality 

The WFD has introduced integrated planning, ensuring that all uses of and pressure on 

water resources are considered and actions to reduce pressures to achieve good status are 

implemented. Working towards good status in all water bodies is beneficial to increasing 

water quality also in drinking water catchments, bathing water and shellfish waters. As one 

of the biggest impacts to water quality in Scotland is rural diffuse pollution, SEPA has a 

Rural Diffuse Pollution Plan in which Diffuse Pollution Priority Catchments play a key role 

(SEPA, n. d.). In two cycles, 54 priority catchments have been identified that fail to meet 

environmental standards. The work in these catchments starts by characterising the 

catchment and collecting evidence of pollution sources and pathways (e.g., cultivation too 

close to water bodies, slurry and manure spreading, erosion caused by livestock etc), raising 

awareness, and engaging one to one with land managers (e.g., through workshop, evening 

meetings, and site visits). It also helps to identify if landowners comply with the Diffuse 

Pollution General Binding Rules (DP GBR), which were established under the Controlled 

Activities Regulations. The DP GBRs set out a range of measures (e.g., with regard to 

fertilizer and manure application, livestock management, land cultivation, pesticide 

application or operating sheep dips) to be adopted by farmers to mitigate diffuse pollution 

from their activities. 
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An initiative that tries to promote a catchment approach specifically to improve drinking 

water quality is the Drinking Water Protection Scheme by Scottish Water. Many 

catchments that supply drinking water do not meet the required standard and some 

expensive treatment is hence necessary. The incentive scheme is aimed at land managers to 

implement catchment-based mitigation measures to reduce pollution to water bodies that go 

beyond what they are legally required to do (e.g., by the rules for NVZs or the DP GBR). 

These incentives consist of financial assistance to implement identified measures. The 

scheme is only available in specific areas identified by Scottish Water, based on catchments 

where water quality issues are experienced. Land managers within these areas are eligible 

to apply for financial assistance to implement suitable mitigation measures identified for 

each of the catchments. These include Nutrient Management Plans, pesticide control, stock 

fencing, livestock watering, field management, measures to reduce surface flow, and 

peatland restoration (Scottish Water, 2017). 

The measures selected under this scheme already indicate areas of concern for public 

drinking water sources. Using data from the monitoring programme of the public supplier 

(Chapter 3), raw water quality is more strategically examined and analysed to understand 

drivers, pressures, and intrinsic catchment vulnerabilities as a basis to understand impacts 

of future changes (Chapter 4).   
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3. Methodology and data 

This research builds on the relationships between water quality and catchment properties to 

understand how changes in hazards, exposure and vulnerability may impact water quality in 

future. It also aims to look at differences in water quality profiles between catchments, and 

how this is linked to different catchment characteristics. The analysis therefore uses data 

that can broadly be distinguished as water quality data and as catchment data, and combines 

these two in various different analysis steps. 

This section first discusses approaches to modelling (3.1). It then describes the two data 

sets, water quality data (3.2) and catchment characteristics data (3.3), including the origin, 

steps to prepare it for the chosen approach to the analysis, and a description of some 

summary statistics. Finally, how these two datasets are used in the subsequent analyses is 

briefly outlined in 3.4. 

 

3.1 Methodological approach 

Water quality data were provided by Scottish Water from their routine monitoring 

programme. Depending on the water quality parameter, samples are taken from once a 

week to once every three months, and as they are not taken on exact dates, the data points 

are not equally spaced in time. Samples are taken at the treatment work rather than in the 

catchment and are thus not accompanied by data that would help to describe wider 

environmental conditions such as flow or temperature. It was checked if flow data could be 

obtained from nearby streamflow gauges, however as catchments tend to be small 

headwater sources for the majority there were few in sufficient proximity that would have 

created reliable data, so any form of flow-weighting was discounted. It was also checked if 

additional data to the data for the chosen indicators could be obtained, either to include in 

the analysis or to compare against, for example from monitoring by SEPA or from the 

research projects of the James Hutton Institute (JHI). Again, as Scottish Water catchments 

are very small, for the vast majority there is no meaningful overlap between the SEPA or 

JHI catchments and this could not be used for the broader analysis.  

Therefore, while data from a large number of catchments were included in the dataset, the 

dataset for each catchments tended to be small, and flow data were not available. The data 
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were therefore unsuitable for process-based models. However, the number of parameters 

covered provided a good basis for an attempt at catchment profiling, while the good spatial 

coverage of the dataset invited to focus on spatial patterns in water quality and draw 

conclusions from those. These approaches are in line with the identified need for a more 

strategic approach to risk assessment and management on a programme level, that 

considers water supply at the system level. Risk screening was identified as especially 

suitable to act as a frame, as well as a first step, for integrating climate and land use change 

impacts into risk assessment as set out in Figure 1.1. Empirical modelling approaches were 

considered the most appropriate to achieve the aims of the research, answer the research 

questions and draw on the strength of the available dataset, and the data were accordingly 

prepared for use in empirical analysis.  

 

3.2 Water quality data 

Scottish Water takes samples at treatment works from taps, both for the “raw” water (all 

water going into the treatment process; this could be water mixed from several sources, or 

mixed with already treated water to aid the treatment process), and for some catchments 

also for “source” water (water from one single catchment before treatment). For the 

purpose of this analysis, it is essential that the water quality data are untreated and reflect 

just one catchment, so the analysis focused exclusively on source water. Some catchments 

for which source data have been available have nevertheless been excluded. These are 

catchments: 

1) at the beginning or in the middle of cascade systems, as piping between the reservoirs of 

one system is common – water quality data from catchments at the end of a cascade have 

been included but catchments have been merged to include the whole catchment area of the 

system (8 cases). 

2) where two or more catchments serve one treatment work and piping between catchments 

is suspected. 

3) where there are issues with the catchment boundaries – this was the case for groundwater 

sources, as catchments are defined by Scottish Water by drawing circle of 1 km radius 
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around the intake. This does not reflect the actual catchment and groundwater sources were 

therefore excluded.  

4) with very few data (less than 15 samples for one parameter). 

From the original total of 398 supply catchments (Figure 3.1), this left 154 catchments for 

which water quality data were analysed (Figure 3.2). Only 8 parameters are sampled for all: 

aluminium, colour, pH, iron, manganese, presumptive coliforms, presumptive E. coli, and 

turbidity. Data was originally made available for the period 2011-2016. Sampling regimes 

vary per catchment with parameters being sampled from every three months to every week. 

For most catchments, samples are taken once per month. Several catchments have a higher 

frequency of sampling however, for example weekly. This means that the sample sizes vary 

between catchments, but range between 18 and 238 samples per indicator, with usually 

approximately 100 samples for aluminium, colour, manganese, iron, and turbidity, and 

approximately 40 for bacteria and pH.  

To arrive at comparable data for each catchment, summary statistics were calculated for 

each catchment. Parameters included are the median (as distributions are highly skewed, 

medians are the robust measure reflecting the middle points of the data better than means), 

minimum and maximum values, the 5th and 95th percentiles (to get a better value for high 

and low values that are not as much affected by extreme outliers), and the 1st and 3rd 

quartiles (or 25th and 75th percentiles). 

Additional data were later provided for colour for the years 2017 and 2018, and for total 

organic carbon (TOC) for 127 catchments for 2013-2016. These data were used for specific 

parts of the analysis (colour data for 2018 in 5.3.2, and TOC data in 5.2.1, 5.2.3, and 5.2.4). 
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Figure 3.1: Locations of all 398 catchments of water bodies used by Scottish Water as supply sources, by type 

of source. 
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Figure 3.2: Locations of the 154 catchments of water bodies used by Scottish Water as supply sources that 

were included in the analysis (referred to as subset), by type of source. 
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3.2.1 Validation 

In the initial passing and cleansing of the data for analysis it was observed that in many 

catchments, and for all indicators except for pH, there were a few exceptionally high values 

compared to the majority of lower concentrations. Some outliers also seemed unfeasibly 

high suggestive of errors, so the data needed to be checked for integrity and 

representativeness. 

Data points that are of concern in the planned analysis are extreme outliers (usually very 

high values; in case of pH also very low values) as they will strongly influence some 

descriptive statistics and may affect some statistical analysis. If these points are errors, they 

need to be removed. However, genuine extremely high values are of interest in the analysis 

as they can reflect a change in conditions (e.g., a flush out event) or contamination event, 

and they are of concern with regard to water treatment. These data points need to be kept. It 

is assumed that erroneous data points are the result of wrong entries into the database, 

rather than analytical errors or contamination. 

Bacterial data (coliforms, E. coli) can peak to extreme highs e.g., if contamination occurs. 

Sources cannot definitively be traced back to catchment perturbations as they may be 

unrelated to weather conditions, instead may arise from unpredictable events such as faecal 

contamination from livestock ingress into the channel network or uncontrolled spillages 

from farming operations. Validation of these points is therefore difficult to impossible. E. 

coli is a form of coliform bacteria, so as a basic check for E. coli data, any E. coli values 

that were higher than the corresponding coliform value were deemed erroneous and 

adjusted to the coliform value (4 data points). 

For aluminium, iron, manganese, colour, turbidity, and pH, it was assumed that errors 

usually occur in only one parameter at a time and without any hydrological explanation 

such as a prolonged drought period or heavy rainfall event. Therefore, data points that were 

more than four times the standard deviation removed from the means of the parameter in 

the catchment were checked in several steps, illustrated in Figure 3.3. 
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Figure 3.3: Validation process for data points that were more than 4 times the standard deviation removed 

from the means of the respective parameter in the respective catchment. Water quality data undergoing this 

process were part of the initially provided data by Scottish Water for aluminium, colour, iron, manganese, pH, 

and turbidity from 2011 – 2016. 

As a result of this procedure, 12 values in total were removed from the dataset for the 

purpose of further analysis. 

 

3.2.2 Indicators 

Eight commonly sampled parameters were examined: aluminium, colour, pH, iron, 

manganese, coliforms, E. coli, and turbidity. As the purpose was to relate these water 

quality indicators to catchments characteristics, it is crucial to understand what drives their 

presence and concentrations in surface waters.  
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removed from the 

mean) Hydrological data 

(UK Met Office 

rainfall data or 

NRFA flow data 

from a site within the 

catchment or 
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no (50 

values) 

discard  
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singularity of 

value) suggests a 

genuine value 
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I. Aluminium 

Aluminium solubility increases with increasing acidity at low pH and with increasing 

alkalinity at high pH (Neal et al., 2011). There is a wide array of aluminium complexes in 

natural waters, plus urban or industrial contamination occurs with aluminium 

oxides/hydroxide. Aluminium concentrations are generally highest under high flow 

conditions when soil water input is highest, and it often correlates with iron and DOC, as 

these are also mobilised within the soil. Reversal of acidification has led to decreasing 

aluminium concentrations, although this may be counteracted by colloids formation (Neal 

et al., 2011). As forested catchments are generally more acidic and reversal of acidification 

is slower, higher aluminium concentrations are often found coming from these catchments 

(Battarbee et al., 2014).  

 

II. Iron 

In Scotland, high iron and manganese concentrations are generally associated with acidic 

pH and organic, poorly drained upland peat soils and high flow conditions. Some 

catchments observe highest concentrations with the first autumn storms and successively 

declining concentrations, due to iron and manganese accumulating in the soil over the drier 

summer months (Abesser et al., 2006). In surface waters, iron readily binds to natural 

organic matter, and with decreasing acidification, iron concentrations have been increasing 

(Neal et al., 2008). 

 

III. Manganese  

Manganese is mobilised under reducing conditions, but lost from water in well-oxygenated 

environments where oxidation occurs. Concentration in groundwater is higher than in 

surface waters (Homoncik et al., 2010). Its release from the catchment is significantly 

influenced by pH, temperature, and organic matter (Chen et al., 2015). In a study in a 

forested catchment in Wales, Rowland et al. (2012), found that manganese reached surface 

water bodies from rainfall and surface soil leaching and concentrations are highest at the 

beginning of high flows before a dilution effect sets in, and that concentrations increase for 

several years after felling. Manganese concentrations can also be influenced by in-lake 

processes and may override any catchment controls (Graham et al., 2012).  
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IV. Colour  

Colour arises from suspended particulate matter and solutes including iron, manganese, and 

DOC. In Scotland, colour is usually induced by DOC, originating from organic material in 

the soils and is therefore usually highest in catchment draining peat or other organic rich 

soils (Dawson et al., 2008). DOC production and release is also influenced by soil wetness, 

drying and wetting cycles, and temperature (Freeman et al., 2001; Clark et al., 2009). Large 

increases in flow are often associated with high loadings in colour, iron, and manganese 

(Abesser et al, 2006). There have been increasing trends for DOC over the past decades in 

Scotland and the Northern hemisphere, possibly due to acidification reversal (Monteith et 

al., 2007). DOC can also be produced or removed within the water body (Chapman & 

Palmer, 2016). 

 

V. pH 

The pH of environmental waters results from the balance of acids and bases in the water, 

with carbon dioxide being particularly influential in regulating pH (Boyd, 2015). PH is thus 

influenced by the surrounding rocks and soils, but also precipitation (e.g., acid rain) and 

biological processes (photosynthesis, respiration, decomposition). Carbonate and 

bicarbonate add to the alkalinity of water, meaning the capacity to buffer acid influences, so 

waters with low alkalinity show higher fluctuations in pH (Boyd, 2015). Waters with high 

alkalinity are often associated with limestone. 

 

VI. Turbidity 

Turbidity describes the cloudiness or haziness of water due to suspended solids. Solids in 

water originate from dissolution and suspension of minerals and organic matter from soils 

and geological formations, or aquatic organisms and their remains. Sources of suspended 

particles in surface water are erosion of catchment soils by rain and overland flow, erosion 

of stream and lake beds and banks, and resuspension of sediment (Boyd, 2015). 

Disturbance of soils (through forestry, agriculture, mining etc.) and runoff from urbanized 

areas can lead to an increased amount of sediment and particles reaching water bodies 

(Siakeu et al., 2004). 
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VII. Coliform 

Total coliforms include bacteria found in the soil, vegetation, water, human and animal 

waste. Coliform bacteria are often used as a general indication of the sanitary condition of 

the water, with waters containing a significant number of coliforms considered a health 

hazard due to the possibility of disease (Boyd, 2015).  

 

VIII. E. coli 

E. coli is a faecal coliform originating from the faeces of warm-blooded animals, and is a 

widely used indicator for faecal contamination of water (Odonkor & Ampofo, 2013). 

Sources for E. coli in surface water are usually livestock, wild animals, pollution from 

sewage or slurry and manure application (Rotariu et al., 2012; Vinten et al., 2004; Tetzlaff 

et al., 2012).  

 

3.2.3 Water quality description 

Looking at median concentrations for catchments, it can be seen that similarly to the 

individual samples per catchments, most catchment medians are within the lower 

concentrations with few catchments branching up to very high median concentrations, 

except for pH as this is on a log-scale (Table 3.1 & Figure 3.4). For some parameters 

(colour, coliform bacteria, and E. coli), most catchments show median concentrations that 

are higher than the Scottish drinking water standard (The Public Water Supplies (Scotland) 

Regulations 2014), emphasising a widespread need for treatment. Catchments falling 

outside the required range for pH (6.5-9.5) were more acidic, while no catchments have 

medians that are too high. 
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Table 3.1: Distribution of median concentrations per water quality indicator for the 154 Scottish Water catchments included in the analysis. 

 Minimum 1st 

quartile 

Median Mean 3rd 

quartile 

Maximum Drinking water standard 

Aluminium (µg Al/l) 9.00 42.25 64.75 76.26 92.88 404.00 200 

Colour (mg/l Pt/Co) 2.00 24.00    33.75    38.95    49.62   167.50 20 

Iron (µg Fe/l) 7.0  108.1    179.5    267.4    361.8   1465.0 200 

Manganese (µg Mn/l) 1.00 5.50    13.00    22.12    27.00   405.50 50 

pH 5.5 6.7 7.1 7.064  7.4   8.4 6.5-9.5 

Turbidity (NTU) 0.20 

 

0.45 0.60 1.03 1.00 6.10 1 (leaving the treatment 

works) 

Coliforms (CFU in 100ml) 9.0     

 

88.0    190.0    279.2    285.0   4950.0 0 

E. coli (CFU in 100ml) 0.00     

 

1.00     4.25    17.62   10.00   580.00 0 
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Figure 3.4 Boxplots showing the distribution of catchment median concentrations per water quality indicator, including the 154 catchments of the subset. 
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Some of the water quality parameters looked at are expected to show correlations, and to 

influence each other. Catchments that have high concentrations of E. coli should also show 

high coliform values. Conditions that increase aluminium concentrations also influence the 

release of DOC, so catchments that show high colour values will probably also show higher 

concentrations for aluminium. Iron is also influenced by DOC and by similar mechanisms 

that influence DOC release, so it is expected to see a link here (Halliday et al., 2012). 

Furthermore, iron and manganese also produce colour, so a relationship between colour, 

iron and manganese should be observable. The pH influences the solubility of metals, e.g., 

aluminium and iron are more soluble in acidic waters. Iron and manganese also affect the 

turbidity of water. Spearman’s rank correlation testing was carried out in R to see the 

strength of linear relationships between catchment medians (pH was omitted as no linear 

relationship is expected, Table 3.2). 

Table 3.2: Results for Spearman's rank correlation tests on catchment median concentrations per water quality 

indicator (orange for strong relationships (rho >0.6), yellow for moderate relationships (rho>0.4), green for 

weak relationships (rho<0.4) that are significant (p<0.05)). 

 Colour Iron Manganese Coliform E. coli Turbidity 

Aluminium rho = 0.54 

p = 7xe-13 

rho = 0.55 

p = 2xe-13 

rho = 0.42 

p = 5xe-08 

rho = 0.17 

p = 0.033 

rho = 0.24 

p = 0.002 

rho = 0.51 

p = 2xe-11 

Colour  rho = 0.7 

p  = 2xe-16 

rho = 0.5  

p = 3xe-11 

rho = 0.12  

p = 0.13 

rho = 0.06 

p = 0.47 

rho =  0.52 

p = 4xe-12 

Iron   rho = 0.71 

p = 2xe-16 

rho = 0.28 

p = 0.0005 

rho = 0.38 

p = 1xe-06 

rho = 0.74 

p = 2xe-16 

Manganese    rho = -0.03  

p = 0.72 

rho = 0.27 

p = 0.0008 

p = 2xe-16 

rho = 0.8 

Coliform     rho = 0.56 

p = 4xe-14 

rho = 0.09 

p = 0.245    

E. coli      rho = 0.37 

p = 2xe-16 
 

Strong positive relationships between catchment median concentrations could be observed 

between iron and colour, manganese, and turbidity, and between manganese and turbidity. 

Moderate positive relationships were found between aluminium and colour, iron, 

manganese, and turbidity; between colour and manganese and turbidity; and between 

coliform bacteria and E. coli. Positive weak, but significant correlations were found 

between aluminium and coliform bacteria and E. coli, between iron and coliform bacteria 

and E. coli, between manganese and E. coli, and between turbidity and E. coli.  
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3.3 Catchment data  

Catchment data were needed to understand the relationship between natural or man-made 

characteristics of the catchment and water quality. In order to do so, it is therefore 

necessary that the data represented factors that might have an influence on water quality 

and differentiated enough to be able to explain variations. To be able to choose which 

variables should be included, in what detail, and from which source to derive them, it was 

therefore necessary to first identify which characteristics influence the water quality and 

how, and how these characteristics could be represented (Table 3.3). 
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Table 3.3: Overview of catchment characteristics under consideration for inclusion in the dataset intended for use in the empirical modelling of this research. 

Characteristic Influence Descriptors 

Kind of source Rivers, lochs, and reservoirs have different dynamics that influence water quality. In 

general, lakes have a longer residence time for water and a greater mixing of water sources 

from the catchment than rivers, and seasonal stagnation and cycling patterns. Reservoirs, 

depending on their design, can resemble either rivers or lakes, or a combination, with 

regard to their water chemistry.* 

Categorisation 

Loch, River, 

Impounding 

Reservoir 

Area Bigger and more diverse catchments might be more resilient as they may have more 

capacity to buffer influences. However, the bigger catchments might be the ones on lower 

altitudes with more anthropogenic impacts that are associated with higher pressures and 

subsequently lower water quality. 

The stability in water quality should be reflected in the range of concentrations in an 

indicator, however this does not entirely reflect fluctuations as some catchments might have 

isolated incidences of e.g., high bacteria load while otherwise remaining quite stable. The 

water quality data will also not reflect complete ranges as sampling is not frequent enough 

to ensure capturing all high and low concentration events. 

Catchment size  

Location/ 

Continentality 

The location influences other factors such as climate, soils etc. Rainfall shows a strong 

East-West trend in Scotland, and it would be expected to see some differentiation here. 

Continentality of the catchment would influence the temperature, especially the day and 

night differences and seasonal differences in temperature, as well as the amount of rainfall 

received, with oceanic catchments receiving more rain than continental ones. 

British National 

Grid (BNG) 

coordinates, 

Distance to sea, 

Latitude, Annual 

temperature range, 

Conrad’s formula 

Topography The topography is important as it determines how the water flows through the landscape, 

which has implications for water quality. For example, water that runs off the land quickly 

can pick up particles more easily. Important parameters for topography are therefore the 

steepness of the slopes. This will be dependent on land cover too, however. 

A high percentage of South and Southwest facing aspects could mean that more rain is 

falling on the ground and with higher impact, as this is the predominant wind facing 

direction, which would potentially result in more soil disturbance and higher runoff.  

Elevation in itself is not directly related to water quality, but is used to derive further 

topographic characteristics of the catchments, such as relief ratio (also giving an indication 

Slope classes 

(little, medium, 

steep), Elevation 

(mean, max, min), 

Relief ratio, 

Hypsometric 

integral, Elongation 

ratio, Aspects 

facing South and 
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of steepness), and the hypsometric integral (giving an estimate of the distribution of 

elevation, high values indicating a large proportion of the catchment at high elevation). 

Elongation ratio could be used to get an idea of the shape of the catchment, also indicating 

how close most areas of the catchment are to the surface water, indicating how far water 

would have to travel. 

Southwest, 

Soil The soil influences water quality by controlling how water is stored and flows through it, 

and by minerals and ions that are in the soil and washed out by water. Soils that have low 

absorbing potential will yield quicker runoff and a flashier regime, which brings a higher 

potential of carrying sediment and particles into the water source. This would be reflected 

in all parameters.  

The HOST** class is a number that is derived from a variety of parameters that influence 

the hydrological response of the soil. The baseflow index allows an estimate of how much 

the water is influenced by groundwater as opposed to runoff from land, which will 

influence composition of the water quality. Standard percentage runoff will give an 

indication how much water runs off as overland and subsurface flow, again influencing the 

speed of the runoff and the quality of the water when it reaches the water body. 

A crucial factor in water quality for Scotland is organic carbon (causing colouration), which 

is strongly influenced by organic soil (mainly peat). 

HOST class, 

average baseflow 

index (BFI), 

dominant BFI, 

average standard 

percentage runoff 

(SPR), dominant 

SPR, percentage 

peaty soils, 

percentage eroded 

peat 

Bedrock The type of bedrock will determine the way water flows but also influence the chemical 

properties of the water and the pH. With regard to the former, the permeability of the rock 

is important, with regard to the latter, the type of rock (e.g., siliceous, calcareous, or 

organic). Manganese, iron, and aluminium will also be influenced by the natural 

environment.  

Bedrock classed 

into 4 categories: 

igneous and 

metamorphic, 

sandstone, 

limestone, other 

sedimentary 

Land cover 

and vegetation 

Vegetation influences the way water runs off the land in various ways: interception of the 

rainfall (raindrops don’t hit the soil directly), roots allow water to infiltrate more easily, and 

facilitation of aggregation, again facilitating water infiltration. Vegetation also influences 

the nutrient cycling in the soil (and atmosphere), hence influencing nutrient content in the 

soil that can be washed out. 

Arable land has inputs of nutrients and other agrochemicals that can reach the water bodies, 

and faecal pathogens through slurry application. Improved grassland also has inputs of 

nutrients as well as microbiological pollutants through grazing animals. Woodlands can be 

Land cover classes 
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beneficial for water quality, e.g., through slowing water down. Natural woodlands are 

generally considered beneficial while planted, commercial forests can have water quality 

impairments if managed badly. Semi-natural habitats are considered to have less nutrient 

enrichment and a better ability for water purification. Urban land has a high percentage of 

impervious surface that causes water to run off quickly, picking up pollutants on the way 

(such as heavy metals, nutrients, microbial pollutants). 

Livestock Land use alone is not necessarily related to water quality, but land management may play a 

big role. One factor for example would be the number of livestock on the field. 

Number of 

sheep/cattle 

Wildlife  Wildlife can lead to contamination with bacteria, sediment, and colour (higher surface 

runoff from moorland). 

Numbers or density 

of deer/wildfowl 

Conservation 

area 

Land that has a conservation designation might be land that is functionally less 

compromised and that is managed in a “water-friendly” way. This is not necessarily so, but 

it might still be worthwhile to see if it works as an indicator for water quality. 

Area under a 

conservation 

designation 

Rainfall Rainfall has a multitude of effects, directly and indirectly. For example, higher rainfall 

leads to higher runoff, influencing water quality. Depending on conditions in the catchment 

prior to rainfall, e.g., the wetness of the catchment, rainfall could lead to a wash out into the 

water, or to dilution, or a combination. Seasonal effects are likely to show. 

Total rainfall, 

rainfall days 

Temperature Temperature could influence land cover and use. Air temperature will also influence water 

and soil temperature, in turn potentially influencing water quality. 

Temperature could also be an indicator of continentality of the catchment, which in turn 

will mean variation for a number of factors (temperature ranges, rainfall, wind speeds, 

slopes, land use etc.) 

Annual average 

temperature, 

monthly means 

Combination Many factors will have varying influences, depending on other factors. Rainfall for 

example would be expected to act differently regarding water quality in a steep catchment 

with low absorbing soils and short vegetation than in a catchment with high absorbing soils, 

tall vegetation, and little slopes. 

 

Unidentified There will be pressures that influence the water quality such as e.g., groundwater influence, 

land management, land compression, artificial drainage, etc. which have not been used to 

describe the catchments and can therefore not be identified in the analysis. Some of these 

pressures could be associated with other characteristics or spatial associations. This could 

then give an indication if other data to describe these pressures should be obtained. 
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* Hayes et al. (2017) suggest several differences between reservoirs and lakes that also influence water quality, e.g., that catchments 

are generally larger for reservoirs than lakes. This seems to be indicated for this dataset – the median catchment size for reservoirs is 

greater than for lakes (4.29 km2 and 1.82 km2 respectively), although the biggest catchments are found within the loch group. It is also 

suggested that reservoirs would be located lower in the catchment. Other suggested differences such as that reservoirs usually have a 

more elongated shape, are shallower and have a higher temperature, cannot be tested as there is no data. 

**Hydrology of soil types (HOST) classes have been developed considering the distribution of soils and the hydrological response of 

catchments using conceptual models of the processes in the soil and substrate, resulting in 29 classes (Boorman et al., 1995).
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3.3.1 Data sources and preparation 

Shapefiles for catchments were provided by Scottish Water. Some variables could be 

calculated directly from the shapefiles using GIS, others were calculated using additional 

data obtained from various sources (Table 3.4). To be able to see if the catchments 

represent the “standard” for Scotland or if they over- or underrepresent some 

characteristics, means and percentages for Scotland as a whole were calculated. 

Many of the identified characteristics will influence each other. For example, it will be 

important what kind of vegetation is on what kind of soil. The variables as created are not 

able to cover this but trying to reflect this in this kind of data would create a large number 

of variables which would become impractical for empirical analysis. The proximity of the 

different characteristics such as geology, soils and land cover to the water body could also 

play an important role that is not reflected in the variables. It might be possible to include 

variables for a buffer zone (of e.g., 200 metres around the water body). Obtaining a reliable 

map of water courses however proved unfeasible so these data were not created. 

Land management has a big impact on water quality especially for arable, forest and urban 

land covers. This could include the timing of fertilizer and slurry application on fields, the 

timing of livestock on fields, access of livestock to water courses, felling operations in 

forests etc. These considerations were not practicable to assess at the national scale.  
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Table 3.4: Variables describing catchment characteristics that were included for empirical modelling in subsequent analysis, and how they were derived, 

including sources and processing steps. 

Characteristic Variable Data & source Data preparation (ArcGIS) Comment 

Source Type 

- River 

- Lake (loch) 

- Impounding reservoir 

Scottish Water 

catchments 

shapefile 

 As the water bodies under 

observation here differ greatly 

(from small upland tributaries and 

lochs to major rivers (such as the 

Tay or the Ugie) and lochs (such 

as Loch Ness), categorising them 

as lochs, rivers and impounding 

reservoirs will probably not yield 

clear grouping. It would be 

expected that lochs and rivers e.g., 

from a similar upland region will 

show a more similar picture with 

regard to water quality than if 

compared to other rivers and 

lochs. 

Topography  

 

 

Slope classes: 

- little slope = 0-3° 

- moderate slope = 4-16° 

- steep slope >16 

Percentage of catchment area 

 

Aspect 

Percentage facing south or 

southwest (158°-247°) 

 

 

 

 

 

 

OS Terrain 

DEM (50m) 

downloaded 

from Digimap 

(https://digimap.

edina.ac.uk/) 

DEM tiles put together using the 

‘Mosaic’ tool 

 

Calculated using the ‘Slope’ 

tool, raster then converted to 

shapefile, percentage for each 

catchment calculated using 

‘Tabulate Intersection’ 

 

Calculated using the ‘Aspect’ 

tool, raster reclassified into 0 (0-

157 and 248-360 degrees) and 1 

(158-247 degrees, South and 

Southwest), then converted into 

shapefile, percentage for each 

catchment calculated using 

‘Tabulate Intersection’ 

 

There will be some collinearity 

between parameters here, however 

it might be interesting to see if the 

last three parameters can be used 

in the statistical analyses and if 

they might be used instead of 

slope and aspect (as they might be 

more easily derived). 

Classing slopes might mask an 

effect. 
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Elevation 

- Minimum 

- Maximum 

- Mean 

 

Relief ratio 

 

 

 

 

 

 

 

 

 

Hypsometric integral 

Area under the hypsometric 

curve; found to be 

mathematically very close to 

the elevation relief ratio (Pike 

& Wilson 1971, Singh et al., 

2008) 

 

Elongation ratio  

Ratio of the diameter of a 

circle with the same area as 

that of the basin to the 

maximum basin length. The 

value approaches 1.0 as the 

shape of a drainage basin 

approaches to a circle. The 

ratio varies from 0.6 to 1.0, 

typical values are close to 1.0 

for regions of very low relief 

and are between 0.6 and 0.8 

for regions of strong relief and 

Derived through ‘Zonal 

Statistics as Table’ (or ‘Zonal 

Statistics’ in QGIS) 

 

 

(Maximum elevation – Mean 

elevation) / Maximum length of 

river basin 

Maximum length of river basin: 

Calculated by putting a 

rectangle (by width) around the 

catchment using the ‘Minimum 

Bounding Geometry’ tool (add 

geometry characteristics)  

 

(Mean elevation – minimum 

elevation) / (maximum elevation 

– mean elevation) 

 

 

 

 

 

 



86 

 

 

steep ground slope (Kumar, 

2011). 

Area Size  

in km2 

Scottish Water 

catchments 

shapefile 

  

Continentality Distance to nearest sea 

 

 

 

Annual temperature range 

 

 

 

 

Conrad’s formula  

Hyper-oceanic when CCI in 

between -20 to 20, oceanic/ 

maritime when CCI in 

between 20 and 50; sub-

continental when CCI in 

between 50 and 60; continental 

when CCI in between 60 to 80 

and as extreme/hyper-

continental climate when CCI 

in between 80 and 120 

(Gadiwala et al., 2013) 

Polyline file of 

the Scottish 

coastline 

(http://www.nat

uralearthdata.co

m/downloads/10

m-physical-

vectors/10m-

coastline/) 

Derived using the ‘Generate 

Near Table’ tool, using the 

coastline as ‘Near feature’ 

 

Taken as the difference between 

the maximum and the minimum 

mean monthly temperature (see 

below). 

 

(1.7*Annual temperature 

range/sin (latitude+10))-14 

(Conrad, 1946; Snow, 2005). 

Latitude derived through 

converting the XY coordinates 

of the centroids of the catchment 

polygons on 

http://www.gridreferencefinder.

com/batchConvert/batchConvert

.php 

As continentality influences water 

quality indirectly through 

influence on rainfall and 

temperature, both of which are 

included as direct parameters, this 

might lead to collinearity. It might 

be interesting to see if this could 

be used as proxy in absence of 

specific rainfall and temperature 

data. 

 

 

Geology Bedrock classes 

- Igneous and metamorphic  

- sandstone 

- limestone 

- other sedimentary  

Percentage of catchment area 

BGS Geology 

625k 

(https://www.bg

s.ac.uk/datasets/

bgs-geology-

625k-

digmapgb/) 

Converted shapefile into raster 

using the overall class, then 

reclassified raster into smaller 

classes (as the 4 above). Then 

converted into shapefile and 

used ‘Tabulate Intersection’ to 

derive percentages for each 

catchment. 

There is only little percentage of 

limestone and sandstone in 

Scottish Water catchments so 

effects may not be discernible. 

Soils HOST class group 

4 groups according to the SPR 

1:250,000 Soil 

Map (National 

‘Tabulate Intersection’ on the 

class 

BFI and SPR are already included 

in HOST class, so these variables 

http://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/
http://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/
http://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/
http://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/
http://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/
http://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/
http://www.gridreferencefinder.com/batchConvert/batchConvert.php
http://www.gridreferencefinder.com/batchConvert/batchConvert.php
http://www.gridreferencefinder.com/batchConvert/batchConvert.php
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that determines the class: 

- HOST1 very well drained 

- HOST2 medium well drained 

- HOST3 medium poorly 

drained 

- HOST4 very poorly drained 

Percentage of catchment area 

 

Peat 

Percentage of the catchment 

area with soils with a peaty 

main component  

 

 

 

Eroded peat 

Percentage of catchment area 

with eroded peat 

 

 

 

 

BFI 

Measure of the proportion of 

the river runoff that derives 

from stored sources; the more 

permeable the rock, superficial 

deposits, and soils in a 

catchment, the higher the 

baseflow and the more 

sustained the river’s flow 

during periods of dry weather 

(CEH, n. d.; Gustard et al., 

1992) 

- value that dominates (highest 

percentage) in the catchment 

Soil Map) 

(https://soils.env

ironment.gov.sc

ot/) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Selected all polygons from the 

soil shapefile that had a peat 

main component and saved as 

new shapefile, then ‘Tabulate 

Intersection’ for deriving the 

percentage per catchment 

 

Selected all polygons that had 

Eroded Peat included in 

description and saved as new 

shapefile, then ‘Tabulate 

Intersection’ for deriving the 

percentage per catchment 

 

Determined the percentage of 

different values per catchment 

by using ‘Tabulate Intersection’  

 

 

 

 

 

 

 

 

 

 

 

are dependent. HOST class might 

be all that is needed with regard to 

the hydrological behaviour. There 

are a large number of HOST 

classes, so they have to be 

summarized which may mask 

effects. The same is true for either 

using an average for BFI or SPR 

or the dominant value. 

HOST class does not capture the 

aspect of what soil contributes 

directly to water quality 

parameters. This is captured with 

regard to organic carbon through 

peat component or topsoil organic 

carbon. 

 

Topsoil organic carbon content 

data were used when it became 

available and replaced the 

peat/eroded peat data. 
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- average value 

 

SPR 

Shows a soil’s hydrological 

response. Low values indicate 

freely draining soils, higher 

values indicate soils with 

impeded drainage (Helliwell et 

al. 2007) 

- value that dominates (highest 

percentage) in the catchment 

- average value 

 

Topsoil organic carbon 

content 

Average over the catchment 

 

 

 

 

 

 

 

 

 

 

 

 

 

Map of topsoil 

organic carbon 

concentration 

(https://soils.env

ironment.gov.sc

ot/) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Determined the percentage of 

different values per catchment 

using ‘Tabulate Intersection’  

Land cover and use Land cover group 

- arable 

- improved grassland 

- coniferous woodland 

- deciduous woodland 

- mixed woodland 

- semi-natural 

- urban 

- water 

Percentage of catchment area 

 

Conservation designation  

Percentage of catchment area 

under designation: 

- Local Nature Reserve 

- National Nature reserve 

- SSSI 

CEH Land 

cover map 

(shapefile) 

2007/2015, 

downloaded 

from Digimap 

 

 

 

 

 

Individual 

shapefiles for 

conservation 

designations; 

Scottish Natural 

Heritage (now 

Converted shapefile into raster, 

reclassified into the above 

groups, then converted to 

shapefile and percentage of 

cover per catchment determined 

using the ‘Tabulate Intersection’ 

tool 

 

 

 

 

Shapefiles merged into one 

shapefile, then used ‘Tabulate 

Intersection’ to derive 

percentage per catchment 

 

 

There is the possibility of 

misclassifications. Summarising 

classes might mask effects. It 

might be necessary to distinguish 

between planted and natural 

woodland. Natural woodlands 

might be identifiable through the 

ancient woodland inventory and 

the semi-natural woodland 

inventory from SNH. 

The semi-natural land cover class 

comprises a lot of different 

habitats that might have very 

different impacts on water quality. 

It might make sense to separate 

out a few classes that are usually 

beneficial, such as heathland, 
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- SAC 

- Ramsar Wetlands 

- World Heritage Sites 

- Biosphere Reserves 

- Country Parks 

- SPA 

 

Mean number of deer 

 

 

 

 

 

 

 

 

Average number of cattle 

Average number of sheep 

 

 

 

 

 

 

 

Number of septic tanks  

NatureScot; 

https://cagmap.s

nh.gov.uk/natur

al-

spaces/category.

jsp?code=pa) 

 

Deer count 

density 

polygons 

(https://cagmap.

snh.gov.uk/natur

al-

spaces/category.

jsp?code=hs) 

 

Scottish 

Government 

Agricultural 

Statistics; 

provided for 

2013-2016, per 

parish  

 

 

SEPA Septic 

tank register 

(provided by 

Scottish Water) 

 

 

 

 

 

 

 

Mean number identified using 

‘Zonal Statistics as Table’  

 

 

 

 

 

 

 

Average number per km2 

calculated per parish, then 

percentage of area with average 

number per catchment 

calculated using ‘Tabulate 

Intersection’ and catchment 

average calculated. 

wetlands etc. 

The influence of a conservation 

designation might not be strong 

enough to show, and conservation 

status alone is not necessarily a 

measure of the natural integrity of 

the area. 

 

Land cover was updated to the 

2015 data when the dataset 

became available and 

subsequently used. The category 

“mixed woodland” was no longer 

included. 

 

Land capability LC classes 

- 1-3.1 (Prime land) 

- 3.2-5 (Livestock) 

Percentage of catchment area 

Land capability 

for Agriculture 

national cover 

map (1:250,000) 

(https://soils.env

ironment.gov.sc

ot/) 

 The difference between classes 

3.1 and 3.2 is not big although 3.2 

is not officially classed as prime 

land, so it might be worthwhile to 

see if the differentiation in LC 1-3 

and LC 4-5 is better. 
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Rainfall Monthly mean rainfall in mm 

catchment average, long-term 

average over time series 1981-

2010 

 

Mean number of days per 

month with rainfall >10 mm 

average over the years 2007-

2011 

 

 

Summer effective rainfall 

(SER) 

average over period 1981-2000 

5km grid data 

from Met 

Office/CEDA 

Archive 

(https://catalogu

e.ceda.ac.uk/uui

d/d715d2ac53f1

4f21acc6952a02

78817d) 

 

 

Provided by Dr. 

Iain Brown 

Reclassified into 100m raster, 

then Zonal Statistics in QGIS 

 

 

 

For each year from 2007-2011: 

reclassified into 100m raster, 

then using Zonal Statistics in 

QGIS, and averaging over the 

five years 

 

Using the data per months rather 

than averaging out over the whole 

year could make the models more 

accurate, and it will allow to 

explore the change within the 

scenarios per month or season. 

However, water data are mostly 

not sufficient for averaging 

months, so this might not work. 

 

 

SER data were obtained and used 

later (from 5). 

 

Temperature Annual mean temperature 

catchment average, long-term 

average over time series 1981-

2010 

 

Annual accumulated 

temperature (AAT) above 

5.5°C  

average over period 1981-2000 

5km grid data 

from Met Office 

(see above) 

 

 

Provided by Dr. 

Iain Brown 

Reclassified into 100m raster, 

then Zonal Statistics in QGIS 

AAT data were obtained and used 

later (from 5). 

Projections SER  

Average over period 2041-

2060 

 

AAT 

Average over period 2041-

2060 

 

Land capability 

Percentage of classes for 

period 2041-2060 

Provided by Dr. 

Iain Brown 

Based on UK Climate 

Projections 2018 

 

 

 

 

 

 

See Brown et al. (2008) 

 

Scotland  Boundary Shapefile 

downloaded 

Scotland selected and exported 

in ArcGIS 
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from 

http://www.natu

ralearthdata.com

/downloads/50m

-cultural-

vectors/ 
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3.3.2 Catchment description 

The shapefile that included catchment outlines for water sources used by Scottish Water 

included 398 active catchments as raw water sources for drinking water. These consist of 

direct river outtakes (141), natural lochs (49), impounding reservoirs (146), springs (21) 

and boreholes (41). The catchments are defined by the point of outtake, following 

hydrological principles for the surface water sources, but borehole and spring catchments 

were created by drawing a circle with a radius of 1km around the outtake point. Catchments 

are distributed all over Scotland, as water provision is by its nature decentralized as it is in 

most cases uneconomical to transport water over larger distances (Figure 3.1). 

The catchments have an average size of just below 40 km2, however this mean is being 

distorted by a few very large catchments, and the median size is 3.14 km2. The biggest 

catchment, with 4991 km2, is the River Tay. There are two more catchments above 1000 

km2, Loch Ness (1782 km2) and Cairnton, River Dee (1383 km2). Only another 13 

catchments are above 100 km2 in size. Of the rest, the majority are smaller than 5 km2 

(Figure 3.5). 

Most catchments are at a mean elevation of between 250 – 300 m (Figure 3.6). The 

maximum elevation can be found in Cairnton, River Dee with 1309m. Most catchments are 

dominated by moderate slopes, with only little steep slopes (Figure 3.7). However, some 

catchments also have high rates of steep slopes (e.g., Allt An Fhuarain with almost 95% of 

steep slopes and no slopes below 3 degrees). This can also be observed when looking at 

relief ratio and elevation relief ratio, where values show distributions to be expected for 

Scotland with a few high outliers (Figure 3.8).  
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Figure 3.5: Histogram of catchment areas with catchments up to 100 km2 included (n=382). 

 

Figure 3.6: Histogram of catchment mean elevation (m AOD) for Scottish Water catchments (n=398). 
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Figure 3.7: Boxplots showing the distribution of slopes within the Scottish Water catchments (n=398). Little 

= below 3 degrees, moderate = 4 to 15 degrees, steep = above 16 degrees 
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As wind mostly comes from a South and Southwest direction, areas exposed to this 

direction tend to have a higher exposure to rainfall. It is therefore possible that the amount 

of slopes facing this direction could make a difference to the hydrological behaviour of the 

catchment and hence the water quality. Looking at how much of the catchment faces a 

South or Southwest aspect, we see that most catchments have around 25% of South and 

Southwest facing aspects (Figure 3.9). 

A 

B 

Figure 3.8: Histograms of A. relief ratio values and B. elevation relief ratio values for SW 

catchments (n=398). 
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Figure 3.9: Boxplots showing the distribution of percentage of South and Southwest facing aspects in Scottish 

Water catchments (n=398). 

Looking at Scotland as a whole, elevation ranges from sea level to 1347 metres, with an 

average of 241m. South and Southwest aspects make out 23%, and little slopes occur 17% 

of the time, moderate slopes 65% and steep slopes 18%. The catchments therefore seem to 

represent Scottish topography relatively well. 

In terms of geology, most catchments are highly dominated by igneous and metamorphic 

bedrock. Some catchments are also high in sandstone, but there are only few catchments 

that have a high percentage of limestone (Loch Borralie is an exception with 100% 

limestone) or other types of sedimentary rocks (Figure 3.10). This represents the Scottish 

bedrock distribution very well. 

HOST classes give an indication of the hydrological behaviour of the soil. The distribution 

of HOST classes in Scottish Water catchments indicates that most catchments are 

dominated by soils that have only limited permeability and storage capacity, so that the soil 

gets saturated from rainfall and water runs off quickly (Figure 3.11). 
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Figure 3.10: Boxplots showing the distribution of percentage of bedrock geology types for Scottish Water 

catchments (n=398). 

 

Figure 3.11: Boxplots showing the distribution of percentage of HOST class of soils in Scottish Water 

catchments (n=398; 1 = HOST classes 1 - 5, 11; 2 = HOST classes 9, 10, 14, 16, 17; 3 = HOST classes 6 - 8, 

15, 18, 21, 24, 25; 4 = HOST classes 12, 19, 20, 22, 23, 26 – 29). 
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Many catchments have a high percentage of peaty soils, a few also exhibit a high amount of 

eroded peat soils (Figure 3.12). Ten catchments are covered by more than 25% of eroded 

peat, Gossa Water leading this list with almost 70%.  

 

Figure 3.12: Boxplots showing the distribution of percentage of peaty soils and eroded peat in Scottish Water 

catchments (n=398). 

When it comes to land cover and land use, most catchments are highly dominated by semi-

natural or natural habitat, followed by coniferous forest (Figure 3.13). Many catchments 

also have a high percentage of water cover, which is to be expected especially for lochs and 

reservoirs. Most catchments have low urban areas (below 10%), except for the Larchfield 

borewell, which has over 54% urban area. With an average of 67% semi-natural habitat, 

this is slightly above Scotland as a whole (55%). Arable areas are underrepresented, with a 

mean of 2.7%, compared with 8.9% for Scotland as a whole.  



99 

 

 

 

Figure 3.13: Boxplots showing the distribution of catchment percentages of land cover (2007) in Scottish 

Water catchments (n=398; Water = % area covered by water, Urban = % urban area cover, Arable = % area 

covered by arable agriculture, Imp. grass = % area covered by improved grassland, Mix. wood = % area 

covered by mixed woodland, Dec. wood = % area with deciduous woodland, Con. wood = % area with 

coniferous woodland, Semi-nat. = % all other area). 

There are 80 catchments where more than 75% of the area is under a form of conservation 

designation. 250 catchments have no or only small areas (less than 5%) with a conservation 

designation. 

The mean annual temperature in the catchments ranges between 4.5 and 9.1 degrees 

Celsius, with most catchments having a mean temperature between 6.5 and 7 degrees 

(Figure 3.14).  
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Figure 3.14: Histogram of mean annual temperatures in °C (long-term average 1981-2010) of Scottish Water 

catchments (n=398). 

The mean monthly total rainfall is 135 mm (Figure 3.15A), although a few catchments have 

significantly higher mean monthly total rainfall, e.g., Loch Sloy has a mean monthly total 

rainfall of above 300 mm. Most catchments have on average 4 days of rainfall above 10 

mm per month (Figure 3.15B). 
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A 

B 

Figure 3.15: Histograms of A. mean monthly total rainfall in mm (long-term average 1981-2010) and 

B. average number of days with rainfall above 10 mm per month (average 2007-2011) in SW 

catchments (n=398). 
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There is a west-east gradient for rainfall in Scotland due to the predominant west wind – 

this trend seems to be true for the catchments as well (Figure 3.16). 

 

Figure 3.16: Scatterplot with regression line showing the mean monthly total precipitation by west-east 

coordinate (British National Grid) of the catchment. 

In summary, due to catchments being distributed all over Scotland, they reflect the different 

natural and anthropogenic conditions in Scotland, apart from slight overrepresentation of 

semi-natural land cover and underrepresentation of arable areas.   
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3.3.3 Subset of catchments with water data 

To analyse the relationships between the identified catchment characteristics and water 

quality, a subset of 154 catchments was chosen for which water data in sufficient sample 

density and size were available (see 3.1). The subset included 64 reservoirs, 32 lochs, and 

58 river intakes. Ideally, this subset of catchments should represent the diversity found in 

the total set of Scottish Water catchments. Wilcoxon tests were run to test if any variables 

displayed significant differences in medians between the groups (included in the subset and 

not included in the subset), and boxplots were created to visually compare the groups. 

When it comes to area, the subset covers the range of the overall set, but the mean is higher 

(84.6km2), which indicates that a larger number of smaller catchments has been removed. 

However, as most catchments are small, this is to be expected. The median is 3.77 km2, 

which is only a little higher than the median of the group not included in the subset (3.14 

km2). The elevation also still covers the full range, and the mean is similar with 257 m. 

Regarding slope, the subset includes a slightly higher proportion of catchments with steeper 

slopes and a slightly lower proportion of catchments with more gentle slopes. However, 

both relief ratio and elevation relief ratio show no significant difference in medians. The 

median percentages in south and southwest facing aspects differ slightly with the subgroup 

not containing quite the range as the complete group (Figure 3.17). 
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Figure 3.17: Boxplots showing the distribution of percentage of South and Southwest facing aspects in the 

catchments included in the subset for analysis (n=154) and the catchments not included in the subset (n=244). 

For the bedrock geology, the subset of catchments still covers the range of different 

distributions found in the full range of catchments (Figure 3.18). With regard to the soil, the 

subset loses the catchments with high percentages of high absorbing soils (Figure 3.19). 

While the Wilcoxon test gives statistically significant differences for the median for 

percentages of peaty soils and eroded peat, it is observable that the subset still covers the 

complete range (Figure 3.20). 

Regarding land cover, semi-natural and natural habitat is still more dominant in the subset, 

while catchments with higher percentages of improved grassland and arable areas seem to 

have been excluded (Figure 3.21).  
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Figure 3.19: Boxplots showing the distribution of percentage for very well drained soils in the catchments 

included in the subset for analysis (n=154) and the catchments not included in the subset (n=244). 

A. B. 

Figure 3.18: Comparison of distribution of percentages for different types of bedrock in the catchments. A. For 

catchments included in the subset for analysis (n=154). B. For catchments not included in the subset (n=244). 
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A. B. 

Figure 3.20: Boxplots showing the distribution of percentage of catchment area with peaty main component in 

the soils (A.) and eroded peat (B.) in the catchments included in the subset for analysis (n=154) and the 

catchments not included in the subset (n=244). 
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Figure 3.21: Distributions of the percentages of different land covers in the catchments of the subset included 

in the analysis (n=154; Water = % area covered by water, Urban = % area with urban land cover, Arable = % 

area with arable agriculture, Imp. grass = % area with improved grassland cover, Mix. wood = % area with 

mixed woodland cover, Dec. wood = % area with deciduous forest cover, Con. wood = % area with 

coniferous forest, Semi-nat. = % all other land cover). 

For the climate, the mean annual temperature for the subset of catchments is slightly higher 

(7°C vs 6.8°C), however the full range is still covered (Figure 3.22A). While the 

distribution of mean total rainfall per month is comparable (Figure 3.22B), looking at the 

mean number of days per month with rainfall above 10 mm, the majority of catchments has 

now on average 5-6 days per month with this amount of rainfall (Figure 3.22C). Again, the 

subset includes catchments that cover the full range of conditions.  
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A 
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C 

Figure 3.22: Histogram of A. mean annual temperature in °C, B. mean monthly total rainfall in mm, and C. 

mean number of days per month with more than 10 mm of rainfall of the subset of catchments (n=154). 



109 

 

 

In summary, some of the variables are slightly differently distributed in the subset of 

catchments, but most of the variability of conditions is still represented, with the exception 

of the higher percentages of agricultural land uses in the catchment. The subset is however 

still considered to be a very good representation. 

 

3.4 Utilisation of data sets in this research 

The dataset with the variables describing catchments characteristics originally comprised 

40 variables (A.1): Type of source, Slope gentle, Slope moderate, Slope steep, Aspect, 

Mean elevation, Minimum elevation, maximum elevation, Relief ratio, Elevation relief 

ratio, Elongation ratio, Area, Distance to sea, Annual temperature range, Conrad’s formula, 

Igneous and metamorphic bedrock, Limestone bedrock, Sandstone bedrock, Other 

sedimentary bedrock, HOST1, HOST2, HOST3, HOST4, Peat, Eroded peat, Dominant 

BFI, Dominant SPR, Semi-natural cover, Coniferous cover, Deciduous cover, Mixed 

woodland cover, Arable cover, Improved grassland cover, Urban area, Water, Conservation 

designation, Number of deer, Mean monthly rainfall, Mean number of days with more than 

10 mm of rainfall, and Mean annual temperature. Some of these variables described the 

same or similar characteristics and in subsequent analysis, a choice was made which 

variable to use rather than use all of them. General difficulties with regard to using this 

dataset in empirical analysis originated from many of the variables, while having numerical 

values, being in fact categorical as they represented different classes (e.g., bedrock geology, 

soils, land cover). This also meant that these variables, if all included, would always add up 

to 100%, although this could be avoided by including only some of these. Many variables 

were also highly skewed and zero-inflated. This needed to be considered when choosing the 

statistical method.  

Throughout the research, some data became available that were then included in the 

analysis (see 5 & 6), but were only prepared for the subset of the catchments rather than for 

the complete set of catchments. These later variables included Topsoil Organic carbon 

content, Mean number of sheep, Mean number of cattle, Number of septic tanks, Land 

capability – prime land, Land capability – classes 3.2-5, SER, and AAT. Updated land 

cover data also became available, which did not include the category “mixed woodland”. 
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As an alternative to “Semi-natural”, the land cover variable “heathland” was generated as a 

subcategory of “Semi-natural”. 

The catchment data of the catchment subset were combined with the water quality dataset 

comprising summary statistics for each catchment, with concentration median, mean, 

maximum, minimum, standard deviation, 5th, 25th, 75th and 95th percentile values for each 

of the eight indicators (A.2). For statistical analysis, only some of these variables were 

chosen.  Additional median concentration values for TOC were later derived for 127 

catchments from the catchment subset where data were made available.  

Some analyses used individual sample values rather than summary statistics. These 

included values of colour, TOC, iron, manganese, and turbidity (A.3), colour (A.4), and 

TOC and E. coli in conjunction with climate data (A.5 & A.6). The climate data were daily 

total rainfall and mean daily temperature data for the period 2010-2016, downloaded as 5 

km grid data from the Met Office.  

For the risk screening and creation of the risk maps (5.3.6 & 6.3.4), projections in SER, 

AAT and land capability for a future period 2041-2060 were used. AAT is a metric for the 

length and intensity of the growing season, and can also be seen to reflect the duration and 

intensity of bacterial organic matter production. AAT was based upon accumulated degree-

days above the standard 5.5ºC threshold for grass. SER is the excess of rainfall over 

potential evapotranspiration (PET) and is a metric for potential surface runoff, accumulated 

daily for April-September, with PET calculated by the FAO Penman-Monteith method 

(Brown, 2017). These metrics and their projections were created and provided by Dr. Iain 

Brown. For both metrics, the mean value was calculated for the relevant period on a 100 m 

grid and georeferenced against water intake sources. For the projections in AAT and SER, 

the UKCP18 perturbed physics ensemble (PPE) was used, with each of the 12 ensemble 

members representing variants run under different parameterizations, using the 12 km 

regional model HadRM3 nested within the global model HadGEM3-GC3.05. The models 

are driven by future GHG concentrations defined by the RCP8.5 scenario (Lowe et al. 

2018). RCP8.5 is a high-end scenario, but the climate changes are less influenced by 

divergence between different emissions scenarios as compared to climate sensitivity (as 

represented by different climate model parameterizations). Use of RCP8.5 together with 

HadGEM3/HadRM3, which has relatively high climate sensitivity compared to other 
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climate models, therefore provides an upper end estimate of climate change risk (Hanlon et 

al., 2021). The UKCP18 PPE model data were further downscaled to match the grid scale 

of the baseline period climatology using a simple delta-shift (Brown, 2017). 

Land capability classification for Scotland has used a similar bioclimate classification in 

combination with other biophysical variables to define land use potential (Brown et al., 

2008). It uses soil moisture deficit rather than SER, but also uses AAT, as in Scotland, 

temperature and precipitation are the predominant natural constraints on agriculture 

because many areas are too cool or wet. For the land capability projections, projections in 

climate parameters derived as described above were used to develop a future bioclimate 

and land capability scenario. The projections for land capability represent a ‘reasonable 

worst case’ scenario assuming that irrigation and drainage infrastructure continues to be 

available so that land use can be optimised according to the capability class for that 

location.  
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4. Catchment profiling: Catchment typologies and relationships 

between catchment characteristics and water quality 

Assessment 1.1 looks into the relationships between catchment characteristics and water 

quality, the possibility for catchment profiling, and current concerns over raw water quality 

in Scotland. The first step in the analysis to arrive at a risk screening that enables a step-by-

step integration of climate change impacts into the existing raw water risk assessments and 

management procedures therefore considers all identified eight water quality indicators to 

more broadly reflect on water quality, and investigates if the data allow a degree of 

profiling, meaning identifying types of catchments with similar water quality characteristics 

stemming from similar catchment conditions. This builds capacity to understand 

catchment-water quality connections, to identify major concerns and area of concerns, and 

to prioritize areas or indicators to investigate further. It therefore particularly relates to 

stage 1 in Figure 1.1, by identifying how different water quality issues relate to different 

pressures, connecting this to particular conditions that make catchments potentially 

vulnerable to these pressures, and look at spatial distribution to understand patterns of 

exposure and vulnerability that may indicate how temporal changes will affect different 

types of catchments.  

This chapter first identifies possible approaches to investigate the data with these objectives 

in mind (4.1), describes methods chosen (4.2), presents results (4.3) and discusses them 

with regard to their meaning for risk factors for water quality, risk management and 

assessment (4.4), and how they inform further steps (4.5). 

 

4.1 Background 

There are numerous examples of a wide range of multivariate statistics used to understand 

patterns in and controls over surface or ground water quality. It is also common to combine 

catchment characteristics data with water quality data to enable predictions for water 

quality e.g., for transferring findings to data-sparse catchments. Especially for the former 

aspect of recognising patterns and commonalities, methods that allow a form of grouping or 

reduction of complexity are favoured, while forms of linear models or regression is often 



113 

 

 

used for the latter aspect of predicting water quality outcomes. Several methods are often 

combined to gain a more comprehensive understanding.  

Methods like Principal Component Analysis (PCA) and Factor Analysis (FA) allow 

identifying patterns in the correlations between different variables. These methods assume 

that there are latent factors (which cannot be or haven’t been measured directly but are 

described by several other variables) underlying the observed data (FA), or try to identify 

composites of the variables (PCA). They seek to reduce complexity in the data and have the 

advantage that results could be used in further statistical modelling that benefits from a 

reduced set of variables (Field et al., 2012). Especially PCA is a widely used approach to 

analyse water quality variability. For example, Bengraïne & Marhaba (2003) used PCA on 

a water quality data set with samples of 20 water quality indicators from 12 sites in the 

Pessaic River in New Jersey, in order to understand differences in physical and chemical 

characteristics and associate this with natural and anthropogenic influences. Ferrier et al. 

(2001) used PCA alongside correlation analysis to identify different types of catchments 

and their associated water quality in Scotland, identifying three types of catchments 

(‘urban’, ‘arable’ and ‘improved’). There are numerous further examples of the use of PCA, 

alone or in combination, in water quality research around the world (e.g., Arora & Keshari, 

2021; Brontowiyono et al., 2022; Kazi et al., 2009; Kowalkowski et al., 2006; Li et al., 

2009; Ouyang, 2005; Parinet et al., 2004; Perona et al., 1999; Selle et al., 2013).  

Redundancy analysis (RDA) is related to PCA by combining it with linear regression in 

order to examine the relationships between two data sets of which one corresponds to 

response variables,  the other to explanatory variables. This is also a method that has found 

application in research on water quality especially for understanding the impact of 

catchment characteristics and landscape patterns (e.g., Ding et al. 2016; Ou & Wang, 2011; 

Shen et al., 2015; Shi et al., 2017). 

While PCA, FA and RDA can identify underlying commonalities in water quality and be 

interpreted to relate these to environmental factors, cluster analysis (CA) directly attempts 

groupings/classifications based on similarities across multiple variables. CA should result 

in high homogeneity within a cluster and high heterogeneity between clusters. There are 

different clustering techniques; popular methods in water quality research are hierarchical 

clustering (e.g., Kazi et al., 2009; Shen et al., 2011; Singh, Malik et al., 2004; Vadde et al., 
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2018), or clustering with the k-means algorithm (e.g., Chang et al., 2011; Haggarty et al., 

2012; Mandel et al., 2015; Shareef et al., 2014). 

In contrast to CA, which analyses the data to find groups with maximum differences 

between them, in discriminant analysis (DA), membership of the groups is already known 

(pre-defined) and the analysis aims at determining the variables that best differentiate 

between the groups. DA has been successfully applied in water quality research to reduce 

complexity in data sets and provide guidance about how to make monitoring more efficient 

(Bhat & Pandit, 2014; Giao & Nhien, 2021; Singh, Malik et al., 2004; Varol, 2020).  

More direct methods to relate water quality to catchment characteristics, especially if the 

focus is on one or a few particular water quality indicators rather than a range, includes 

forms of regression.  With multiple linear regression, variables describing catchment 

characteristics can be used to predict a chosen metric for water quality indicators (e.g., 

means; Davies & Neal, 2004; Helliwell et al, 2007; Monteith et al., 2015; Rothwell et al., 

2010). Logistic regression can be used to predict the likelihood of falling into a category 

(such as “good” water quality status under the WFD) due to catchment characteristics 

(Donohue et al., 2006). 

Geographically weighted regression embeds location data into the regression parameter to 

account for local variation in relationships between independent and dependent variables, 

and for spatial autocorrelation. There are several examples where it has been applied in a 

water quality context (Chen et al., 2016; Pratt & Chang, 2012; Tu & Xia, 2008; Tu, 2011).  

Regression trees offer some advantages over linear regression to predict an outcome in a 

dependent variable from several independent variables by being non-parametric, therefore 

able to deal with non-linear and complex relationships, and its visualisation is also easy and 

intuitive to interpret (Breiman et al., 1984). Regression trees have been extended by 

techniques of multi-target regression, making them able to predict several variables with 

one model. Multi-target predictive clustering trees (MTPCTs) have been shown to be 

effective in building predictive models (Demšar et al., 2006; Struyf & Džeroski, 2006) and 

have been applied to water quality assessment (Nikoloski et al., 2021). 

When developing models to predict water quality outcomes from catchment characteristics, 

the exact choice of independent variables depends on the dependent variable and 
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knowledge about processes that influence its concentrations, as well as data availability and 

quality. However, models typically include some representation of topography, land cover 

and/or use, soils, and climate. For example, typical variables include slopes; percentage 

cover of forests, wetlands, urban areas, or agricultural areas; baseflow index or standard 

percentage runoff; annual average rainfall; mean or maximum air temperature; soil organic 

carbon pool; or altitude (Cool et al., 2014; Helliwell et al., 2007; Monteith et al., 2015; 

Pratt & Chang, 2012; Rothwell et al., 2010). 

 

4.2 Methods 

Surface water quality depends on the kind and size of pollution sources in the catchment, 

how and when they are connected to the surface water, and how pollutants are processed in 

transit and within the water body. Understanding different catchment properties and 

sensitivities, and how specific pressures act on these, helps to anticipate how changing 

pressures might lead to impacts in different catchments. A typology of catchments would 

allow transferring findings and results from one catchment to others of similar profile. The 

overall aim of this first analysis of the raw water data was therefore to identify and 

understand patterns, to find a general typology of catchments according to water quality 

profiles, and to relate these to catchment properties.  

As there are known to be connections between the eight indicators of water quality (3.2.3), 

it was first investigated if complexity can be reduced and if this variability in water quality 

can be related to specific pressures. PCA was used to this purpose, and catchment 

characteristics were superimposed to the PCA solution as supplementary variables to better 

relate the identified optimal linear combinations (principal components) to catchment 

sensitivities. RDA was additionally run to examine the influence of catchment 

characteristics on the variability in the water quality data more directly. Cluster analysis 

served the purpose to directly establish if water quality data allowed a typology of 

catchments and if this typology reflects findings from the PCA and RDA. The analysis of 

clusters also allowed to explore geographic patterns of catchment sensitivity and risk 

factors. To test relationships between catchment characteristics and specific water quality 

variables, MTPCT were run for each water quality indicator. Multi-target regression was 
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chosen to allow developing a model that simultaneously predicts the median and the 95th 

percentile of the water quality indicator to reflect both baseline and extremes.  

Data preparation and statistical analysis were done in R. Median values were used in all 

applied methods with the addition of the 95th percentile in the MTPCTs. For the PCA (see 

B.1 for R code) and RDA (B.2), water quality data except pH values were log transformed 

to bring them closer to a normal distribution. Included catchment characteristics were: Area 

in km2, Relief ratio, Percentage of gentle slopes, Percentage of steep slopes, Percentage of 

limestone, Percentage of sandstone, BFI, SPR, Topsoil organic carbon content, Percentage 

of arable area, Percentage of improved grassland, Percentage of urban area, Percentage of 

deciduous forest, Percentage of heathland, Number of septic tanks, Average number of 

sheep in the parish, Average number of cattle in the parish, Mean annual temperature, 

Mean monthly total rainfall, and Mean days with >10 mm of rain per month. These 

catchment characteristics were projected onto the biplot space of the first two PCs. Their 

biplot coordinates were derived from correlation with the PCs (Graffelman & Aluja-Banet, 

2003).  

Backward variable elimination was done during the RDA, and non-significant catchment 

characteristics were removed from the model. To reduce collinearity, Percentage of steep 

slopes and Percentage of gentle slopes were removed manually, as it was chosen to 

represent topography through Relief ratio. To assess possible issues with multicollinearity, 

variance inflation factors (VIF) were derived. 

As a method for the cluster analysis, the partitioning around medoids (PAM; Kaufman & 

Rousseeuw, 1990) clustering algorithm was used (B.3). PAM is a partitional clustering 

technique that is similar to k-means algorithm but using actual data points as cluster 

centres. Its advantage is that it minimises the influence of outlying observations. The 

standardized (z-transformed) catchment medians were used, and their dissimilarity 

measured using Euclidean distances. As the number k of clusters needs to be pre-

determined, the clustering was run several times with varying numbers of clusters and the 

quality of the clustering was assessed with the average silhouette width (Kodinariya & 

Makwana, 2013). The clustering structure with the best silhouette appearance and width 

was chosen for further analysis. The significance of the overall differences between the 

clusters were tested with Kruskal-Wallis tests and pairwise differences with Wilcoxon tests.  
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For the eight MTPCTs, the software package Clus (Struyf et al., 2011) was used. 

Performance of the MTPCTs was assessed through the root mean square error (RMSE) and 

R2 values from training and testing using 10-fold cross-validation. 

 

4.3 Results 

4.3.1 PCA 

Eighty percent of the data variance are explained by the first three principal components 

(PCs) of the PCA (46% PC1, 20% PC2, and 14% PC3). The biplot of the first two PCs 

(Figure 4.1) shows that catchments are relatively evenly scattered around the origin. The 

first PC is mostly associated with median concentrations of turbidity, aluminium, iron, 

manganese, and colour, whereas the second PC associated with pH, coliform and E. coli 

(Table 4.1). The projection of the catchment variables show that Percentage of steep slopes 

and Relief ratio negatively correlate with PC1, whereas Percentage of gentle slopes 

positively correlate. Average number of cattle and sheep also positively correlate, as do 

improved grassland, arable areas and urban areas, and heathland cover negatively 

correlates. The two precipitation variables also negatively correlate. For PC2, catchment 

variables showing strong positive associations are the land cover variables except 

heathland, the number of septic tanks, as well as Percentage of limestone and BFI. Topsoil 

organic carbon content negatively correlates.  

This means that catchments in the upper part of the biplot are associated with higher 

median concentrations of E. coli and coliform bacteria, as well as showing higher 

percentages of improved grassland, arable and urban areas. Catchments in the right side of 

the biplot show increased median concentrations of the metals, colour, and turbidity, and 

are associated with lower amounts of precipitation, higher livestock densities, and gentler 

reliefs. Towards the lower part of the biplot, catchments are associated with lower pHs and 

higher topsoil organic carbon contents.  
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Figure 4.1: Biplot of first two Principal Components (PCs) from the PCA on log-transformed catchment median concentrations (n=154) of water quality indicators, with 

catchment characteristics superimposed as supplementary variables. Water quality parameters symbolised as black rays, catchment characteristics as grey dashed rays, 

individual catchments as points. Points/variables in the right of the plot associate positively with PC1, to the left – negatively. Points/variables in the top associate 

positively with PC2, in the bottom – negatively. The longer the arrow/further from the plot origin the point, the stronger the association. pH = median surface water pH, 

Coliforms in CFU in 100 ml, E. coli in CFU in 100 ml, Turbidity in NTU, Aluminium in µg Al/l, Iron in µ Fe/l, Manganese in µ Mn/l, Colour in mg/l Pt/co. Area = Area 

in km2, ReliefRatio = Relief ratio, SlopeGentle = Percentage of gentle slopes, SlopeSteep = Percentage of steep slopes, Limestone = Percentage of limestone, Sandstone 

= Percentage of sandstone, BFI = Average baseflow index, SPR = Average standard percentage runoff, SoilOrganicCarbon = Average topsoil organic carbon content, 

Arable = Percentage of arable area, ImprovedGrass = Percentage of improved grassland, Urban = Percentage of urban area, Deciduous = Percentage of deciduous forest, 

Heather = Percentage of heathland, SepticTank = Number of septic tanks, Sheep = Average number of sheep in the parish, Cattle = Average number of cattle in the 

parish, Temperature = Mean annual temperature, PrecipitationTot = Mean monthly total rainfall, PrecipitationDays = Mean days with >10 mm of rain per month.  
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Table 4.1: Loadings table for the first three Principal Components (PCs) from the PCA on log-transformed 

catchment median concentrations of water quality indicators, and catchment characteristic correlations to PCs. 

Statistically significant correlations are indicated by ***(p<.001), **(p<.01), or *(p<.05). 

 PC1 PC2 PC3 

Water quality Loadings 

Aluminium             0.39*** -0.09  -0.12   

Colour  0.39***  -0.33***  -0.09 

Iron  0.48***  -0.08  -0.02  

Manganese  0.42***  -0.09  0.33*** 

pH           -0.09*  0.46***  0.66*** 

Turbidity 0.43*** 0.08   0.33*** 

Coliform  0.18***  0.50***  -0.57*** 

E. coli          0.24***  0.63***  -0.09  

Catchment 

characteristics 

Correlations 

Deciduous woodland 0.01 0.36*  0.07 

Improved grassland 0.2* 0.56***   -0.32*** 

Arable 0.26** 0.39***   -0.04 

Urban 0.22**   0.46***  0.00 

Heather -0.24** -0.12 -0.23* 

Cattle 0.4*** 0.18* 0.31*** 

Sheep 0.31*** 0.07 0.45*** 

Septic tanks 0.05 0.27*** -0.11 

Relief ratio -0.32***   0.03 -0.24** 

Gentle slope 0.32***  -0.09 0.14 

Steep slope -0.37***   0.06 -0.06 

Limestone -0.23 0.26** 0.12 

Sandstone 0.04 -0.09 0.2*   

Topsoil organic 

carbon 

0.11 -0.48*** -0.23* 

Average BFI 0.06 0.36*** 0.15 

Average SPR 0.2* -0.1 0.04 

Mean monthly total 

rainfall 

-0.21**  -0.04 -0.29***  

Mean number of days 

per months with >10 

mm precipitation 

-0.22** -0.03 -0.24** 

 

4.3.2 RDA 

A correlation matrix for the catchment variables showed that correlations are highest 

between Relief ratio and the slope percentages, between the two precipitation variables, 

between the land use variables (except heathland), between Percentage of improved 

grassland and Topsoil organic carbon, and between the precipitation variables and the 

topography variables (Figure 4.2).  
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Figure 4.2: Visualisation of the correlation matrix for constraining variables used in the RDA with log-

transformed catchment median concentrations (n=154) of water quality indicators as response variables, based 

on Spearman’s rank correlation. ReliefRatio = Relief ratio, SlopeLittle = Percentage of gentle slopes, 

SlopeSteep = Percentage of steep slopes, GeologyLimestone = Percentage of limestone, GeologySandstone = 

Percentage of sandstone, TOCAverage = Average topsoil organic carbon content, BFIAvergae = Average 

baseflow index, SPRAverage = Average standard percentage runoff, Heather15 = Percentage of heathland, 

Conif15 = Percentage of coniferous forest, Decid15 = Percentage of deciduous forest, Arable15 = Percentage 

of arable area, Imprgrass15 = Percentage of improved grassland, Urban15 = Percentage of urban area, 

SepticTank = Number of septic tanks, Sheep = Average number of sheep in the parish, Cattle = Average 

number of cattle in the parish, TempMean Annual = Mean annual temperature, PrecTotAnnual = Mean 

monthly total rainfall, PrecdaysAnnual = Mean days with >10 mm of rain per month. 

During the RDA, non-significant variables were removed, leaving Relief ratio, Percentage 

of gentle slopes, Percentage of steep slopes, BFI, Topsoil organic carbon content, 

Percentage of improved grassland cover, Percentage of arable area, Percentage of urban 

area, Average numbers of cattle and sheep, and Mean number of days with precipitation 

above 10 mm per month. Some of the variables that show higher correlations with others 
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were thereby removed, but for the final model, Percentage of steep slopes and Percentage 

of gentle slopes were additionally removed to avoid multicollinearity, and it was judged 

that topography would be adequately represented by Relief ratio. As VIFs for the final 

variables ranged between 1.2 and 2.3 (Table 4.2), collinearity was not considered to be an 

issue, as a commonly accepted threshold value for VIF is 10 (Alin, 2010).  

Table 4.2: VIFs for constraining variables used in the RDA with log-transformed catchment median 

concentrations (n=154) of water quality indicators as response variables and catchment characteristic 

variables as constraining variables. 

Variable VIF 

Relief ratio 1.3 

Topsoil organic carbon 1.5 

BFI 1.2 

Percentage of improved grassland 2.3 

Percentage of arable area 1.9 

Percentage of urban area 2.1 

Average number of sheep 1.6 

Average number of cattle 1.8 

Mean number of days with 

precipitation above 10 mm per 

month 

1.5 

 

The first two RDA axes constrained 53% and 32% respectively of total variance of water 

quality parameters, which corresponded to 17% and 10% of the overall variance.  

All water quality variables associate positively with the first RDA axis (RDA1), with only 

colour having a negligible score (Table 4.3). Of the catchment variables, Percentage of 

improved grassland, arable and urban areas, mean numbers of sheep and cattle, and BFI 

also associated positively with RDA1. This indicates that increases in these variables 

correlate to increased median concentrations for coliform bacteria and E. coli, turbidity, and 

the metal indicators (Figure 4.3). A negative relationship can be observed for Relief ratio, 

Topsoil organic carbon and mean number of days per month with precipitation above 10 

mm.  

Colour, turbidity, aluminium, iron, and manganese negatively associated with the second 

axis of the RDA (RDA2), whereas pH, E. coli and coliform bacteria positively associated. 

This indicates that higher median concentrations especially in colour, iron and manganese 

usually go together with more acidic pH. Topsoil organic carbon was also negatively 

associated with RDA2, and Relief ratio positively, indicating that higher colour 
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concentrations occur on organic soils and more gentle reliefs. Agricultural and urban land 

uses also associated positively, though less strongly, with RDA2, however numbers of 

sheep and cattle associated negatively. Arable and urban areas as well as improved 

grassland could therefore be explanatory factors for bacteria, while livestock numbers could 

contribute especially to turbidity.  

 

Figure 4.3: Triplot of the RDA with log-transformed catchment median concentrations (n=154) of water 

quality indicators as response variables and catchment characteristic variables as constraining variables. 

Water quality parameters symbolised in black writing, catchment characteristics as constraints symbolised as 

grey rays, and individual catchments symbolised as points. Points/variables in the right of the plot correlate 

positively with RDA1, to the left – negatively. Points/variables in the top correlate positively with RDA2, in 

the bottom – negatively. The longer the arrow/further from the plot origin the point, the stronger the 

correlation. Water quality pH = median surface water pH, Coliforms in CFU in 100 ml, E. coli in CFU in 100 

ml, Turbidity in NTU, Aluminium in µg Al/l, Iron in µ Fe/l, Manganese in µ Mn/l, Colour in mg/l Pt/co. 

ReliefRatio = Relief ratio, BFI = Average baseflow index, SoilOrganicCarbon = Average topsoil organic 

carbon content, Arable = Percentage of arable area, IG = Percentage of improved grassland, Urban = 

Percentage of urban area, Sheep = Average number of sheep in the parish, Cattle = Average number of cattle 

in the parish, PrecipitationDays = Mean days with >10 mm of rain per month.  
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Table 4.3: Score table for the first three axes from the RDA with log-transformed catchment median 

concentrations (n=154) of water quality indicators as response variables and catchment characteristic 

variables as constraining variables. 

 RDA1 RDA2 RDA3 

Water quality Scores 

Aluminium 0.24 -0.26  0.14 

Colour 0.01 -0.54  0.1 

Iron 0.37 -0.55  0.18 

Manganese 0.64 -0.5 -0.17 

pH 0.64 0.47 -0.4 

Turbidity 0.64 -0.26 -0.15 

Coliform 0.32  0.38  0.45 

E. coli 0.96  0.35  0.22 

Catchment characteristics Biplot scores 

Improved grassland 0.79 0.37 -0.13 

Arable 0.6 0.14 0.55 

Urban 0.63 0.27 0.49 

Cattle 0.7 -0.27 -0.09 

Sheep 0.55 -0.31 -0.55 

Relief ratio -0.41 0.42 0.15 

Topsoil organic carbon -0.35 -0.62 0.33 

BFI 0.4 0.35 0.02 

 

 

4.3.3 Cluster analysis   

The clustering was run on the standardized median concentrations of the eight water quality 

indicators for a number k of clusters ranging from 3 to 12. The best silhouette width was 

achieved for 8 clusters, however this clustering consisted of two clusters with only one 

member, while the remaining clusters strongly resembled the clusters when the pre-defined 

number of clusters was 5, 6, or 7 (Table 4.4). The best silhouette width where all clusters 

had more than one member was achieved when k=5 (Figure 4.4), and it was judged to be 

the most useful clustering for interpretation of water quality in relation to catchment 

characteristics. 

The best clustering structure still rendered only an overall very weak clustering structure 

and the clusters were very unequal in size. Overlap can be observed especially between 

cluster 1 and 2, and cluster 4 and 5 have high heterogeneity (Figure 4.5).  
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Table 4.4: Silhouette width and size of clusters for different k when clustering catchments (n=154) on 

standardised median concentrations for the eight water quality indicators using PAM. 

k Silhouette width Size of clusters 

3 0.16 73, 36, 45 

4 0.18 65, 32, 40, 17 

5 0.21 63, 30, 40, 16, 5 

6 0.22 63, 30, 40, 16, 4, 1  

7 0.23 63, 30, 40, 15, 4, 1, 1 

8 0.24 63, 24, 39, 10, 12, 4, 1, 1 

9 0.23 54, 24, 20, 36, 11, 4, 3, 1, 1 

10 0.21 52, 14, 16, 35, 11, 17, 4, 3, 1, 1 

11 0.18 28, 14, 16, 35, 11, 24, 17, 4, 3, 1, 1 

12 0.19 28, 14, 14, 35, 10, 24, 15, 5, 4, 3, 1, 1 
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Figure 4.4: Silhouette plot of clusters with k=5 when clustering catchments (n=154) using PAM on standardised median concentrations of eight water quality indicators. 

Grey bars represent individual catchments, the length and direction of the bar indicate how well the catchment fits into the cluster. The further the bar extends to the right 

(positive), the further away the cluster is from neighbouring clusters. Catchments with bars extending into negative numbers are potentially allocated to the wrong 

cluster. Numbers at the right side of the plot inform about the number of catchments in the cluster and the average silhouette width for the cluster, indicating that 

especially clusters 4 and 5 are very heterogenous with many badly fitting catchments. 
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Figure 4.5: 2D representation of the cluster solution for k=5 when clustering catchments (n=154) using PAM on standardised median concentrations of eight water 

quality indicators. Catchments are symbolised in green, plotted on the first two Principal Components of the standardised water quality median concentration data. 

Catchments in different clusters are symbolised with different symbols and ellipses drawn around catchments in the same cluster, representing the cluster structure. This 

visualisation reiterates the poor homogeneity of clusters 4 and 5 and shows significant overlap between cluster 1 and 2 for these 2 dimensions.  
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However, median concentrations of the water quality parameters were overall statistically 

significantly different between clusters (p<0.05; Figure 4.6).  

 

 

 

 

 

 

Figure 4.6: Boxplots showing the distribution of median catchment concentrations per water quality indicator per 

cluster as identified when k=5 when clustering catchments (n=154) using PAM on standardised median 

concentrations of eight water quality indicators. 
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There are also significant (p<0.05) differences between catchment characteristics per 

cluster, in Area, Relief ratio, BFI and SPR, Topsoil organic carbon content, Percentage of 

arable area, urban area, improved grassland, deciduous forest and heathland cover, numbers 

of sheep and cattle, number of septic tanks, and precipitation (total and days >10 mm; 

Figure 4.7). Differences are mainly apparent between cluster 5 and the other clusters. The 

five catchments in cluster 5 have high median concentrations of coliforms and E. coli, are 

larger, have gentler reliefs with smaller organic carbon pools in the soils and a higher BFI, 

are more intensively used and receive lower amounts of rainfall. Catchments with steeper 

reliefs are found in clusters 1 and 2. The catchments in these clusters generally show lower 

median concentrations for all indicators. Cluster 2 contains mostly the most natural and 

least used catchments and tends to have lower pH medians compared to Cluster 1. Cluster 3 

includes catchments with higher colour median concentrations, and only contains 

catchments with higher amounts of organic carbon in the topsoil, although cluster 1, 2, and 

4 also have many catchments with bigger carbon pools. Cluster 4 includes catchments with 

very high median concentrations for all indicators except bacteria. These seem to be drier 

catchments with less semi-natural land cover and higher numbers of livestock.  
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Considering the spatial distribution illustrated in Figure 4.8 reveals that catchments in 

cluster 1 seem to occur all over Scotland, whereas catchments in cluster 2 are found 

predominantly in the Northwest, in cluster 3 mainly in the West, in cluster 4 in the East, the 

South and on the Orkney islands, and the five catchments in cluster 5 are all in the 

Northeast. Apart from this overall pattern, it is observable that catchments in close 

proximity belong to different clusters, suggesting that local factors play a role in 

determining water quality.  

Figure 4.7: Boxplots showing the distribution of catchment characteristics per cluster as identified when k=5 when 

clustering catchments (n=154) using PAM on standardised median concentrations of eight water quality indicators. 
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Figure 4.8: Spatial distribution of catchment clusters as identified when k=5 when clustering catchments 

(n=154) using PAM on standardised median concentrations of eight water quality indicators. 
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4.3.4 Regression tree modelling 

Eight MTPCTs were produced which varied in their complexity. Three MTPCT were very 

simple with only one separator (for colour, manganese, and coliforms). For all trees, root 

mean square error (RSME) and R2 values for training and testing indicated that the 

predictive capability of the models is very low and that all of them suffered from overfitting 

to the training set (Table 4.5). However, the models can still be examined for their 

usefulness in understanding relationships between water quality and catchments 

characteristics. 

The first separator in the MTPCT for aluminium is cattle density, with median and peak 

concentrations increasing where more cattle is present. The next separator is coniferous 

forest cover, again with higher median concentrations where more than half of the 

catchment is covered with coniferous forest, but comparatively lower peak concentrations. 

A few catchments are then separated with lower mean annual temperatures that show a 

medium predicted value for median concentration but high peak concentration. The last 

separator is mean total rainfall per month, with the catchments seeing higher rainfall having 

the lowest median and peak concentrations. Almost half of the catchments fall into this 

group.  

The MTPCT for colour has only one separator, topsoil organic carbon content, and 

catchments with bigger organic carbon pools having a higher predicted median and peak 

concentration. 37 catchments were allocated into this group. 

Topsoil organic carbon is also the first separator for iron, with catchments showing higher 

concentrations where topsoil organic carbon content is higher. This MTPCT has another 

separator, cattle density, predicting that catchments with a higher mean number of cattle 

have higher median and peak concentrations. Almost half of the catchments again fall into 

the group with the lowest median and peak concentration predictions.  

For manganese, only two catchments containing the highest sheep densities were separated 

predicting very high median and peak concentrations.  

The MTPCT for turbidity showed highest predicted peak concentrations for catchments 

with high improved grassland cover (>27.1%), although the highest predicted median 

concentrations were made for catchments with higher values for SPR. Slightly higher 
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concentrations were also predicted for catchments with high percentage in sandstone. The 

MTPCT further predicts slightly higher values for catchments where livestock numbers are 

higher.  

The MTPCT for pH predicted values to be highest in catchments with more than 25% 

improved grassland. The MTPCT splits into several strands, first separating into 

catchments with cattle and those with almost no cattle. Those catchments with cattle 

presence then show low pH median and peak values where topsoil organic carbon content 

is higher. For those catchments with smaller organic carbon pools, median and peak pH 

values are predicted to be slightly basic except for two catchments with very high predicted 

peak pH, where mean total rainfall per month is low. Of the catchments without cattle, BFI 

appears several times as a separator, with three catchments being predicted with very low 

pH values where the BFI value is between 0.14 and 0.16. 

Both MTPCTs for coliform and E. coli separated two catchments with very high 

concentrations first, using urban area cover. The catchments were then not split any further 

for coliform, but the E. coli MTPCT then also identified six catchments with septic tanks as 

having higher concentrations. Of the remaining catchments, predicted median and peak 

concentrations were highest for the three driest catchments.  
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Table 4.5: MTPCTs per water quality parameter. ‘yes’ and ‘no’ refer to the condition above, leading to a new 

condition or the predicted median and 95th percentile values in [], followed by the number of catchments 

falling within this prediction. SD = Standard deviation, to compare against RSME = Root mean square error 

to evaluate model overfitting, and R2 to evaluate goodness of model fit, for the training and test sets (10-fold 

cross validation of complete n=154). 

MTPCT – pruned SD of 

complete 

data set 

RSME R2 

Training Testing Training Testing 

Aluminium: 

Cattle > 46.9 

+--yes: [131.85, 738.2]: 24 

+--no:  Coniferous > 50.1 

        +--yes: [124.5, 334.13]: 6 

        +--no:  MeanTemperature > 5.01 

                +--yes: MeanMonthlyRainfall > 82.1 

                |       +--yes: [59.46, 166.24]: 113 

                |       +--no:  [98.06, 398.03]: 8 

                +--no:  [109.83, 732.8]: 3 

 

[51.81, 

408.18] 

 

 

 

 

[42.9, 

344.28] 

 

[53.68, 

430.73] 

[0.31, 

0.28] 

[0.06, 

0.05] 

Colour : 

OrganicCarbonContent > 40.24 

+--yes: [55.41, 122.47]: 37 

+--no:  [33.75, 65.84]: 117 

 

[24.93, 

55.04] 

[23.06, 

49.23] 

 

[25.68, 

55.99] 

[0.14, 

0.19] 

[0.02, 

0.04] 

Iron: 

OrganicCarbonContent > 45.33 

+--yes: [640.25, 1886.08]: 12 

+--no:  Cattle > 46.9 

        +--yes: [389.2, 1785.77]: 20 

        +--no:  [210.81, 713.61]: 122 

 

[243.87, 

1185.41] 

[209.27, 

1092.17] 

[251.52

, 

1228.4] 

[0.26, 

0.15] 

[0.03, 

0.01] 

Manganese: 

Sheep > 323.1 

+--yes: [218.75, 3049.75]: 2 

+--no:  [19.53, 183.03]: 152 

 

[36.99, 

688.91] 

[29.16, 

605.12] 

 

[42.39, 

765.07] 

[0.37, 

0.22] 

[0.005, 

0.002] 

Turbidity: 

ImprovedGrass> 27.1 

+--yes: [3.19, 32.44]: 11 

+--no:  GeologySandstone > 95.54 

        +--yes: [1.71, 8.74]: 18 

        +--no:  Heather > 0.0 

                +--yes: Cattle > 9.1 

                |       +--yes: [1.05, 3.46]: 27 

                |       +--no:  ReliefRatio > 0.062 

                |               +--yes: [0.5, 1.75]: 55 

                |               +--no:  Sheep > 35.4 

                |                       +--yes: BFI > 0.35 

                |                       |       +--yes: [1.25, 5.04]: 5 

                |                       |       +--no:  [0.75, 2.41]: 14 

                |                       +--no:  [0.48, 1.49]: 18 

                +--no:  SPR > 49.86 

                        +--yes: [4.35, 28.34]: 2 

                        +--no:  [0.73, 2.9]: 4 

[1.09, 13.12] [0.72, 

10.14] 

 

[1.08, 

17.57] 

[0.57, 

0.4] 

[0.18, 

0.06] 
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pH: 

ImprovedGrass > 25.44 

+--yes: [7.76, 8.17]: 12 

+--no:  Cattle > 1.6 

        +--yes: OrganicCarbonContent > 46.77 

        |       +--yes: [6.4, 6.8]: 4 

        |       +--no:  MeanMonthlyRainfall > 79.59 

        |               +--yes: [7.2, 7.53]: 84 

        |               +--no:  [7.35, 9.19]: 2 

        +--no:  BFI > 0.14 

                +--yes: BFI > 0.16 

                |       +--yes: [6.73, 7.14]: 39 

                |       +--no:  [5.87, 6.5]: 3 

                +--no:  BFI > 0.02 

                        +--yes: [6.5, 9.94]: 2 

                        +--no:  [7.05, 7.35]: 8 

 

[0.49, 0.58] [0.35, 

0.35] 

 

[0.49, 

0.7] 

[0.5, 

0.64] 

[0.12, 

0.01] 

Coliform: 

Urban > 1.02 

+--yes: [3275, 15250]: 2 

+--no:  [239.81, 1985.01]: 152 

 

[497.98, 

2507.48] 

[358.17, 

1997.77] 

 

 

[594.19

, 

2768.92

] 

[0.48, 

0.36] 

[0.03, 

0.02] 

E. coli: 

Urban > 1.02 

+--yes: [390, 2815]: 2 

+--no:  SepticTank > 0.0 

        +--yes: [126.42, 1030.67]: 6 

        +--no:  MeanMonthlyRainfall > 77.08 

                +--yes: MeanMonthlyRainfall > 234.12 

                |       +--yes: [8.63, 643.25]: 4 

                |       +--no:  [7.85, 114.72]: 139 

                +--no:  [16.5, 1014]: 3 

 

[60.93, 

528.8] 

[36.58, 

371.24] 

 

[74.93, 

629.1] 

[0.64, 

0.5] 

[0.04, 

0.03] 

 

4.4 Discussion 

4.4.1 Water quality variability and catchment relationships 

The first two PCs of the PCA together explained 66% of variability in the data and gave the 

first indication that there are two separate main processes leading to differences in water 

quality profiles. The first relates to more acidic catchments with organic soil types that 

produce DOC (colour), aluminium, iron, and manganese. It also gives an indication that 

land use and/or the integrity of the ecosystem might play a role in regulating the 

concentration of these parameter, as the number of sheep and cattle also associated with 

these indicators, as do the agricultural land uses, though to a lesser extent. The second 

process relates to catchments that are more intensively used and/or have a higher 

population density and show contamination with faecal pathogens. This pattern was 
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reiterated in the RDA, clearly associating urban and arable areas as well as improved 

grassland with increased median concentration in coliform and E. coli and showing that 

these catchments would tend to have a higher contribution of baseflow, which could be due 

to a higher proportion of well drained soils. The RDA also clearly showed the association 

of colour with topsoil organic carbon and lower pH values. It is interesting that relief ratio 

and precipitation negatively correlate with colour and the metal concentrations, as it could 

be assumed that increased concentrations in these indicators would be found in the Scottish 

highland catchments that are typically characterised as being wetter and having steeper 

reliefs (Langan & Soulsby, 2002). However, this could be an indication that the highest 

concentrations are found in catchments with gentler relief enabling a thicker layer of 

organic-rich soil to develop (Evans & Warburton, 2010a; Parry et al, 2015). The negative 

correlation to precipitation could be due to dilution from higher amounts of rainfall.  

While the third PC explained less variability (14%), there are some interesting aspects to be 

explored. Aluminium, iron, colour, and E. coli only very weakly associated with this PC, 

while manganese, turbidity and pH showed a positive correlation and coliform a negative 

correlation. This PC thus summarised a process that increases manganese concentrations 

but doesn’t affect the other metals or colour, as well as decoupling coliform and E. coli 

concentrations. It also leads to higher pH values and increased turbidity. Due to the 

decoupled higher manganese concentrations, groundwater could play a role here as 

manganese concentrations are typically higher in groundwater (Homoncik et al., 2010). 

This would fit well with higher values for pH and a weak but significant positive 

correlation to sandstone, as groundwater in this type of bedrock typically has a slightly 

higher pH (Homoncik et al., 2010). There is also a negative correlation to the two 

precipitation variables, again indicating these catchments may have a higher contribution of 

groundwater to the water body. The negative correlation to coliforms, and its decoupling 

from E. coli is harder to interpret. There is a negative correlation to improved grassland, but 

a positive correlation to numbers of sheep and cattle. Despite this latter positive correlation, 

these catchments might not be intensively used for agriculture, generally showing low 

concentrations for E. coli and coliform bacteria.  
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The cluster analysis, while showing that it is not possible to find an acceptable typology 

using median concentrations of these eight water quality indicators, still yields results that 

can be linked to the findings from the PCA and RDA. Geographically, catchments in 

Scotland can very broadly be distinguished as highland catchments predominantly in the 

West of Scotland with steeper slopes, high precipitation, and more natural land cover; and 

catchments in the lowland areas of the East and South of Scotland that are drier and less 

steep and have more agricultural use (Gillen, 2013). Especially cluster 3 with higher 

median concentrations in colour and metals and more acidic pH median values could be 

seen as representing highland catchments, although reliefs are gentler compared to clusters 

1 and 2. This could indicate more occurrence of blanket peat and thicker depth of the peat 

soil which would accumulate better on gentler reliefs (Evans & Warburton, 2010a). These 

catchments would well represent the variability explained through PC1 and the identified 

relationships to catchment characteristics. Cluster 5, with high median concentrations of E. 

coli and coliform, and the higher percentages of arable, improved grassland and urban areas 

could be representing the extreme of the agricultural lowland catchments, mirroring the 

water quality variability explained with PC2. Water quality and catchment characteristics in 

cluster 4 are a lot more heterogenous, which is unsurprising given the low cluster 

homogeneity indicated in the silhouette plot (Figure 4.4). Cluster 1 and 2 incorporate the 

catchments with predominantly lower median values for the water quality indicators, the 

main difference observable here is that cluster 1 includes catchments with higher median 

pH values and cluster 2 those with more acidic pH.  

The MTPCTs, while not usable as predictive models, still reiterate the observed 

relationships to catchment characteristics. Colour and iron both showed that the carbon 

content of the soils is a good separator to identify catchments with higher concentrations. 

For iron, manganese and aluminium, livestock numbers also play a role in increasing 

concentrations. For aluminium, coniferous forest cover was also associated with higher 

concentrations, which is in line with findings that aluminium concentrations are elevated in 

forested catchments due to a slower acidification reversal (Battarbee et al., 2014). It could 

also point to release of contaminants through mechanical disturbance from forestry activity 

(Van Dijk & Keenan, 2007). It is interesting that coniferous forest cover was not picked up 

in any other MTPCT or in the other methods. This suggests forestry expresses varying 
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influence depending on its combination with other risk factors, and on water quality 

conscious management (Reynolds, 2007; Warrington et al., 2017). Elevated levels of 

turbidity were attributed in the MTPCTs to several factors, including more intensive land 

use (improved grassland), sandstone, and a high SPR. This shows that turbidity is 

influenced by different processes, either natural or anthropogenic. Mechanical disturbance 

and removal of vegetation cover from agriculture can lead to higher erosion through surface 

and sub-surface mobilisation of particulates and delivery into the channel network 

(Thompson et al., 2013). The variety of factors working separately and in combination 

explains why the associations of turbidity in the PCA and RDA were less clear, with 

turbidity associating positively to all of the first three PCs. Cluster 4 includes many 

catchments with higher median concentrations of turbidity, and looking at its spatial 

distribution, implies association with soils developed on underlying sedimentary 

lithologies, although this could not be established through the catchment data. The MTPCT 

for pH showed higher pH values associated with improved grassland cover, which is 

unsurprising as this type of land use usually has a higher soil pH than unimproved areas 

(Grayston et al., 2001). It also showed lower pH values associated with higher topsoil 

organic carbon, which again can be related to more acidic upland catchments high in 

organic soils. Finally, the MTPCTs for coliform and E. coli related high concentrations to 

urban land cover. While urban areas are certainly associated with higher contamination of 

faecal pathogens (Barbosa et al., 2012), urban area cover is positively correlated with arable 

area and improved grassland cover, and it can be assumed that all these factors play a role 

in these catchments, again indicating lowland areas. It is perhaps surprising that improved 

grassland or livestock densities were not identified as explanatory variables for these 

parameters, but Neill et al. (2018) found that the extent of arable or pasture land was not a 

good predictor for E. coli concentration especially in smaller catchments, as point sources 

would have a greater influence than diffuse sources. Although septic tanks as point sources 

were included in the E. coli MTPCT, there are only few catchments with septic tanks. 

Furthermore, the occurrence of single contamination events, e.g., through access of 

livestock to a stream, depends on management (Newell-Price et al., 2011) which would not 

be reflected in the data.  
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4.4.2 Identification of a catchment typology and risk factors 

Each of the different empirical analysis approaches provided some insight into patterns in 

variability of the water quality indicators and their relationship to catchment characteristics. 

PCA identified overall trends and controls in the water quality data, giving the first 

indication of a broad distinction with different water quality profiles. RDA supported the 

identification of explanatory catchment characteristics. The cluster analysis added a spatial 

perspective, allowing to identify national scale influences as well as showing that local 

conditions can override larger scale influences on water quality. The MTPCTs reiterated 

most important explanatory variables for individual water quality indicators, allowing a 

better interpretation of overarching processes and local influences. All these approaches 

showed limitation to interpretability, but the combination of these different techniques 

supported a more comprehensive exploration of the data and a more homogenous 

understanding of different patterns and relationships, which aided interpretation of 

causation and risk factors. 

A clear typology with catchments that show distinct water quality profiles with matching 

catchment characteristics could not be achieved. Due to the broad-scale analysis, the loss of 

nuance in water quality data from summarising into median and 95th percentile 

concentrations, difficulties in finding data to adequately represent catchments conditions, 

and the general complexity of catchments and its relationship to water quality, it is perhaps 

not surprising that many relationships in water quality and catchment characteristics remain 

unclear.  

Summarising the water quality data dismisses any intra-annual variability that could help to 

distinguish catchments and influences on water quality. Differences in response to extreme 

events for example would help to understand catchment vulnerabilities and hence risk 

factors. The low sampling frequency means that especially in catchments with a lower 

number of samples, extremes are likely to be missed. On the other hand, a bias might exist 

especially in catchments with a higher sampling frequency as sampling can be reactive to 

high concentrations. This might exacerbate differences in baseline concentrations.  

Due to the high spatial and temporal diversity in headwater streams, relationships between 

catchment characteristics and water quality becomes weaker in small catchments (Abbott et 
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al., 2017). Catchment data that were available through national surveys often had a 

resolution that ill matched the small catchments size, so higher resolution data would 

probably improve the analysis. Water body type may also mask catchment effects, for 

example through differences in buffering capacity for high concentration following extreme 

events. This may mean that similar catchment profiles are associated with different water 

quality outcomes. Catchment data also didn’t reflect the location of specific characteristics 

within the catchment, or the combination of characteristics, which may lead to differences 

in water quality depending for example on how well connected the source is to the 

receiving water body.  

To improve the analysis and find clearer relationships between catchment characteristics 

and water quality outcomes, the quality of the catchment characteristics data could be 

improved with higher resolution data, and water quality data could be looked at in more 

detail e.g., in terms of intra-annual variability. Responses to extreme events could also be 

analysed for a better understanding of catchment vulnerabilities. This would enable a better 

estimation of how catchments may respond to changes in pressures, and also enable a 

typology.  

Despite these limitations, a first high-level risk screening was achieved that identifies 

predominant pressures in broadly different types of catchments, with associated water 

quality issues. The drinking water catchments analysed cover the variety of environmental 

conditions found across Scotland, and water quality mirror this variability. However, a 

broad distinction can be made between “upland” catchments, dominated by more natural 

land cover and highly organic and acidic soils that yield higher concentrations especially in 

colour, but also in aluminium, iron, manganese, and turbidity; and “lowland” catchments 

with higher pH values, more intensive agricultural use, and higher concentrations of 

coliform, E. coli, and turbidity concentrations. Therefore, more acidic, peaty upland 

catchments prone to water-logged conditions can generally be identified as candidate 

catchments for higher colour risk, with indications that anthropogenic influence leading to 

peat degradation and erosion can increase this risk. Catchments with more intensive 

agricultural use and with a higher population density are candidate catchments for higher 

faecal pathogen risk. These types of catchments, and the identified water quality issues, can 
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now be looked at in more detail to identify drivers and pressures, understand differences in 

catchment responses and their relationships to catchment conditions, and thus enable to 

identify different catchment vulnerabilities that allow to estimate risk from future changes 

in climate and land use.  

 

4.5 Further approach 

Despite great variability in water quality between catchments and difficulties to clearly 

separate them into different “types” of catchments, a distinction into two very broad 

categories was made, and for each a water quality indicator can be seen as diagnostic: 

“upland” catchments with elevated concentrations of colour, and “lowland” catchments 

with elevated concentrations in E. coli. Focusing on these two water quality indicators 

separately, to arrive at better insights into processes leading to contamination, and of 

controls over these within the catchments, could provide a deeper understanding of 

vulnerable catchments and associated risks from changes in climate and land use, and be 

seen as representing a broader suite of water quality issues.  

Colour concentrations are already elevated in many catchments, requiring treatment to meet 

the standard (Table 3.1). Upward trends in DOC have been observed throughout the 

Northern hemisphere over the past decades and it is expected that DOC release from 

Scottish peatlands will rise further in the future (Evans et al., 2005; Ritson et al., 2014, 

Sawicka et al., 2017). Climate change may exacerbate the problem through more frequent 

heavy rainfall events (ASC, 2016; Burt & Howden, 2013) and increases in erosion and 

runoff rates (Li et al., 2016). While the analysis generally linked larger carbon pools to 

higher colour concentrations, specific risk factors are more difficult to disentangle. 

Exploring intra-annual variability in concentrations and responses to climatic factors is 

needed to further understand impacts of climate and anthropogenic factors in increasing 

colour concentrations in surface waters, and to specifically identify catchments most at risk 

of seeing increases in colour concentrations that may exceed current treatment capacity.  

E. coli concentrations have been linked to anthropogenic land uses which are predominant 

in the East of Scotland. However, some areas of Scotland, especially the zones between 
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uplands and lowlands, have been highlighted as becoming more suitable for agricultural 

activity as current constrains will be reduced with rising temperatures (Brown et al., 2010). 

This may lead to agricultural intensification within these areas, increasing the risk for 

bacterial contamination, and a suite of other water quality indicators that are usually 

associated with agriculture, such as nitrate or pesticides (Kay et al., 2009). Identifying 

catchments with these potentials for land use change, and exploring what this would mean 

for water quality, is the next step in identifying high risk catchments for water quality 

degradation from land use change. 

Identifying high-risk catchments with specific water quality issues from identified pressures 

will allow a prioritisation for further investigation as well as mitigation and adaptation 

actions, to aid risk assessment and planning at programme level. It can also be a starting 

point to indicate best methods for building resilience to change, depending on catchment 

conditions, and thus constitutes a step towards pro-active management rather than re-active 

intervention.  

Following the identification of current water quality profiles and issues and of two 

diagnostic water quality indicators, this research now investigates in more detail catchment 

relationships to colour (5) and E. coli (6) concentrations in order to screen for catchments 

most at risk from climate and land use changes.  
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5. Risk screening: Investigating links between catchment 

characteristics and colour concentrations in raw water 

Assessment 1.2 aims to find out how climate change is likely to act on current water quality 

issues and what this indicates for other water quality concerns. The following analysis 

explores these questions with regard to colour, which is a common concern in many 

Scottish Water catchments (see 4). First, mechanisms of colour production are explained to 

set the background and rationale for the analysis (5.1), then methods are described for each 

step of the analysis (5.2), the results are then presented and discussed (5.3), and finally 

limitations are reviewed and reflections given on ways to improve the analysis, and further 

steps (5.4). 

Water colour in Scotland is predominately due to the presence of dissolved organic carbon 

(DOC), which is supported by the results reported in 4.3. The concentration of organic 

carbon in many Scottish rivers has doubled over the last decade of the 20th and the first 

decade of the 21st centuries (Moxley, 2014), and continues to increase (de Wit et al., 2021). 

Increasing trends in dissolved organic carbon (DOC) have also been observed across the 

Northern Hemisphere (Monteith et al., 2007; Sawicka et al., 2017). The causes for this 

observed trend are debated with increasing temperatures (Cole et al., 2002; Freeman et al., 

2001), recovery from acidification (Evans, Chapman et al., 2006; Monteith et al., 2007), 

changes in hydrology (Tranvik & Jansson, 2002), and land management and peatland 

drainage (Worrall, Armstrong & Adamson, 2007; Worrall, Armstrong & Holden, 2007; 

Yallop & Clutterbuck, 2009) among the suggested causes.  

DOC in drinking water is a matter of aesthetics (discolouration), it influences the treatment 

process, and its presence leads to the formation of disinfection by-products that cause 

health concerns (Sillanpää et al., 2018; Villanueva et al., 2015). The observed trends 

therefore raise concerns over rising costs for the removal of DOC from drinking water as 

well as the capability of existing water treatment assets to effectively cope with increasing 

concentrations. Limited information on changing DOC concentrations and its linkages to 

climate and land use changes adds complexity for water utilities when planning investment 

and adaptation strategies (Ritson et al., 2014).  
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Many of the source water catchments have median concentrations well above the 

prescribed value at the consumers’ tap, making colour concentrations an important part of 

the treatment and rising concentrations a concern. Removing organic carbon from raw 

water is costly and being able to reduce the amount of organic carbon as well as to plan for 

possibly rising concentrations is therefore an important part of strategic planning for water 

safety in terms of water quality. Indications of where to expect (further) increases in 

concentrations would provide a basis to understand where and what kind of actions may be 

needed in short or long term and focus effort on catchments and regions most at risk. 

 

5.1 Mechanisms of colour production 

In upland areas of Scotland, DOC is derived mainly from terrestrial organic matter, and 

there is a correlation between soil carbon pools and stream DOC concentrations (Dawson et 

al., 2008). The rate of biological decomposition of organic matter leading to the production 

of DOC in soil is driven especially by soil temperature and moisture: higher temperatures 

increase microbial activity, leading to a higher production of TOC (Freeman et al., 2001). 

Decomposition is also influenced by moisture, where waterlogged conditions inhibit DOC 

production (Clark et al. 2009). These patterns lead to higher concentrations of soil DOC in 

summer.  

DOC solubility in water is necessary to enable transport from the soil to surface water and 

is influenced by the acidity of the soil and the ionic strength of the soil solution, with 

decreasing acidity and increasing ionic strength reducing solubility (Evans et al., 2012). 

DOC transport from the soil is linked to precipitation events and changing flow paths 

through the soil horizons (Dawson et al., 2002; Wen et al., 2020). Mineral soils can retain 

and store carbon, the extent of which depends on organic matter content, mineralogy, clay 

content and pH (Chapman & Palmer, 2016). In organo-mineral soils, storm events may 

induce a shift from flow through the mineral horizon to flow through and over the organic 

horizon, inducing an increase in DOC concentration in surface water (Stutter, Dunn & 

Lumsdon, 2012). In contrast, catchments with a thick organic horizon may see a dilution or 

no change in concentration from a storm event (Clark et al., 2007).  
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Once it has reached surface water, biological uptake, photo-degradation, and sedimentation 

may reduce the amount of DOC. Studies show that the uptake of organic matter is strongly 

dependent on nutrient availability and time (Chapman & Palmer, 2016). In lakes, 

absorption and re-suspension could influence seasonal variation (Hamilton-Taylor et al., 

1996). Similarly, photo-mediation may be an important process in lakes for peat-derived 

organic matter, with a study by Moody et al. (2013) showing an average loss of DOC of 

73%. Köhler et al. (2013) found that a large lake in Sweden showed little brownification 

despite other lakes in the region showing increasing colour trends, which they attribute to 

low residence times of iron and DOC. 

Seasonal patterns of DOC in surface waters are hence explained through increased 

decomposition of organic matter, increased solubility, and increased release of DOC with 

high discharges, leading to higher concentrations of surface water DOC in autumn months 

(Cooper et al., 2006; Tipping et al., 2007). Thus, temperature and discharge, together with 

other factors such as soil moisture, acidity, or antecedent flow, influence DOC variability 

over the year (Clark et al., 2005; Futter & de Wit, 2008; Köhler et al., 2009). Differences in 

seasonal patterns of DOC between different surface water are influenced by soil properties, 

weather, hydrological flow paths, and processes within the water body, with catchments 

being dominated by different drivers. Winterdahl et al. (2014) found that catchments in 

Sweden differed in their sensitivity to either discharge or temperature. They studied 136 

rivers or streams, using monthly total organic carbon (TOC) data and correlating it to air 

temperature and discharge. Analysing these together with other variability indices 

(normalized average annual range, coefficient of variance, seasonality index, and R2 of an 

ANCOVA model explaining variance in DOC by discharge, temperature, month and the 

interaction of discharge and month), they proposed a first order classification of catchments 

into “flow-driven” (associating this with different flow pathways at different flow regimes), 

“temperature-driven” (associating this with peat dominated catchments), “snowmelt-

dominated” (where DOC dynamics are dominated by spring floods), and “nonseasonal” 

(associating this with large water bodies and long DOC residence time within the water). 

Winterdahl et al. (2016) subsequently examined 12 Swedish headwater catchments using 

the Riparian flow-concentration Integration Model, to understand different sensitivities to 

temperature and discharge, and to project median DOC concentrations under downscaled 
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climate projections. They found that all catchments saw higher median DOC concentrations 

in warmer and wetter climates, and that catchments sensitive to temperature experienced 

the largest increases. They also hypothesise that catchments may change in their sensitivity 

due to climate induced changes in soil properties. An understanding of main controls on 

intra-annual changes could hence support an understanding of how changing temperatures 

and precipitation patterns will influence different types of catchments, in turn reflecting on 

long-term DOC trends.  

Differences in overall DOC concentrations between catchments are influenced by 

differences in climate, soil properties, topography, and land cover and vegetation. Musolff 

et al. (2018) used partial least squares regression to estimate median DOC concentrations 

and concentration variability (expressed as ratio of interquartile range and median) from 

catchment characteristics and found that median DOC is mainly explained by soil wetness 

and slopes, with catchments with high wetness and low slopes having highest DOC 

concentrations. Cool et al. (2014) used iterative generalised least squares to estimate the 

influence of catchment characteristics on DOC concentrations in Quebec, finding that slope 

negatively influenced concentrations whereas total precipitation from the antecedent 10 

days, mean temperature from the antecedent 60 days, and coniferous and mixed forest 

cover positively influenced DOC concentrations. Monteith et al. (2015) used multiple 

regression with backward variable elimination based on Akaike Information Criterion to 

find which catchment characteristics explain mean DOC concentrations in UK upland 

catchments. They found that organic soil types (peat and peaty gleys) were the strongest 

predictor of DOC, and that effective precipitation negatively influenced DOC 

concentrations, attributing this to a diluting effect. DOC also exponentially increased with 

declining altitude, which could be a combination of several factors, for example increased 

primary production, or increased temperature. They conclude that increasing temperatures 

could have implications for long-term DOC release in these catchments, but that soil type is 

likely to influence sensitivity to future warming.  
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5.2 Methods 

The risk screening aims to 1) investigate differences in colour concentration patterns in a 

range of raw water sources throughout Scotland, in order to 2) understand how catchment 

characteristics influence overall colour concentrations and intra-annual colour variability, 

3) understand how climate parameters can exert different influences over colour 

concentration patterns depending on these characteristics, so that 4) catchments can be 

classified according to their sensitivity to changes in climate, and perhaps in land use. This 

will ultimately allow to 5) identify high risk catchments for increasing colour 

concentrations.  

The analysis is set up to test and explore the following assumptions: 

- Catchments will show a concentration pattern for colour where concentrations in 

surface waters start to rise in summer and peak in autumn, with concentrations 

going down in winter, due to mechanisms of DOC production and transfer in soils.  

- Catchments will show different relationships between colour concentrations in 

surface waters and flow as well as temperature, depending on soils and flowpaths 

through the soil horizons. Peat dominated catchments are expected to show a 

relationship with temperature, whereas catchments with organo-mineral soils are 

expected to show a reaction to flow events. 

- Depending on temperatures, and on properties of the soil in terms of drainage and 

potentially artificial drainage, catchments will show differences in wetting-up 

periods and hence different time lags between rainfall events and DOC 

concentrations in surface waters.  

- Land use and management have different impacts on DOC and colour 

concentrations for catchments with different sensitivities. 

- DOC will be lost especially in reservoirs and lakes due to photo-mediation and 

biological uptake and seasonality may be influenced by absorption and re-

suspension. This will make it more difficult to discern catchment-related influences 

on DOC and colour concentrations. 
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5.2.1 Colour as a proxy for DOC 

It is assumed that in Scotland, colour is a good proxy for DOC, although colour can be also 

induced by iron or manganese (Kritzberg & Eckström, 2012), or be influenced by type of 

compounds (referred to as the quality of DOC), with some compounds being more coloured 

than others. DOC data are available for a very limited number of Scottish Water 

catchments, whereas TOC concentrations are monitored more frequently. Data was 

obtained from Scottish Water for 127 catchments for a period of 4 years (2013-2016), with 

sample frequency varying per catchment from every four weeks to weekly. While TOC 

includes suspended sediment, it should be an improvement over colour to represent DOC 

(Winterdahl et al., 2014). Linear regression was performed on TOC and colour 

concentrations per catchment to test usability of colour as a proxy for DOC and potential 

limitations (see B.4 for R code). As a comparison, multiple linear regression models were 

developed that included iron, manganese, and turbidity as further independent variables, as 

these parameters are also leading to water colouration. To judge the strength of the 

relationships, the R2 value of the model was used. A value of 0.4 was chosen as a cut-off, 

below which the relationship was supposed to be weak enough to assume other factors 

playing a significant role to determine colour. 

 

5.2.2 Shape-based clustering 

To understand patterns of seasonal concentrations and to explore differences, colour time 

series for 154 catchments from 2011-2016 were used for shape-based clustering (B.5). 

Shape-based clustering is a technique for unsupervised grouping of shapes, in this case the 

shape of the curve of colour concentrations over the year. The aim was to find similarities 

in dynamics of colour concentrations, such as timings and speed of increases and decreases.  

As time series were unevenly spaced, daily values were interpolated, using linear 

interpolation. Linear interpolation is easy to achieve and has been shown to work well in 

creating daily time series from water quality sample data with less than 28-day gaps, 

especially for some water quality parameters, including DOC (Gnauck, 2004). It was 

therefore chosen as an appropriate interpolation method to aid in the creation of yearly 

profiles for colour. The daily data points were then logged to avoid an overwhelming 
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influence of extreme outliers. Yearly profiles were extracted by calculating means for every 

day of the year. The yearly profiles were separated by type of source (reservoir, river, loch) 

for subsequent analysis and clustered using the k-Shape algorithm. K-Shape is a partitional 

clustering method based on shape-based distance (SBD), using a centroid shape (time 

series). The series are z-normalised. The algorithm chooses a random shape as a starting 

point. K-Shape clustering has been shown to work efficiently and accurately on time series 

(Paparrizos & Gravano, 2016). Clustering was repeated for a changing number k of clusters 

and the results plotted to allow visual inspection of the cluster. 

 

5.2.3 Climate sensitivity analysis 

To understand differences in catchment sensitivity to soil temperature, flow, and wetting up 

processes, the relationship between TOC concentrations and temperature as well as flow 

was investigated. As proxies, a) total rainfall of the three preceding days to the sampling 

date was used for flow conditions after a short-term rainfall event, b) total rainfall of the 60 

days prior to the sampling date was used for catchment wetness, and c) mean temperature 

of the 60-day period prior to the sample date was used for soil temperature. Rainfall and 

temperature data were obtained from the UK Met Office. The datasets were split by season 

(December-February for winter, March-May for spring, June-August for summer, and 

September-November for autumn). Spearman’s rank correlation tests were run individually 

for each catchment for each of these variables for each season (B.6), resulting in a set of 12 

Spearman’s rho and corresponding p-values per catchment. A relationship was judged as 

moderate if Spearman’s rho > 0.4 and as strong if Spearman’s rho > 0.6 if p=<0.05.  

The catchments were then sorted into 5 possible categories: “Temperature”, “Rainfall”. 

“Rainfall+Temperature”, “Wetup” and “None”, depending on the variables for which 

strong or moderate relationships could be observed, with priority given for seasons of peak 

TOC concentrations. To visualise the relationships, and further examine for patterns 

between the relationship strengths, and between the relationships and the identified 

grouping, PCA on Spearman’s rho values was performed. 

Differences in catchment characteristics between the groups were visually inspected using 

violin plots and statistically analysed with Kruskal-Wallis and Wilcoxon tests. Redundancy 
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analysis on Spearman’s rho was used to test explanatory power of catchment characteristics 

for the different correlation strengths. Independent variables included in the analysis were 

catchment area in km2, elevation relief ratio, relief ratio, percentage of Southwest facing 

aspect, average topsoil organic carbon content, average baseflow index, percentage of semi-

natural land cover, percentage of arable land cover, percentage of improved grassland 

cover, percentage of coniferous forest cover, number of deer, sheep and cattle density, 

amount of SER, accumulated annual temperature above 5.5°C, and median pH values. 

Automatic stepwise backward modelling based on Akaike Information Criterion (AIC) was 

used to find significant variables. AIC is a widely used estimator of model error that tends 

to favour inclusion of variables with subtle effects and is applied especially in a predictive 

context (Cavanaugh & Neath, 2018). For the final model, some variables were added back 

in to aid interpretation.  

 

5.2.4 Catchment characteristics relationship to median TOC concentrations 

Multiple linear regression was used with catchment median TOC concentrations as the 

dependent variable, and catchment characteristics as independent variables, to determine 

how catchment characteristics influence median TOC concentrations. This was performed 

for all catchments together as well as separately for each group identified in the climate 

sensitivity analysis (B.7). Catchment characteristics initially included as independent 

variables were the same as in the redundancy analysis (catchment area in km2, elevation 

relief ratio, relief ratio, percentage of Southwest facing aspect, average topsoil organic 

carbon content, average baseflow index, percentage of semi-natural land cover, percentage 

of arable land cover, percentage of improved grassland cover, percentage of coniferous 

forest cover, average number of deer, sheep and cattle, amount of SER, accumulated annual 

temperature above 5.5°C, and median pH). Bayesian Information Criterion (BIC) was used 

in a stepwise backward regression to find the significant variables. The dependent variable 

was log transformed to bring residuals nearer to a normal distribution. Adjusted R2 was 

used to evaluate goodness of fit. Ten times repeated 10-fold cross validation and the 

resulting normalised Root Mean Squared Error (RMSE/(Max-Min)) was used to check for 

overfitting. If models didn’t perform well, some independent variables with suspected 
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collinearity were removed from the initial model to see if final model performance 

improved. 

Multiple linear regression with the same catchment characteristics as independent variables 

was also used to determine how catchment characteristics influence median TOC 

concentrations for all the catchments together, but also using interaction terms to further 

identify potential impacts of climate and land use on different underlying sensitivities. 

Stepwise backward regression based on BIC was used (B.8) to find significant independent 

variables. Interaction terms were introduced batchwise, with one batch each for interactions 

between SER and all other variables, between AAT and all other variables, between 

category and all other variables, and some selected interactions between the remaining 

variables. Adjusted R2 and 10 times repeated 10-fold cross-validation was used to evaluate 

goodness of fit. 

 

5.3 Results and discussion 

5.3.1 Colour-TOC relationships 

Of the 127 catchments for which a colour-TOC model was produced, 34 resulted in a 

model with an R2 value below the cut-off (Table C.1). If re-running the models for all 

catchments, and including iron and manganese, only 19 catchments were below the R2 cut-

off (Table C.2). If also including turbidity, this number was 18 out of 127 catchments 

(Table C.3). For some catchments, including iron, manganese and turbidity resulted in 

reduced model fit. Hence for the majority of the catchments, TOC alone produces a good 

estimate of colour value, confirming that DOC is a main contributor for colour, while for 

some catchments, iron, manganese, and turbidity also substantially contribute to colour 

(Figure 5.1). Still, some catchments clearly do not have a linear relationship between TOC 

and colour, or TOC, iron, manganese, turbidity, and colour. This could be due to a change 

in the quality of DOC, meaning that the types of compounds produced within the catchment 

change over the year (Vidon et al., 2014). This results in different properties with regard to 

colour and would hence not allow to establish a linear relationship. 
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Secondly, intercepts of the models above the R2 cut-off value varied, with most of the 

models with high R2 values having negative intercepts. This is an indicator that colour 

measurements are missing organic carbon that is not visible, i.e., not detectable through the 

standard measurement. Organic material produced by algae for example tends to be less 

coloured (Henderson et al., 2008), so negative intercepts could also be an indicator in 

which catchments relationships between catchment characteristics and TOC concentrations 

could be confounded by in-lake processes.  

In terms of operational practice, where colour is measured on a continuous basis to inform 

treatment, this may not be suitable for catchments where a high amount of DOC is 

produced that is not detectable through colour measurements.  
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Figure 5.1: Location of catchments with satisfactory (R2 > 0.4) models for colour, by inclusion of independent 

variables (TOC, iron, manganese, turbidity). Blue are catchments where only including TOC as an 

independent variable to predict colour as dependent variable in a linear regression produced a model with an 

R2 value above 0.4, violet are catchments where additional inclusion of iron and manganese brought the 

model to an R2 value of above 0.4, while for the orange catchment, turbidity had to be additionally included. 

The green catchments did not yield a satisfactory model even when all four independent variables were 

included. 
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5.3.2 Shape-based clustering 

Visual inspection of the patterns emerging from the shape-based clustering using different 

pre-defined numbers of clusters indicated for reservoirs and lochs, that some catchments 

roughly showed the expected curve of rising concentrations in summer and peaks in 

autumn (looking like a “sine curve” on the yearly time line), and that some catchments 

showed a time series looking more like a “V-shape” over the year, with a dip in 

concentration in the summer and a peak in late autumn/winter. River catchments showed 

more irregular shapes, but most catchments roughly followed the hypothesised seasonal 

curve.  

It is possible that linear interpolation draws out dips or spikes in the timeline, making them 

appear over an extended time, as extreme values will increase or decrease all values from 

the sample point before and after the extreme. Especially for time series with low sampling 

frequency (monthly or longer) and hence large gaps between samples, this can mean “hills” 

or “valleys” appear when there should be short spikes or dips. The use of linear 

interpolation and extreme values is observable in some timeseries, especially with sudden 

dips (see Figure 5.2 & Figure 5.3), which would appear where sampling frequencies are 

shorter (weekly or two-weekly). For most catchments in this analysis, samples were taken 

at this interval, so these effects span a shorter time period than the observed predominant 

shapes, which are observable over several months. It is therefore assumed that the effects 

are predominantly true and not an artefact of interpolation. 

After this initial inspection, the hypothesis was formed that lochs and reservoirs could be 

separated into groups depending on the shape of their “seasonal profile” as either a “sine 

curve” or a “V-shape”. To do this, the clustering was repeated separately for all lochs 

together and all reservoirs together, for 5 times with a number of clusters k=2. For each 

clustering, one cluster was defined as the “sine” and the other as the “V-shape” group. The 

reservoirs and loch catchments were then sorted into two groups with either the expected 

“sine curve” like shape, or the diverging “V-shape” curve, depending on which group they 

fell in more often. Three lake catchments could not be assigned (Table C.4).  
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The yearly timelines of the catchments within these groups now showed roughly the same 

shapes of either a “sine” curve or a “V” (Figure 5.2). Rivers all roughly showed a “sine” 

shape (Figure 5.3). 

The catchments were finally separated into 4 groups: rivers (56 catchments), V-shape (29), 

sine-shape (66), and inconclusive (3), with the latter three categories comprising lakes and 

reservoirs. Spatially, a pattern was not distinguishable although two groups of “V-shape” 

catchments can be seen that are spatially proximate, one in the North of Scotland around 

Kincardine, and another one South of Edinburgh (Figure 5.4)
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Figure 5.3: Seasonal profile for rivers (n=56). Seasonal profiles extracted from colour time series 2011-2016 

with daily values interpolated, logged, and means taken for every day of the year. 

A B 

C D 

Figure 5.2: Seasonal profile for each of the groups identified in shape-based clustering: A. "Sine" shape lochs (19); 

B. "V-shape" lochs (11); C. "Sine" shape reservoirs (47); D. "V-shape" reservoirs (18). Seasonal profiles extracted 

from colour time series 2011-2016 with daily values interpolated, logged, and means taken for every day of the year. 

“Sine” shape profiles show the expected curve throughout the year with a dip in spring and peak in autumn, “V-

shape” profiles show a delayed curve with a dip in summer and peak in winter. 
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Figure 5.4: Spatial distribution of catchments, by category allocated through shape-based clustering. 

“MCRivers” are river catchments that were not clustered further, “MCTSReservoirVSshape” are reservoir 

catchments allocated into the cluster characterised by a seasonal profile that dips in summer and peaks in 

winter (“V-shape”), “MCTSReservoirsSine” are reservoir catchments allocated into the cluster characterised 

by a seasonal profile that dips in spring and peaks in autumn (“sine”), “MCTSLochVShape “ are loch 

catchments with a “V-shape” seasonal profile, “MCTSLochSine” are loch catchments with a “sine” seasonal 

profile, and “MCTSInconclusive” are catchments that could not be clearly allocated. 
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The catchments showing a “V-shape” curve in their seasonal profile have a later dip in 

concentration in the summer and a later rise and peaks of concentrations as expected, in late 

autumn and winter. This can be observed if looking at the mean of concentrations between 

the groups over the seasons (Table 5.1 & Table 5.2). 

Table 5.1: Catchment median concentrations for colour in mg/l Pt/Co, for the whole year and split by season, 

shown for each of the categories identified through shape-based clustering (“River” = river catchment (n=56), 

“Sine” = catchment with seasonal profile that dips in spring and peaks in autumn (n=66), “V-shape” = 

catchment with seasonal profile that dips in summer and peaks in winter (n=29)). 

 All Spring Summer Autumn Winter 

All 38.95 33.07 46.37 53.18 38.77 

River 32.02 26.63 49.51 46.38 27.29 

Sine 46.67 37.16 51.38 66.58 45.64 

V-shape 34.17 35.21 29.9 35.84 43.63 

 

Table 5.2: Significance of the difference in colour concentration means between categories identified through 

shape-based clustering, by season, according to Wilcoxon tests (* p<0.05, ** p<0.005, *** p<0.001; “River” 

= river catchment (n=56), “Sine” = catchment with seasonal profile that dips in spring and peaks in autumn 

(n=66), “V-shape” = catchment with seasonal profile that dips in summer and peaks in winter(n=29)). 

 Sine V-shape 

River Median* 

Spring* 

Summer 

Autumn** 

Winter*** 

Median 

Spring 

Summer* 

Autumn 

Winter*** 

Sine  Median 

Spring 

Summer** 

Autumn*** 

Winter 

 

Such a pattern in colour concentration could be due to either a later start in production of 

DOC, to a lag between the production and the arrival at the outlet, to processes that remove 

DOC before it reaches the water treatment works, or to other factors inducing colour over 

the winter season. 

In case of a later start of production of DOC within the catchment, the curve could be 

expected to be flatter rather than later, or it should show a spatial pattern where these 

catchments are situated within generally colder areas. There are also no significant 

differences (tested with a Kruskal-Wallis test) in mean temperature in spring or summer 

between these groups which could explain this phenomenon (Figure 5.5A&B). If 
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catchments have a shallower organic horizon and better drainage, they will have to wet up 

before a flow through the organic horizon, where DOC is produced and stored, takes place, 

which could lead to a later rise in concentrations (Stutter, Dunn & Lumsdon, 2012). This 

might also explain the overall lower concentrations in these catchments as DOC would 

have more chance to reach the mineral horizon, where it gets retained (Ussiri & Johnson, 

2004). Lower concentrations could also be due to generally slightly lower organic carbon 

pools in these catchments (Figure 5.5C), although the difference is statistically only 

significant (p=0.008) between the river and the “V-shape” catchments. These catchments 

should also show better drained soils, or alternatively land uses which can be assumed to 

favour artificial drainage, but this is not the case. However, another aspect is mean monthly 

precipitation: There are significant differences between the groups in the amount of mean 

monthly rainfall, with the “V-shape” catchments receiving less rainfall than the river and 

“sine” shape groups (Figure 5.5D), so it could take longer for the catchment to wet up and 

flush out DOC produced over the summer months.  

Occasional high concentrations that are flushed out over the summer months might be 

buffered in the water body, so the concentration at the outflow only rises later when much 

larger and steadier amounts are washed out of the catchment. If this was the only reason, 

the effect should be most pronounced in large water bodies. There is no indication that this 

effect takes place if catchment size taken as a proxy for water body size (Figure 5.6). 
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A 

C 

B 
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Figure 5.5: Violin plots showing distribution of A. mean spring temperatures and B. mean summer temperatures (long-term average 1981-2010), C. average total 

organic carbon in the topsoil, and D.  mean monthly precipitation in mm (long-term average 1981-2010), within each category identified through shape-based 

clustering (“inconclusive” = catchment that could not be allocated (n=3), “river” = river catchment (n=56), “sine” = catchment with seasonal profile that dips in spring 

and peaks in autumn (n=66), “vshape” = catchment with seasonal profile that dips in summer and peaks in winter (n=29)). 
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Figure 5.6: Violin plots showing distribution of catchment area in km2 within each category identified 

through shape-based clustering (“inconclusive” = catchment that could not be allocated (n=3), “river” = river 

catchment (n=49), “sine” = catchment with seasonal profile that dips in spring and peaks in autumn (n=62), 

“vshape” = catchment with seasonal profile that dips in summer and peaks in winter (n=28)). Catchments 

with areas >100 km2 have not been represented to allow better clarity of the plot. 

In terms of processes that reduce the amount of DOC, organic uptake as well as 

photodegradation would do this and explain a dip in summer, but less so a rise in late 

autumn/winter, although as the concentrations between the “sine” shaped lochs and 

reservoirs and the “V-shaped” lochs and reservoirs are similar in winter and spring, these 

concentrations might represent a “background” concentration. To understand the possible 

influence of this effect, parameter such as the number of hours of direct sunlight, the water 

temperature, or a measurement of nutrient availability and algae productivity could inform 

further analysis. 

Lastly, iron, manganese and sediment would also induce colour. Iron and manganese that 

occur in the catchment usually show correlation to DOC as they are mobilised by similar 

processes (see 3.2.2), therefore it seems more likely that they would amplify the curve 

rather than delay it. If colour was predominantly influenced by suspended sediment, erosion 

during autumn and winter could lead to the observed concentration pattern. 

The reason for these differences in concentration “profiles” could well be a combination of 

all these factors. To further test the possibility of differences in wetting up, comparing a 

year with a wet summer (2012) to a year that was very dry (2018) could help to identify if 
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this determines the pattern. If a later rise in colour was due to DOC being flushed out later 

because the catchment would take longer to wet up, it could be expected to see more of a 

“sine” curve in these catchments in a wet year, compared to a dry year. Rerunning the 

analysis using only data from 2012, and only from 2018, showed that most catchments did 

not change behaviour, while some showed behaviour as expected under this hypothesis 

(switching from normally “sine-shaped” to “V-shaped” in 2018, or from normally “V-

shaped” to “sine-shaped” in 2012), but a few also showed the opposite effect (switching 

from a normally “V-shaped” to a “sine”-shape in 2018, or normally a “sine”-shape to a “V-

shape” in 2012). There seemed to be a geographical pattern to this where the catchments 

showing the opposite behaviour tended to be in the Northwest (Figure 5.7). This region had 

anomalously dry weather in 2012, but normally tends to be wetter than the rest of Scotland. 

In terms of median concentrations, there was no significant difference between these two 

years. It was also no clear trend observable that switching from a “sine” shape to a “V-

shape” or vice versa would cause median concentration to rise or fall. In terms of variation 

in concentrations, rivers are most variable if comparing the 95th percentile to the 5th 

percentile of catchment concentrations (group means are 70.89 for rivers, 60.84 for “sine” 

shaped catchments and 38.71 for “V-shaped” catchments), and “V-shaped” lochs and 

reservoirs least variable (with the variability in mean significantly different to the river and 

“sine” shaped catchments).   
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Figure 5.7: Spatial representation of comparison of catchment seasonal profile in a wet (2012) or dry (2018) 

year, based on allocation to a cluster using shape-based clustering. Green diamond = catchment switching 

from normally “sine-shaped” to “V-shaped” in 2018 (behaving as expected under the hypothesis that the “V-

shape is influenced by longer/delayed wetting up of the catchment); red diamond = catchment switching from 

a normally “sine”-shape to a “V-shape” in 2012 (behaving opposed to expected); red triangle = catchment 

switching from a normally “V-shape” to a “sine”-shape in 2018 (behaving opposed to expected); green 

triangle =  catchment switching from normally “V-shaped” to “sine-shaped” in 2012 (behaving as expected). 
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From the analysis, it remains unclear which effects are contributing to the observed 

differences in concentration over the year, and if and what this would mean in the context 

of climate change. If photodegradation and organic uptake play a role in reducing the 

amount of DOC, increased radiation could lead to reductions in concentrations (Chapman 

& Palmer, 2016). This could lead to further reductions in DOC in these catchments where 

the effect is already observable. On the other hand, algae can contribute to DOC production 

(Wyatt et al., 2012), so increases in algae productivity due to climate change might 

outbalance this effect. This may be dependent for example on nutrient availability, so a 

more detailed, multi-indicator analysis might be needed to get a clearer picture for these 

catchments.  

Further analysis would also be needed to determine how much wetting up processes 

contribute to the observed pattern, and if differences in overall concentrations and 

concentration peaks  between these groups are linked to this pattern or to other catchment 

characteristics (such as the organic carbon pool in the catchment, the hydrology of the 

catchment, etc.). This would help to determine if changes in concentration patterns due to 

e.g., decreases in precipitation in the summer could influence overall concentrations or 

peak concentrations, and which catchments would be most sensitive.  

 

5.3.3 Climate sensitivity analysis 

Catchments were sorted into a “sensitivity” category by looking at the correlations to the 

chosen climate variables (3 days antecedent (short) rainfall, 60 days antecedent (long) 

rainfall, and 60 days mean temperature). Significant spearman’s rho in the season when 

peak concentrations occurred were looked at first, with moderate or strong correlation to 

short rainfall leading to allocation to the category “Rainfall”, correlation to short rainfall 

and temperature to “Rainfall+ Temperature”, correlation to long rainfall to “Wetup”, and 

correlation to temperature to “Temperature”. If there were no significant moderate or strong 

correlations, then the season before the peak would be considered, then the season after. If 

the peak season only correlated to short rainfall, but the temperature was also correlated in 

the season before or after, then the category would be “Rainfall+Temperature”. If there 

were no correlations in these seasons, or the correlations were inconclusive, the category 

would be “None”. If both short rainfall and long rainfall correlated, the category would be 
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“Rainfall”, if both long rainfall and temperature correlated, the category would be “Wetup”. 

In borderline cases, the overall correlations would be looked at to see if there was an 

indication which category would be a better fit. Some negative correlation also occurred, 

mainly for long rainfall in winter or autumn, occasionally also for short rainfall, or for 

temperature in autumn or spring. There was no case of consistent negative correlations 

across a catchment, and the negative correlations were therefore not regarded for category 

allocation. Correlations with a rho value below 0.4 were also not regarded, even if 

statistically significant. 

Setting the significance value at <0.05 meant that likelihood of familywise errors was very 

high, because a great number of individual Spearman’s rank correlation tests were done. 

With 12 tests each on 127 catchments and a p-value for each test set at <0.05, the likelihood 

of making a type I error (rejecting the null hypothesis when it should be accepted) was 

almost 100%. Controlling the error with this number of tests would however mean that an 

extremely low p-value would have to be chosen, greatly increasing the likelihood of 

making a type II error (accepting the null hypothesis when it should be rejected). Even a p-

value that controls the likelihood of a type I error for one catchment (i.e.,12 tests) at 0.01 

would greatly reduce the number of statistically significant relationships, meaning that most 

catchments would fall into the “None” category. It was judged that for this exploratory 

analysis, the high risk of making a type I error would be better than a high risk of making a 

type II error, i.e., it would be better to allocate some catchments to the wrong category, 

rather than be able to only distinguish very few catchments for each remaining category. 

Hence the familywise error wasn’t controlled. This seems to be more congruent with a 

tiered risk assessment approach and especially a first risk screening, where it would be 

better to overestimate rather than underestimate risk.  

The results of the Spearman’s rank correlations, and the final allocation into one of five 

categories (“Temperature” – 18 catchments, “Rainfall” - 18, “Rainfall+Temperature” - 22, 

“Wetup” - 49, “None” - 20) are shown in Table C.5.   
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The PCA on Spearman’s rho shows that the correlations between TOC concentrations and 

the climate variables form quite strong clusters (Figure 5.8). The first 2 principal 

components explain 47% of the variation in the data (26% and 21% respectively). There is 

a grouping for the temperature correlations (lower left quadrant), opposed to correlations 

with longer periods of rainfall in summer and autumn (upper right quadrant), and an 

unrelated grouping for correlations to the shorter periods of rainfall and the longer periods 

of rainfall in winter and spring (upper left quadrant). The catchments accordingly 

concentrate in the lower part of the plot for the “Temperature” group, the left part for the 

“Rainfall” and “Rainfall+Temperature” group, and the right part for the “Wet up” group. 

The “None” catchments also predominantly occur in the right part of the biplot. The biplot 

also shows that catchments distribute quite evenly around the origin of the biplot and there 

is overlap between the groups, which is to be expected as the PCA took all rho values into 

account regardless of their significance. On the whole, the PCA seems to confirm the 

manual grouping.  
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Figure 5.8: Biplot of the first two PCs (explaining 47% of the variation in the data) of a PCA based on the rho values of Spearman's rank correlation tests run per 

catchment on sampled TOC concentrations from 2013 – 2016 and corresponding 3-day antecedent rainfall, 60-day antecedent rainfall, and 60-day antecedent mean 

temperature, split by season. Catchments are symbolised according to the manually identified category (“None” = no correlation to the climate variables observable; 

“Rainfall” = positive correlation to 3-day antecedent rainfall; “Rainfall+Temp” = positive correlation to 3-day antecedent rainfall and 60-day antecedent mean air 

temperature; “Temp” = positive correlation to 60-day antecedent mean air temperature, “Wetup” = correlation to 60-day antecedent rainfall). 
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I. Group characterisation 

The most apparent difference between the categories is that the “Rainfall” and 

“Rainfall+Temperature” categories are almost all river catchments. This could be due to a 

buffering effect for reservoirs and lakes, where any high concentrations that come out of 

the catchment following a storm event are mixed with lower concentrations before they 

reach the intake. The fact that two of the three river catchments within the “Temperature” 

category are large river catchments would support this.  

 

Figure 5.9: Number of catchments in each category (allocated through the results of the Spearman's rank 

correlation tests run per catchment on sampled TOC concentrations from 2013 – 2016 and corresponding 3-

day antecedent rainfall, 60-day antecedent rainfall, and 60-day antecedent mean temperature, split by season; 

“None” = no correlation to the climate variables observable; “Rainfall” = positive correlation to 3-day 

antecedent rainfall; “Rainfall+Temp” = positive correlation to 3-day antecedent rainfall and 60-day 

antecedent mean air temperature; “Temp” = positive correlation to 60-day antecedent mean air temperature, 

“Wetup” = correlation to 60-day antecedent rainfall), by cluster allocated in the shape-based clustering 

(“inconclusive” = catchment that could not be allocated, “river” = river catchment, “sine” = catchment with 

seasonal profile that dips in spring and peaks in autumn, “vshape” = catchment with seasonal profile that dips 

in summer and peaks in winter). 

Examining the colour curve shape categories, the “Temperature” category consists of 

mostly of “sine-shaped” lochs and reservoirs. Most of the “v-shape” lochs and reservoir 

belong in the “Wetup” or “None” category (Figure 5.9).  
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While there is no overall pattern of finding very high or very low median TOC 

concentrations in specific groups, the highest TOC median concentrations can be found in 

the “Wetup” group, while the lowest median concentrations can be found in the “Rainfall” 

group (Figure 5.10A). The difference in mean is statistically significant between these two 

groups (p=0.015, Wilcoxon test). When looking at the variability of concentrations, the 

“Rainfall” group shows highest variability in terms of difference between maximum and 

minimum concentrations, normalised against the mean ((TOC maximum concentration-

TOC minimum concentration)/TOC mean concentration) (Figure 5.10B). Statistically, the 

difference in mean is only significant between the “Rainfall” and the “Temperature” groups 

and the “Temperature” and the “Wetup” groups.   

The fact that the variability seems to be higher in the “Rainfall” and maybe also the 

“Rainfall+Temperature” groups would fit together with the hypothesis that there is a buffer 

effect in lochs and reservoirs, whereas sudden spikes in concentrations following high 

rainfall events cannot be buffered in rivers.  

There are further distinctions when looking at the catchment profiles between these 

categories. Average topsoil organic carbon content is lower in most catchments in the 

“None” and “Rainfall” group, with statistically significant differences (p<0.05, tested with 

a Wilcoxon test) between the ”None” and the “Rainfall+Temperature”, and the “Wetup” 

groups, as well as between the “Rainfall” and “Rainfall+Temperature” groups (Figure 

5.11A). 
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A 

B 

Figure 5.10: Violin plots showing the distribution of A. TOC median concentrations and B. TOC 

concentration variability for the catchments within each category allocated through the results of the 

Spearman's rank correlation tests run per catchment on sampled TOC concentrations from 2013 – 2016 and 

corresponding 3-day antecedent rainfall, 60-day antecedent rainfall, and 60-day antecedent mean temperature, 

split by season; (“None” = no correlation to the climate variables observable; “Rainfall” = positive correlation 

to 3-day antecedent rainfall; “Rainfall+Temp” = positive correlation to 3-day antecedent rainfall and 60-day 

antecedent mean air temperature; “Temp” = positive correlation to 60-day antecedent mean air temperature, 

“Wetup” = correlation to 60-day antecedent rainfall). 
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C D 

Figure 5.11: Violin plots showing the distribution of A. average amount of organic carbon in the topsoil, B. amount of mean monthly rainfall in mm (long-term average 

1981-2010), C. elevation relief ratios, and D. percentage of semi-natural land cover for the catchments within each climate sensitivity category allocated through the 

results of the Spearman's rank correlation tests run per catchment on sampled TOC concentrations from 2013 – 2016 and corresponding 3-day antecedent rainfall, 60-day 

antecedent rainfall, and 60-day antecedent mean temperature, split by season; (“None” = no correlation to the climate variables observable; “Rainfall” = positive 

correlation to 3-day antecedent rainfall; “Rainfall+Temp” = positive correlation to 3-day antecedent rainfall and 60-day antecedent mean air temperature; “Temp” = 

positive correlation to 60-day antecedent mean air temperature, “Wetup” = correlation to 60-day antecedent rainfall). 
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Rainfall amounts also differ between the groups, with lower amounts of rainfall in the 

“None” and the “Wetup” groups, although the latter shows wide variability. Differences in 

mean are statistically significant between the “None” and the “Rainfall+Temperature” and 

“Temperature” groups, and between the “Wetup” and the “Rainfall+Temperature” and 

“Temperature” groups (Figure 5.11B). There is no significant difference in mean annual 

temperature between the groups. 

 In terms of topography, the main observable difference seems to be in the “Rainfall” and 

“Rainfall+Temperature” groups, with more catchments with higher elevation relief ratios 

(Figure 5.11C). These observable differences are statistically significant between these two 

groups and the “None” group, as well as between the “Wetup” and the 

“Rainfall+Temperature” group. Elevation relief ratio is a method to calculate hypsometric 

integral, which in turn can be used to estimate erosion status, with higher values being more 

prone to erosion (Singh et al., 2008). Higher values for elevation relief ratio could hence 

mean a quicker transfer of precipitation to the water body, which would increase the 

sensitivity to small rainfall events as rainfall would tend to produce surface and shallow 

subsurface runoff, increasing the transfer of DOC produced in the upper aerobic part of the 

organic soil horizon. In contrast, shallower reliefs could either mean a longer residence 

time and a higher chance of infiltration into the mineral horizon, where DOC may be 

retained, or conditions for a build-up of thicker organic soil layers producing more DOC.  

It is also observable that semi-natural land cover is higher in the “Temperature” and 

“Rainfall+Temperature” categories (Figure 5.11D), with statistically significant differences 

in mean between these two groups and the “None” and “Wetup” groups. 

Just going by these few catchment characteristics, the catchments in the 

“Rainfall+Temperature” and the “Temperature” categories seem to be the wetter ones with 

higher organic carbon pools  and more natural landcover. While the 

“Rainfall+Temperature” mainly contains river catchments, the “Temperature” group 

mainly contains lochs or reservoirs, otherwise they seem to resemble each other in terms of 

catchment characteristics. It could be hypothesised that these are catchments with well-

connected carbon pools that produce DOC throughout the warmer months, which gets 

regularly washed out into the surface water source due to generally wetter soil conditions. 
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This would explain the correlation to temperature. The sensitivity to short term rainfall 

could then stem from a lower buffering capacity in the river sources.  

Further interesting insights might be derived from the comparison between the “Rainfall” 

and the “Rainfall+Temperature” groups, which together contain the majority of river 

catchments. In contrast to what Winterdahl et al. (2014) found, rivers seem to almost 

always respond to storm events. However, the relationship to temperature grows weaker in 

catchments with lower organic carbon content. Interestingly, in terms of TOC 

concentrations, the groups do not differ very much either in median concentrations or 

concentration variability, which might have been expected if there are differences between 

the size of the organic carbon pools in the catchment. 

The “Wetup” group contains the largest number of catchments, and some of these 

catchments also showed a correlation to temperature, making the distinction between these 

groups more difficult. It is interesting that the difference in their TOC concentration 

variability is statistically significant, with the “Wetup” catchments being slightly more 

variable. The most notable difference between these two groups is that the “Wetup” 

catchments receive less rainfall, which could support the hypothesis that the produced DOC 

builds up in the soil over the summer and only gets washed out once the catchments get 

wetter towards the end of the year. This could fit together with the fact that while the 

majority of catchments in this category belong to the “sine” shaped group, a considerable 

number was characterised as “V-shape” in the shape based clustering, which was also 

hypothesised to have to do with wet-up processes (see 5.3.2). The “None” catchments, 

while also receiving less rainfall, also have lower organic carbon pools than the “Wetup” or 

“Temperature” groups. The carbon pool is strongly associated with TOC concentration, but 

the median TOC concentrations within the group are not lower than in comparison to the 

“Temperature” or the “Wetup” group. As discussed, higher concentrations can also be due 

to in-lake processes such as DOC generation by phytoplankton and macrophytes. This 

might play a role here, although a correlation to temperature might then be expected, as a 

60 day mean air temperature would also be a proxy for water temperature, which in turn 

influences organic production of DOC.  

Spatial distribution shows no clear pattern (Figure 5.12). “Temperature” and 

“Rainfall+Temperature” catchments are mainly found along the West coast. This goes well 
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with the pattern emerging from the above observations that these catchments would tend to 

be peaty, wet catchments with semi-natural land cover. The difference between these two 

groups is mostly the different type of water body (river vs loch/reservoir). We also observe 

“Rainfall” and “Rainfall+Temperature” catchments in close proximity, so we can assume 

that differences in climate are not an important factor here – local conditions would 

probably play a bigger role, such as topography, aspect, soils, and land use and 

management. Data describing the catchment may not be sufficiently detailed to observe 

these differences. This also goes for comparisons between the “Temperature” and “Wetup” 

catchments.  
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Figure 5.12: Spatial distribution of catchment categories allocated through the results of the Spearman's rank 

correlation tests run per catchment on sampled TOC concentrations from 2013 – 2016 and corresponding 3-

day antecedent rainfall, 60-day antecedent rainfall, and 60-day antecedent mean temperature, split by season; 

(“None” = no correlation to the climate variables observable; “Rainfall” = positive correlation to 3-day 

antecedent rainfall; “Rainfall+Temp” = positive correlation to 3-day antecedent rainfall and 60-day 

antecedent mean air temperature; “Temp” = positive correlation to 60-day antecedent mean air temperature, 

“Wetup” = correlation to 60-day antecedent rainfall). 
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II. Relationships to catchment characteristics 

The variables that were identified for the optimum model for the redundancy analysis were 

elevation relief ratio, relief ratio, percentage of semi-natural land cover, percentage of 

coniferous forest cover, percentage of arable area, percentage of improved grassland cover, 

amount of SER, AAT above 5.5°C, and median pH. The final redundancy analysis 

additionally used area and average topsoil organic carbon content as they were judged to be 

critical to help interpret the findings. There was some correlation between the independent 

variables originally included in the model (Figure 5.13), some of which were retained in the 

final model. However, as this modelling served as a first exploration of explanatory nature 

of the catchment characteristics, this was judged not to be an issue. 

An ANOVA showed that area, percentage of coniferous forest cover, percentage of arable 

area, and average topsoil organic carbon were not significant variables in the final model. 

The first two axes of the redundancy analysis (Figure 5.14) explained 84% of the 

constrained variation, but only 24% of the overall variation. The short rainfall relationships 

showed a correlation with topographic indexes, reiterating the findings from above and 

suggesting a relationship between steeper reliefs to dominance of storm event driven DOC 

export. They also show a negative correlation to AAT and area, suggesting cooler 

temperatures and smaller catchments (Table 5.3).  
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Figure 5.13: Correlation matrix based on Spearman’s rank correlation for constraining variables used in the 

redundancy analysis to determine explanatory power of catchment characteristics on catchment rho values 

from the Spearman's rank correlation tests run per catchment on sampled TOC concentrations from 2013 – 

2016 and corresponding 3-day antecedent rainfall, 60-day antecedent rainfall, and 60-day antecedent mean 

temperature, split by season. Area = Area in km2, ReliefRatio = Relief ratio, ElevationReliefRatio = Elevation 

relief ratio, Aspect = Percentage of aspects facing South and Southwest, TOCAverage = Average topsoil 

organic carbon content, BFIAvergae = Average BFI in the catchment, Other 15 = Percentage of semi-natural 

land cover, Conif15 = Percentage of coniferous forest, “Arable15 = Percentage of arable area, Imprgrass15 = 

Percentage of improved grassland, Cattle = Average density of cattle in the parish, Sheep = Average density 

of sheep in the parish, Deer = Number of deer in the catchment, pwsurplus81 = SER for the period 1981-

2000, aat55for810 = AAT for the period 1981-2000, pHMed = median pH value of the water quality sample 

data for the catchment. 
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Table 5.3: RDA biplot scores from the redundancy analysis using catchment characteristics as constraining 

variables and catchment rho values from the Spearman's rank correlation tests run per catchment on sampled 

TOC concentrations from 2013 – 2016 and corresponding 3-day antecedent rainfall, 60-day antecedent 

rainfall, and 60-day antecedent mean temperature, split by season, as dependent variables (n=127). 

 RDA1 RDA2 

Spearman’s rho climate 

sensitivity analysis 

Scores 

Short rain – spring -0.35 0.37 

Short rain – summer -0.42 0.21 

Short rain – autumn -0.13 0.55 

Short rain- winter -0.16 0.4 

Long rain – spring 0.21 0.45 

Long rain – summer 0.19 0.16 

Long rain – autumn 0.54 0.21 

Long rain – winter -0.05 0.4 

Temp – spring -0.81 0.12 

Temp – summer -0.38 -0.19 

Temp – autumn -0.7 -0.25 

Temp - winter -0.35 0.05 

Catchment characteristics Biplot scores 

Area 0.06 -0.09 

Elevation relief ratio*** -0.51 0.54 

Relief ratio*** -0.71 0.29 

Semi-natural* -0.41 -0.16 

Coniferous forest 0.01 0.18 

Arable 0.19 0.3 

Improved grassland*** 0.25 0.26 

Topsoil organic carbon content -0.32 0.02 

SER*** -0.81 -0.19 

AAT** 0.11 -0.35 

pH median*** 0.28 0.55 

 

Smaller catchments could certainly be expected to react more quickly to rainfall events, but 

the effect is only small. The relationships to temperature were correlated to SER amounts, 

percentage of semi-natural land cover and average topsoil organic carbon. This is again in 

agreement with findings above suggesting these catchments occur in wetter and less 

intensively used areas with larger organic carbon pools. Catchments related to longer term 

rainfall amounts showed correlations to percentage of arable area and improved grassland, 

as well as median pH values. This suggests more intensive agricultural usage, less acidic 

soils, and drier conditions. It cannot be deducted if these characteristics would contribute to 

the observed effect of delayed TOC peaks, or if the catchments with processes and 

characteristics that lead to this pattern are naturally more capable of sustaining agricultural 

land uses.  
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Figure 5.14: Triplot from the redundancy analysis using catchment characteristics as constraining variables and catchment rho values from the Spearman's rank 

correlation tests run per catchment on sampled TOC concentrations from 2013 – 2016 and corresponding 3-day antecedent rainfall, 60-day antecedent rainfall, and 60-

day antecedent mean temperature, split by season, as dependent variables (n=127). Water quality parameters symbolised in black writing, catchment characteristics as 

constraints symbolised as grey rays, and individual catchments symbolised as points. Points/variables in the right of the plot correlate positively with RDA1, to the left – 

negatively. Points/variables in the top correlate positively with RDA2, in the bottom – negatively. The longer the arrow/further from the plot origin the point, the 

stronger the correlation. ReliefRatio = Relief ratio, ElevRelief = Elevation relief ratio, pHMed = median pH value of the catchment water quality sample data, Conif15 = 

Percentage of coniferous forest cover, Arable15 = Percentage of arable area, ImprGrass15 = Percentage of improved grassland, Other15 = Percentage of semi-natural 

land cover, TOCAverage = Average topsoil organic carbon content, pwsurplus81 = SER for the period 1981-2000, aat55for810 = AAT for the period 1981-2000. 
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In summary, the findings suggest that the “Temperature” and “Rainfall+Temperature” 

catchments tend to be peaty, wet catchments with semi-natural land cover. The correlation 

of relief ratio and elevation relief to the shorter period of rainfalls indicates that sensitivity 

to short-term rainfall events increases with steeper reliefs; it could also be a correlation to 

peat depth, as we would expect less peat to accumulate on steeper slopes, offering a smaller 

pool of organic carbon (Parry et al., 2015). It also remains unclear if more intensive land 

use contributes to catchments being in the “Wet up” category, and if drainage leads to the 

observed effects, or if the catchments under such land use would naturally be better drained 

catchments, and so need a longer time period to wet up and flush out DOC. The role of in-

lake processes also remains unclear, especially as several factors and drivers could be 

overlapping.   

 

5.3.4 Catchment characteristics relationships to median TOC concentrations 

DOC/TOC concentrations vary throughout the year in most catchments, with variability 

within the year often greater than between years (Musolff et al., 2018). Median 

concentrations therefore not necessarily reflect how problematic a catchment is in terms of 

water treatment, as it is peak concentrations that will usually cause problems. However, 

median concentrations can be used to represent a “baseline” for a catchment and show 

which catchments routinely produce higher concentrations. While the main driver for this is 

the soil carbon pool in the catchment (see 4), other catchment conditions will influence how 

much DOC reaches the water body. Climate change could directly alter processes in the 

catchment leading to changes in concentrations, or indirectly influence factors that in turn 

change mechanisms in either the source, the pathways, or the surface water body and lead 

to changes in TOC concentrations. Looking at drivers for the “baseline”, median TOC 

concentrations depending on the identified different catchment sensitivities could help to 

understand how climate change might influence catchments differently and to project 

changes in risk.  

 

I. Regression per group 

If assuming that in the different groups of catchments identified through the correlations 

between TOC concentrations and climate variables, different mechanisms take place that 
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lead to the production and transfer of DOC, these groups should be treated separately when 

trying to find relationships of catchment characteristics to median TOC concentrations. A 

model was also developed for all the catchments together for comparison. 

All groups, with the exception of the “None” category, produced acceptable models in 

terms of variation explained and cross validation indicators (Table 5.4). For some groups 

(“Temperature” and “Rainfall”), the modelling process of stepwise backward variable 

elimination by BIC produced models that were not significant. In this case, variables were 

removed one at a time based on potential collinearity, until an acceptable model was 

produced. The original “None” model is significant and explains a high proportion of 

variation, but normalised RSME suggests it is very overfitted. Removing independent 

variables did not lead to a more acceptable model. 

In the overall model, average topsoil organic carbon, percentage of improved grassland 

cover, the average number of sheep, and AAT positively correlate with median TOC while 

area, SER, and median pH negatively correlate. Of these, it at first seems surprising that 

improved grassland would increase TOC concentrations, as it can be assumed that these 

areas are less rich in organic soils, and grazing decreases soil organic carbon (Eze et al., 

2018). On the other hand, it is possible that more intensive use creates disturbances leading 

to increases in suspended sediment and TOC (Glendell & Brazier, 2014). Furthermore, it 

has been shown that woodland and farmland can substantially contribute to DOC (Ritson et 

al., 2019), and that DOC draining from farmland tends to be less coloured and older (~300-

700 years), in comparison DOC draining from peat dominated soils (~10-15 years), with 

the release of this older DOC possibly due to land management rather than climate factors 

(Evans, Freeman et al., 2006). In terms of climate, the model suggests that warmer 

catchments with longer growing seasons produce more TOC, and that higher summer 

rainfall could have a diluting effect, leading to lower TOC concentrations. 
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Table 5.4: Multiple linear regression models per climate sensitivity category with TOC median concentration as dependent variable. Adjusted R2, p-value and 

normalised RSME from 10 times 10-fold cross validation are provided as measures for model performance. 

Category Number of 

catchments 

Regression model Adjusted 

R2 

P value Cross validation: 

RSME/(Max-

Min) 

All 127 log(TOC median) = 2.4*** - 0.0003xArea**-2.37xRelief ratio** + 

0.02xTopsoil organic carbon*** + 0.01xImproved grassland cover** + 

0.001x#Sheep* - 0.0005xSER* + 0.0006xAAT** - 0.27xMedian pH 

0.47 8xe-15 0.13 

Temperature 

(Median pH 

removed) 

18 log(TOC median) = 0.61 + 1.53xElevation relief ratio** + 

0.03xAspect** - 2.16xBFI**  

0.53 0.003 0.19 

Rainfall 

(Arable area 

and improved 

grassland cover 

removed) 

18 log(TOC median) = 2.22*** – 4.66xRelief ratio* + 0.01xSemi-natural 

land cover** –0.003x#Sheep – 0.003xSER*  

0.65 0.001 0.16 

Rainfall+ 

Temperature 

22 log(TOC median) = 0.6 + 0.006xAspect + 0.04xTopsoil organic 

carbon*** - 0.01xSemi-natural land cover*** + 0.01x#Cattle*** 

0.72 0.000008 0.1 

Wetup 49 log(TOC median) = 2.9** – 0.001xArea** - 4.24xRelief ratio** + 

0.02xTopsoil organic carbon content** + 0.03xImproved grassland 

cover*** + 0.001x#Sheep* + 0.001xAAT** - 0.37xMedian pH** 

0.57 0.0000003 0.18 

None 20 log(TOC median) = 3** - 0.0007xArea* + 

3.19xElevationReliefRatio**+4.83xRelief ratio + 0.01xTopsoil organic 

carbon content + 1.18xBFI - 0.06xSemi-natural land cover** - 

0.05xConiferous forest cover** +13.9xArable area - 0.1xImproved 

grassland cover** + 0.003x#Deer -0.005x#Sheep* + 0.02x#Cattle** + 

0.002xAAT** 

0.89 0.001 0.78 
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The “Temperature” group consists of mainly loch and reservoir catchments, with larger 

carbon pools and wetter conditions. Elevation relief ratio and percentage of south and 

southwest facing aspect are positively correlated. A higher elevation relief ratio indicates 

that the catchment has a higher proportion of area on higher elevations, and south and 

southwest aspects are more likely to capture precipitation. Baseflow index is negatively 

correlated. As higher DOC concentrations are associated with storm flow conditions 

(Buffam et al., 2001; Hood et al., 2006; Tiwari et al., 2014), a higher proportion of base 

flow could contribute to dilution of DOC concentrations. While it can be assumed that 

aspect is a precipitation related variable, the more direct climate variables, SER and AAT, 

are not included in the model. This is a little surprising as we could assume that especially 

within this group, a longer growing period would also lead to longer bacterial activity and 

hence more DOC production. However, this may reflect an inhibiting effect of wetness, 

with soil moisture limiting the amount of DOC produced (Clark et al., 2009), or a regular 

wash out into the water body. Similarly, if the conditions are generally quite wet, smaller 

differences in precipitation may not show in concentrations as DOC does not build up in 

the soil. 

The “Rainfall+Temperature” group differs from the “Temperature” group in its sensitivity 

to short term rainfall and the predominance of river sources. In this group median TOC also 

correlates positively with percentage of south and southwest facing aspect, as well as 

average topsoil organic carbon content, and average number of cattle. The percentage of 

semi-natural land cover is negatively correlated. The latter two variables suggest that 

agricultural use of these areas could contribute to TOC. There is no evidence that grazing 

contributes to the release of DOC (Chapman & Palmer, 2016), but as we are looking at 

TOC, it is possible that cattle grazing contributes to particulates in the water through 

poaching. It is also possible that the catchments with higher percentages of agricultural land 

uses simply have other properties that increase TOC concentrations, or that it is indicative 

of a geographic pattern that has a range of effects. 

The ”Rainfall” group consists mainly of river catchments with lower organic carbon pools. 

Here, relief ratio, average number of sheep and SER are negatively correlated to TOC 

median concentration, whereas percentage of semi-natural land cover is positively 

correlated. Steeper reliefs could indicate shallower layers of organic soils, and semi-natural 
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land cover a higher organic carbon pool in the catchment. While it seems initially 

counterintuitive that a higher number of sheep would reduce TOC median concentrations, it 

might reflect that higher numbers of sheep would be kept on land with higher quality of 

plants for grazing, corresponding to richer and less organic soils (García et al., 2012). This 

model includes a climate variable, SER, which is negatively correlated, however it is 

unclear if this is a causal relationship, with higher rainfall amounts e.g., causing dilution, or 

if this is also related to other conditions. 

For the “Wetup” group, area, relief ratio and median pH are negatively correlated, and 

average topsoil organic carbon content, percentage of improved grassland cover, average 

number of sheep, and AAT are positively correlated. The model is similar to the overall 

model. This group is distinguished from the “Temperature” group mainly by drier 

conditions. The positive correlation of improved grassland and sheep also suggests an 

effect of agricultural use. The positive correlation of AAT again could be due to a longer 

and more intensive growing period, inducing higher microbial activity, and higher primary 

productivity leading to more biomass, or to an increased likelihood of drought which also, 

in short term, leads to increased DOC concentrations (Clark et al., 2005). Alternatively, it 

could also indicate more DOC production within reservoirs and lochs from algae. It is 

observable that the catchments where we find a negative intercept in the TOC-colour 

models belong to the “Wetup” or “None” group, which we would expect to find under this 

hypothesis.  

 

II. Pooled regression with interaction terms 

The final model for median TOC with interactions that were identified through batchwise 

inclusion explained 57% of variability, which is an improvement over the model without 

interactions (47%). Visual inspection of residuals as well as cross validation also suggests it 

is a slightly better model (Figure 5.15). The only category interaction that was retained 

when including only category interactions in the model was between category and 

coniferous forest cover, however this interaction was removed during the modelling process 

when combined with the interactions from the other batches. The model that results when 

including only category interactions is shown in Table 5.5 for comparison. 
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Table 5.5: Multiple linear regression models with log-transformed median TOC concentration as response variable (n=127; *** p<0.001, ** p<0.01, * p<0.05, - 

was eliminated during the modelling process, N/A not included in the modelling process). 

Variable Coefficients and significance Comment 

 1. No 

interactions 

2. All 

interactions 

3. Interactions – 

categories only 

 

Variability explained 47% 57% 54%  

RSME/(max-min) 0.13 0.11 0.13  

Category 

  Rainfall 

  Rainfall+Temperature 

  Temperature 

  Wetup 

N/A N/A  

-0.17 

-0.27 

-0.16 

 0.03 

In comparison to the “None” category, catchments on the 

“Rainfall”, “Rainfall+Temperature” and “Temperature” group 

have slightly lower TOC median concentrations. 

Area -0.0002** - - Larger catchments correlate to slightly lower TOC medians. 

Relief ratio -2.37** -1.55* - Higher relief ratio correlates with lower TOC medians. This 

might be due to shallower depths of organic soils horizons in 

steeper catchments. 

%age Southwest aspect - -  0.006* Higher percentage of south and southwest facing aspects is 

assumed to correspond to wetter conditions. 

Average topsoil organic 

carbon 

 0.02***  0.02***  0.02*** The higher the carbon content in the soil, the higher the TOC 

median. 

% coniferous forest cover -  0.006*  0.003 TOC medians increase with coniferous forest cover. 

% improved grassland 

cover 

 0.001** -  0.01** TOC medians increase with improved grassland cover. 

# deer   0.04 -0.007** Higher deer numbers correspond to higher/lower TOC median 

concentrations.  

# sheep  0.001* -0.001  0.001** Higher sheep numbers correspond to lower/higher TOC 

median concentrations. 

SER -0.0005*  0.01*** -0.0006** Higher SER corresponds to higher/lower TOC median 

concentrations. 

AAT  0.0006*  0.0015***  0.0008*** Higher AAT corresponds to higher TOC median 

concentrations. 

Median pH -0.27***  0.17 -0.22** Increasing pH corresponds to lower/higher TOC median 

concentrations. 

SER:AAT  -

0.000003** 

N/A SER and AAT negatively interact, so high values in SER and 

AAT will decrease TOC medians. Where AAT is high, 
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differences in SER will make a more pronounced difference to 

TOC medians, and where SER is high, differences in AAT will 

be more marked in TOC medians. 

# sheep:SER  -

0.00001*** 

N/A SER and number of sheep negatively interact, so high values of 

SER and sheep number will decrease TOC medians.  

SER:Median pH  -0.001*** N/A SER and median pH negatively interact, so high values of pH 

and SER will decrease TOC medians, with changes in SER 

making a higher difference to TOC medians in catchments 

with higher pH values. 

Average topsoil organic 

carbon:# deer 

 -0.002* N/A Average topsoil organic carbon content and number of deer 

negatively interact, so increasing deer numbers correspond to 

lower TOC median concentrations, especially in catchments 

with higher organic carbon content. 

Relief ratio:%age 

coniferous forest cover 

 -0.06* N/A Relief ratio and percentage of coniferous forest cover 

negatively interact, so higher coniferous forest cover 

corresponds to lower TOC median concentrations especially 

where relief ratio is higher. 

Relief ratio:# deer  0.275** N/A Relief ratio and number of deer positively interact, so 

especially where relief ratio is higher, higher deer numbers 

correspond to increased TOC median concentrations. 

Category:coniferous forest 

cover 

  Rainfall 

  Rainfall+Temperature 

  Temperature 

  Wetup 

 N/A  

 

-0.015** 

 0.006 

 0.01 

-0.005 

Compared to the “None” category, coniferous forest cover 

decreases TOC median concentration in the “Rainfall” and the 

“Wetup” category. 
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1 2 

3 

 Figure 5.15: Residual plots for multiple linear regression models with log-transformed median TOC concentration as response variable and catchment characteristics as 

independent variables (n=127). Numbers correspond with models in Table 5.5. For each model, four plots are presented: in the upper left corner, residuals are plotted against 

fitted values, to assess if residuals have non-linear pattern that could indicate non-linear relationships, with distinguishable patterns indicating that no-linear relationships are 

present that the model cannot account for. In the upper right corner, a quantile-quantile plot for residuals allows evaluation of normal distribution of residuals (points should 

follow the straight line), as error terms must be normally distributed in a regression model. In the lower left corner, a scale-location plot shows if residuals are spread equally 

along the range of predictors, to check assumption of equal variance (homoscedasticity), with a straight line and randomly spread points indicating homoscedasticity. In the lower 

right corner, standardized residuals are plotted against leverage to find influential outliers, with points outside the red dashed lines influencing the regression line. 
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Including interactions terms improves the model in comparison to the one without 

interactions terms (57% variation explained vs. 47%). While some other variables were 

included, and some coefficients changed direction, the main interest is in the interaction 

terms and the direction of their coefficients. 

Although SER increases TOC median concentration, the model includes negative 

interactions between SER and several characteristics. This counterbalances the positive 

influence and leads to an overall influence of SER reducing TOC medians, especially 

where these characteristics (higher AAT, more sheep, and higher pH) are present. This 

could be due to dilution effect and/or reflect drought effects, as drought may lead to a 

subsequent rise in TOC concentrations for a prolonged period of time (Pärn & Mander, 

2012). SER is projected to decrease in most areas of Scotland, with highest reductions 

projected for the South and East. The model thus highlights these areas as having the 

highest risk of seeing increases in TOC median concentrations, because the reducing 

influence of SER diminishes.  

The most interesting interaction term in this model in terms of climate change impacts is 

between SER and AAT with a negative coefficient. Although the interaction has a negative 

coefficient, meaning that higher values of AAT reduce TOC medians with this interaction, 

AAT as a single term has a positive coefficient, which means it acts positively on the 

median TOC concentration overall. Therefore, the model indicates that in cooler areas, SER 

reduces concentrations, whereas in warmer areas, higher temperatures lead to increases in 

concentration, with catchments being sensitive to precipitation and drier areas having 

higher median concentrations. This again suggests drought effects. An increase in AAT is 

predicted for most Scottish Water catchments, and that would lead to increases in median 

TOC concentration, especially in combination with decreasing rainfall during the summer. 

The interaction of sheep and effective rainfall also appears with a small, but highly 

significant negative effect. It is hard to infer a causal relationship from this. Using this 

model for forward prediction means that this interaction makes catchments with higher 

numbers of sheep more vulnerable to reductions in SER. 

The negative interaction between pH median value and SER suggests that pH has different 

influence depending on wetness conditions. More basic conditions have a reducing 

influence on TOC median especially where SER is high. This interpretation however does 
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not conform very well with the currently widely acknowledged hypothesis that peatlands 

release more DOC under deacidification (Monteith et al., 2007). Similarly counterintuitive 

is the negative interaction between average topsoil organic carbon and number of deer, 

suggesting that a higher number of deer leads to a reduction in TOC median in catchments 

with higher average of organic carbon in the topsoil.  

In contrast, higher deer numbers correspond to higher TOC medians where relief ratio is 

higher, which would be easier to interpret as disturbance of soil from trampling could lead 

to easier transport of TOC to the water source. Relief ratio also negatively interacts with 

coniferous forest cover, so catchments with steeper reliefs would have lower TOC medians 

if coniferous forest cover is higher. Generally, coniferous forest can increase concentrations 

through drainage and disturbance of ground from forest operations and clear felling (Van 

Dijk & Keenan, 2007). As impacts can depend largely on management and local 

conditions, it is unsurprising that coniferous forest cover has not been more clearly 

identified as an influence in the models. The interaction suggests that coniferous forest can 

however have a beneficial effect on steep reliefs, maybe due to slowing down surface flow.  

The only interaction that remained in the model if only interactions were included between 

the climate sensitivity “category” and the other variables is between category and 

coniferous forest, with a significant negative effect for the “Rainfall” catchments. These 

catchments are the slightly steeper river catchments reacting to short term rainfall, so this 

interaction could be interpreted similarly to the relief ratio – coniferous forest interaction in 

the other model, as forest cover slowing down surface flow and providing a chance for 

TOC to be held up in the catchment.  

 

5.3.5 Interpreting the results with regard to implications for climate and land 

use changes 

In the pooled modelling, the category interactions did not help to improve the models. The 

models derived from separating the groups were partly also difficult to interpret. There are 

several explanations for this, including data issues, model choice, lack of homogeneousness 

of the groups, multiple variables describing similar effects, or lack of meaning of the 

groups for predicting TOC medians.  
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In terms of data, data used for describing the catchments is mainly free and easily available 

in Scotland but may not always be a good representation for these predominantly very 

small catchments due to scales or from averaging. Examples include livestock data which 

are at parish level, meaning that there may in fact be no livestock present in the catchment 

even if the parish has a high density, or vice versa; while topsoil organic carbon has been 

averaged over the catchment, but there could be a large carbon pool that is poorly 

connected to the surface water, or a small, but very well-connected carbon pool. Results 

from the statistical modelling are still indicative, but shouldn’t be overinterpreted. It needs 

to be kept in mind that even if expected effects are not showing in the model, this does not 

rule out that they do not exist, but may simply not be represented in the data. Furthermore, 

only linear models were used for describing the relationships between catchment 

characteristics and sensitivity categories/TOC medians. This may mask relationships that 

are not linear, or threshold effects, although none were immediately apparent from plotting 

of the data.   

Even if some relationships remain unclear from the statistical modelling, the catchments in 

the groups clearly showed different correlations to climate variables. It is therefore likely 

that they will react differently to changes in climate and land use. Classification generally 

imposes an artificial grouping that may represent some members of the groups very well 

and others very badly. We can see a lot of overlap and rather fuzzy “boundaries” between 

the groups, so hypotheses formulated for each group with regard to possible implications of 

climate change may be over- or underestimating the effect on individual catchments within 

the group. With this in mind, the findings so far are summarised and interpreted for each 

group, and implications for effects of climate change discussed on this basis. 

 

I. Temperature driven catchments 

These catchments have been identified from the analysis above as wet, peaty catchments 

with mainly semi-natural land cover. TOC concentrations correlate well to 60 days mean 

air temperatures. From the modelling on TOC medians, it can be seen that baseflow in 

these catchments seem to dilute TOC concentrations, and higher elevation relief ratios, 

indicating higher proportions of high elevations and higher erosion, as well as more 

exposure to weather from South and Southwest aspects increase median TOC 
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concentrations. This suggests DOC is mainly exported in surface flow. Variability in these 

catchments is also rather low, so it seems likely that these catchments are mainly wet 

throughout the year, with a regular transfer of DOC from the organic soil horizons to the 

surface water, and probably some buffering capacity from larger water bodies, making 

them less sensitive to storm events.  

A decrease in precipitation in the summer months may affect these catchments if drought 

events become more frequent. In case of drought, these water sources could see an increase 

in variability as DOC accumulates over dry periods and is then flushed out in a storm event, 

rather than being more steadily exported, unless the water body is capable of buffering this. 

Studies suggest a decrease of DOC concentrations during droughts is followed by a 

subsequent increase that may last for several years, although evidence is lacking with 

regard to long-term effects of drought (Chapman & Palmer, 2016). Frequent drought events 

may also make peatland more vulnerable to degradation and erosion, with both effects 

being linked to increases in DOC concentrations (Evans & Warburton, 2010b).  

Temperature does not come out as very strongly related to TOC median concentrations, 

although one would assume a connection especially with AAT as a proxy for period of 

microbial activity and primary production, and hence DOC production. Wetness however is 

an inhibitory factor for DOC production, as soil conditions remain mainly anaerobic (Clark 

et al., 2009). A decrease in precipitation would mean that increases in temperature became 

a factor for increasing DOC production, once these areas fall below a threshold value for 

wetness. 

Finally, changes in climate may influence vegetation in these catchments, leading to 

shifting concentrations, as there are indications that peatlands dominated by Calluna (in 

drier areas) leach higher amounts of DOC than those dominated by Sphagnum (Ritson et 

al., 2014). 

These interpretations suggest that climate change may shift these catchments to become 

more sensitive to discharge, and they may see an increasing long-term trend. 
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II. Rainfall and temperature driven catchment 

These catchments are similar in their characteristics to the “Temperature” catchments, but 

have steeper reliefs and consist mainly of rivers rather than lochs and reservoirs. TOC 

concentrations are related to 60 days mean air temperature, but also to 3-day antecedent 

rainfall periods. They seem to behave similar to the “Temperature” catchments, but steeper 

reliefs could lead to a quicker runoff of precipitation over the surface and subsurface, 

washing out DOC produced in the topsoil. As rivers, the water sources have lower 

buffering capacity, meaning that these events can more easily show in spikes of 

concentration. Assuming that drought events would act as described above, leading to DOC 

spikes from accumulation during dry periods and flushing out during storm events, it is 

likely that these water bodies have less buffering capability than those in the “Temperature” 

group and also see an increase in variability and peak concentrations. 

The model for median TOC found a potential influence of agricultural activity, so changes 

in climate that would make these areas more capable of agricultural land use, might also 

induce increases in TOC concentrations. 

 

III. Rainfall driven catchments 

These catchments have smaller carbon pools and steeper reliefs, and TOC concentrations 

show correlations to 3-day antecedent rainfall periods. They tend to have lower TOC 

median concentrations but show the biggest variability in concentrations. The group 

consists mainly of river catchments. The regression model for this group was harder to 

interpret with some counterintuitive coefficient directions. It is possible that negative 

correlations to relief ratio, average number of sheep and SER, together with a positive 

correlation to semi-natural land cover, indicate that this group is more diverse in the size of 

the carbon pool, with wetter, more natural, less intensively used catchments producing 

more DOC due to higher carbon content in the soils.  

 

IV. Wetup effect catchments 

These catchments show a correlation to a 60-day antecedent rainfall period. They are the 

most variable group and include many of the catchments with atypical colour concentration 
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curves. This could be due to catchment processes but also to in-lake/reservoir processes, 

making it very difficult to attribute catchment characteristics to TOC concentrations and 

hence estimate likely effects of climate change. The basic assumption is that these are 

catchments with drier soil conditions where a higher amount of rainfall is needed to start 

the transfer of DOC from the topsoil into the surface waters. Higher AAT have been linked 

to higher TOC concentrations in this group. This indicates that in these catchments, wetness 

is not an inhibiting factor for DOC production and the length of the growing season would 

influence the amount of DOC produced in the soil. With increasing temperatures, more 

DOC is likely to be produced, however with decreases in summer precipitation, it may be 

less likely to be washed out into the surface water. Accumulation over the summer months 

could then lead to more DOC being released to the surface water in autumn and winter 

when catchments get wetter. This would be worth analysing further especially for those 

catchments that already peak in winter.  

Alternatively, or additionally, in-lake processes could influence concentrations either by 

degradation of DOC, or production from algae. There may also be a pronounced buffering 

effect, meaning that there could be high concentrations coming from the catchment as a 

reaction to short term rainfall events that only build up gradually. 

These catchments have also been associated with more intensive agricultural use in the 

redundancy analysis. The regression model for this group shows a positive correlation of 

percentage of improved grassland and average number of sheep with median TOC 

concentrations. This means that this group could contain catchments where a significant 

proportion of DOC comes from farmland, with DOC exported from baseflow (Evans, 

Freeman et al., 2006). In these catchments, land management is probably a more important 

factor for risk of decreasing water quality than climate directly.  

It can also be assumed that catchments with degraded peatland would be found in this 

group, which could be exacerbated through changes in climate. Drought conditions would 

make the soil more sensitive to mechanical influences (such as from grazing) and lead to 

higher erosion risks in subsequent storm events.  

 



194 

 

 

V. No correlation catchments 

Catchments in this category seem to be relatively dry, flat catchments with smaller organic 

carbon pools, although they show comparatively high TOC median concentrations. The 

PCA visualises that there is considerable overlap between this groups and the “Wetup” 

group. While these catchments didn’t show correlation to the climate indicators, it is 

possible that there still exists a relationship, but it wasn’t observable, especially if the 

period of antecedent rainfall doesn’t match the conditions of the catchments (a longer or 

shorter period could be more suitable). The concentrations also seem to be relatively stable 

for most catchments within this group. The modelling approach didn’t lead to a satisfactory 

model for TOC median concentrations. This could be due to diversity within this group.  

 

VI. Land use implications 

The modelling on TOC medians with interaction terms allow some very general 

conclusions for management in different types of catchments. While grazing has not been 

linked to increases in TOC concentrations, modelling has linked the average number of 

sheep in the catchment to increases in TOC concentrations, especially in drier areas. This 

could indicate that decreases in precipitation could make catchments more sensitive to 

grazing, maybe due to mechanical disturbance. The modelling also indicated that trees 

could reduce TOC concentrations on steeper reliefs, maybe due to slowing down surface 

and subsurface runoff.  

 

5.3.6 Conclusions for the risk screening 

The analysis of the different groups leads to a first loose classification of the catchments in 

terms of TOC production that can be used for some conjectures about impacts of climate 

change:  

An increase in AAT increases the possibility for more DOC production. While the 

catchments in the “Temperature” group may not react to this due to high wetness, it is 

possible that this may change with decreasing SER. It is therefore assumed that increases in 

annual accumulate temperature poses a risk to this group. 
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A decrease in SER has been discussed in all the groups to likely lead to a build-up of DOC 

in the soil that gets flushed out in subsequent storm events. This could translate to spikes in 

concentration in those water bodies with lower buffering capacity, in the “Rainfall” and 

“Rainfall+Temperature” groups. While variability has not been analysed directly, it is 

assumed that these catchments are at risk of seeing increases in DOC concentration 

variability and peaks. 

While it is difficult to generally project impacts from increases in temperature and 

decreases in precipitation for the “Wetup” catchments, it is assumed that the main factor is 

precipitation, with decreases likely leading to conditions that make the catchments more 

sensitive to disturbances, and thus more leaching of DOC. Although there are little 

conclusions for the “None” catchments, they are treated as the “Wetup” catchments due to 

observed overlap between the groups. 

Using these conjectures, a first risk screening (Figure 5.16) can be carried out by looking at 

projected changes in AAT, influencing overall (median) TOC concentrations for the 

“Temperature” catchments (increasing where AAT increases), and in SER, indicating risk 

for overall TOC concentrations for the “Temperature”, “Rainfall+Temperature”, “Wetup” 

and “None” groups (increasing where SEP decreases), and finally of risk for TOC 

concentration variability for the “Rainfall” and “Rainfall+Temperature” groups (increasing 

where SER decreases). 

These risk maps especially highlight the catchments in the South and Southeast of Scotland 

as having higher risk of seeing increases in TOC concentrations from decreases in SER. Of 

these catchments, the “Rainfall” and “Rainfall+Temperature” catchments are also 

highlighted for risk of increases in variability of concentrations. Additionally, some 

catchments on the West coast are identified as being of higher risk from increases in AAT. 

These results are interesting as increases have mainly been seen so far in the Western 

catchments (personal communication, Scottish Water). The risk maps highlight that these 

catchments may be less at risk from climate change, but those that have so far not been 

identified as problematic over rising DOC trends might become so in future. 

Alternatively, the best multiple linear regression model for all catchments together can be 

used to derive estimates for TOC median values, using AAT and SER projections for the 
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period 2041-2060 (Table C.6), and a risk map produced based on changes between current 

and projected TOC median (Figure 5.17). 
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Figure 5.16: TOC risk maps, based on projected changes in climate indicators combined with identified vulnerabilities of catchments to climate pressures. Point 

size indicates magnitude of projected (UKCP18) change of the identified hazard between the baseline period 1981-2000 and the projection period 2041-2060 – 

for AAT, the bigger the circle the higher the projected increase; for SER, the bigger the circle the higher the projected decrease. Shade indicates current (2011-

2016) colour concentration median values (when assessing risk to overall concentrations) or 95th percentile concentrations (when assessing risk to variability). 

A. Catchments where increasing overall TOC concentrations are hypothesised due to increases in AAT (“Temperature” category), B. catchments where 

increasing overall TOC concentrations are hypothesised due to reduction in SER (“Temperature”, “Rainfall+Temperature”, “Wetup”, and “None” categories), C. 

catchments where increases in variability of concentrations are hypothesised due to reduction in SER, with consequences especially for increasing peak 

concentrations (“Rainfall” and “Rainfall+Temperature” categories).  



198 

 

 

A B 

Figure 5.17: A. TOC risk map based on projections of the selected multiple linear regression model, using AAT and SER 

projections (UKCP18) for each catchment for 2041-2060. Point size reflects projected increase in TOC median 

concentration. Shade reflects current (2013-2016) TOC median concentration. B. Model performance – indicates if the 

model is over- or underestimating the median by reflecting the difference between actual TOC median concentration and 

estimated TOC median concentration of the model.  
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This risk map similarly predominantly highlights catchments in the South and Southeast of 

Scotland, with some additions in the North, especially for Orkney. The model is mainly 

driven by changes in SER, especially where SER becomes very small as the negative 

influence of the interaction terms reduces drastically. While the model strongly 

overestimates medians for some catchments and is therefore more likely to also 

overestimate future median, there is no spatial pattern in over- or underestimation 

observable. There is also no observable relation between degree of estimated change and 

over- or underprediction from the model, indicating that the map indeed reflects change 

rather than model error. 

Having identified risk levels according to projected change, these can be combined with 

whatever metric is deemed appropriate to assess risk for individual catchments and the 

overall national supply system. For example, risk might not be deemed highest where 

concentrations are currently low, even if increases are projected, or vice versa, even if 

projected changes are small, risk might be high if the treatment work is already challenged 

by current concentrations. Risk might also be perceived high where sources serve a high 

number of people, or where there is no alternative or emergency supply. These 

considerations can then serve to arrive at a risk score, to inform and prioritise subsequent 

risk assessments, research, or investment.  

 

5.4 Limitations and further approach 

There are some advantage of the risk map based on model outcomes over the risk maps 

based on changes in identified drivers: interactions between pressures are included, which 

would be especially important for the interaction between SER and AAT; other catchment 

characteristics which may influence TOC median concentrations are included, and could 

also be changed according to projections if desired, to see what this would mean; and one 

map may be easier to interpret than several. However, statistical models are limited in their 

capability for forward projection, as they describe correlations rather than causal 

relationships. As discussed at several points above, it is possible to interpret the models 

based on our understanding of processes and infer causal relationships, but in many cases it 

was unclear if the variables and their coefficients represented more complex processes that 

were not easily described by the variables, either because important factors were missing 
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from the model, or because the data weren’t of high enough resolution and quality to 

adequately represent the effect, or the group was so diverse that different effects 

overlapped. Furthermore, these correlations, even if we can with some confidence attribute 

them to causes, may not necessarily be continued. The analysis builds on spatial 

differences. The “space for time” substitution assumes that different locations can represent 

different points in time, and looking at the different conditions over space allows to 

conclude how areas will look like when conditions change, so project spatial differences 

into temporal ones (Huang et al., 2019). For example, we could assume that some areas in 

Scotland in the “squeezed middle” between highland and lowland areas will increasingly 

exhibit properties associated with lowlands. However, changes in climate advance at an 

unprecedented rate and local conditions may not change at the same rate, upending the 

relationship. So, while using the multiple linear regression model to project future TOC 

median values gives very useful insight into possible effects of climate change and allows 

to identify potential “high risk” catchments, it needs a more detailed and individual follow-

up risk assessment to unpick potential impacts more adequately. It would be worthwhile to 

investigate this further for selected catchments to confirm the formulated hypotheses, and 

to gain a better understanding of the processes, to estimate the extend of the increase and if 

there are thresholds for TOC/DOC release, or which other factors influence the processes. 

Catchments that have been identified as high risk in this analysis can be prioritised for 

further analysis (see Appendix D for suggestions). Currently, limited understanding of the 

system challenges evaluation of different scenarios, either with regard to changing climate 

or management options, but a model that allows to identify important parameters could help 

to get projections for water quality under climate and land management projections. The 

focus of further investigations would therefore lie on increasing the understanding of the 

underlying processes. Using and calibrating process-based models could be an effective 

way to test hypotheses around the processes and gain an understanding of these (Beven, 

2012).  

DOC data are available for only a few catchments, which is why the risk screening was 

based on TOC data. For further investigation, a catchment could be chosen where DOC 

data was available. The highest frequency data was weekly data, which could be coupled 

with rainfall and temperature data from the Met Office. Flow data are not routinely 

available, but flow measurements from further downstream might help to calibrate a 
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rainfall runoff model. In terms of catchment data, finer scale data e.g., on soils may be 

available. A model could help to point out which kind of data would most help to improve 

process understanding. Most useful for decision-makers would be a projection of median, 

or average, and peak concentrations over time with confidence margins, which would 

enable an evaluation of best and worst case together with their related conditions. A 

coupling of magnitude of increases, or thresholds for DOC release, to specific catchment 

conditions could also help to transfer findings from one catchment to the other to further 

prove the identification of high-risk catchments.  

Contrary to the risk screening map based on model projections, the risk map based on 

changes in identified drivers incorporated the hypotheses that were formulated resulting 

from the analysis regarding climate change impacts. It therefore addresses the discussed 

issue that current spatial differences may not well represent future temporal trends, but uses 

the characterisation of the different groups, together with current knowledge on processes, 

to conjecture potential impacts depending on sensitivities. Thus, the classification provides 

a starting point to understand differences in catchment responses to pressures and climate 

drivers, and provides a framework for viewing, understanding, and interpreting the results 

of more detailed, individual risk assessments in a broader context. This is crucial for risk 

assessing the whole supply system and making more strategic, pro-active decisions 

regardless of uncertainties about the future.  

The developed risk screening maps allow identifying catchments for further in-depth 

analysis. The hypotheses formulated here are a starting point for further research that can 

be designed to verify, or disprove, assumptions made. There are gaps in our knowledge and 

understanding of the actual processes of DOC production and transfer in the catchments, 

which limits understanding of how these systems will respond to climate change, so it 

seems pertinent that data are collected that helps address these questions. These data can 

feed into more elaborate models. With increasing knowledge of the catchments systems, the 

classification can be further developed helping to put it into the broader context of the 

national supply system. A clearer picture of the groups and the characteristics of the 

catchments within these will also allow to risk screen catchments that currently have 

inadequate or no TOC data, and to allocate an initial risk group.   
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6. Risk screening: Estimating change in risk potential for E. coli 

contamination in raw water  

Chapter 5 carried out Assessment 1.2 regarding raw water colour, this chapter now 

examines these aspects with regard to another common problem in Scottish Water 

catchments, contamination with E. coli. This chapter gives the relevant background to E. 

coli contamination (6.1), describes the methods for the analysis (6.2), results (6.3), and 

reviews limitations and further steps (6.4). 

The ingestion of pathogens from animal and human faeces, such as some forms of 

Escherichia coli, streptococci, or Cryptosporidium spp., can lead to serious gastro-intestinal 

illness with symptoms including diarrhoea, fever, stomach pain, and vomiting, and can be 

especially problematic in children and elderly people (Hunter, 2003; Duhaime & Roberts, 

2018). Infection can occur through direct contact with animal faeces, contaminated food 

(meat, dairy products, or vegetables), recreational or drinking water, or through human-to-

human transmission (Rotariu et al., 2012). While transmission through food items seems to 

be the most important factor (Pennington, 2014), there are outbreaks linked to untreated or 

insufficiently treated drinking water (e.g., Licence, 2001; Saxena et al., 2015). 

E. coli has high importance as an indicator organism for faecal contamination in water due 

to its prevalence in animal and human faeces and the development of quick and cost-

effective tests (Odonkor & Ampofo, 2013). The statutory requirement for Scotland is that 

no E. coli is present in drinking water (The Water Supply (Water Quality) (Scotland) 

Regulations 2001). This is usually achieved via disinfection within the treatment process. 

Managing water quality with regard to faecal pathogens can be challenging due to the 

possible sporadic nature of contamination events, depending on a number of factors such as 

climatic conditions (e.g., temperatures favourable to long survival, episodic rainfall events 

that induce flush-outs), management changes, or points of failure (e.g., direct access of 

livestock to surface water, sewer overflows). It is important to maintain a good awareness 

of risk factors and areas as well as efficient and reliable mitigation measures to reduce 

dependency on chemical end-point treatment. While there is usually awareness within 

water utilities of agricultural activity as a main point of concern, and an existing 

prioritisation of catchments for mitigation measures, a potential shift in risk factors needs to 
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be considered in order to develop pro-active mitigation strategies for catchments that may 

have an increasing risk of contamination events. 

 

6.1 Sources of E. coli 

Main sources of E. coli are sheep and cattle, but they also come from other species such as 

deer (Rotariu et al., 2012). Cryptosporidium is mainly associated with grazing cattle, and 

their defecation close to surface water as a potential source of contamination (Duhaime & 

Roberts, 2018). Next to faeces from grazing animals, indirect application to land through 

slurry and manures is seen as a second major source (Vinten et al., 2004). Further input can 

be derived from farm steadings and human populations through sewer overflows or badly 

maintained septic tanks (Vinten et al., 2004; Tetzlaff et al., 2012). 

While the major causes of faecal contamination in surface water and their relative 

importance have been well studied on field- or farm scale, it is more challenging to 

determine relationships on a catchment scale. There are a number of potential reasons for 

this, including the influence of farming practices, seasonal variations, climatic conditions 

influencing biological productivity and hydrological connectivity within a catchment 

(Tetzlaff et al., 2012), and the potential of pathogens to multiply and die-off depending on a 

number of biotic and abiotic factors (Oliver et al., 2016). At the same time, the ability to 

predict water quality outcomes depending on land management options is important at 

different scales from local decision making up to national policy formulation. Among the 

reasons for achieving a prediction of faecal indicator organism behaviour is the enabling of 

a screening to guide regulators in prioritising decisions and predict future scenarios due to 

climate and land-use changes (Oliver et al., 2016). 

 

6.2 Methods 

The risk screening aims to identify potential catchments where changes in climate and land 

use may lead to an increase in risk of faecal contamination of surface water, so that these 

catchments can be under increased attention to enable pro-active intervention. As a first 

step, the relationship between catchment characteristics and E. coli concentrations (as an 

indicator for contamination with faecal pathogens) is investigated for this set of catchments 
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in order to highlight the overall most important risk factors. Then, it is considered how 

these risk factors may change within a future period, so that catchments can be identified 

for further investigation.  

The analysis is making the following assumptions to guide the modelling: 

- Catchments show very skewed concentration distributions with mostly very low 

concentrations and occasional high peaks due to contamination events.  

- Livestock is widely seen as a predominant source of E. coli; therefore, it is expected 

that livestock numbers and improved grassland cover will relate to E. coli 

concentrations. Other sources of E. coli contamination could be slurry applications 

on arable areas, septic tanks, sewer overflows in urban areas, or contamination 

through wildlife. 

- Relationships could be obscured by land management practices, such as buffer 

strips, fencing, overwintering habits, or livestock density; the location of the 

contamination source; and its hydrological connectivity to the water source. 

- Some catchments may show a relationship to rainfall amounts, where source areas 

are connected in higher rainfall events, or where rainfall leads to a diluting effect. 

 

6.2.1 Relationships between catchment characteristics and median E. coli 

concentrations 

The complete set of 154 catchments (see 3.3.3) was used in the analysis, with sample 

frequencies varying per catchment from once per month or once every three months 

(leading to sample sizes spanning 20 to 70 per catchment). Median concentrations were 

chosen as a baseline value to represent an “average” contamination level and thus reflect 

baseline pressures in the catchment. Higher medians are expected to reflect a general higher 

concentration level and/or more frequent peaks. Although peak concentrations are, from a 

drinking water perspective, more worrying, they are less likely to show a relationship to 

pressures within the catchment (Neill et al., 2018) as they often relate to single 

contamination events.  

Multiple linear regression was performed (B.9) with the log-transformed E. coli medians as 

a response variable, and catchment characteristics as independent variables: the type of 
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source, area in km2, elevation relief ratio, relief ratio, percentage of Southwest facing 

aspect, average amount of topsoil organic carbon, average baseflow index, percentages of 

arable, improved grassland, coniferous forest, urban and semi-natural land cover, numbers 

of deer, cattle and sheep densities, number of septic tanks, median pH, SER and AAT. 

Backwards stepwise regression based on BIC was used to find significant variables. This 

was performed with just the variables, but also including interactions of all independent 

variables with the amount of effective rainfall, AAT, and selected additional interactions 

(between relief ratio and numbers of cattle, sheep, deer, and aspect; between average 

topsoil organic carbon and numbers of cattle, sheep, deer, and improved grassland cover; 

between average baseflow index and improved grassland cover; and between coniferous 

forest cover and number of deer, and relief ratio). Interaction terms were included in 

batches to avoid running out of degrees of freedom. Significant variables and interactions 

from the batch-wise models were then combined in a last step to arrive at the final model. 

Plots of residuals, adjusted R2, and normalised RSME from a ten times repeated 10-fold 

cross validation were used to evaluate the goodness of fit and potential overfitting issues. 

 

6.2.2 Sensitivity to rainfall 

The relationship between concentrations and different amounts of rainfall (daily total 

rainfall, and total rainfall of the preceding 3, 10, and 30 days) was tested per catchment and 

per season (March to October – summer; November to February – winter) using 

Spearman’s rank correlation tests (B.10). Rainfall data were obtained from the UK Met 

Office. This resulted in 8 Spearman’s rho values and corresponding p-values per catchment. 

A relationship was judged to be moderate if Spearman’s rho >0.4 and as strong if 

Spearman’s rho > 0.6 if p>0.05. The catchments were then manually sorted into “None” (if 

no or only one moderate correlation was found), “Short” (if at least one strong or two 

moderate correlations to a shorter rainfall period was found, with at least one in the summer 

season), “Medium” (if at least one strong or two moderate correlations to a medium rainfall 

period was found, with at least one in the summer season), or “Long” (if at least one strong 

or two moderate correlations to a long rainfall period was found. with at least one in the 

summer season).  
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These models as described above were rerun using interaction terms with these categories 

to see if they added to explaining variation. 

 

6.2.3 Estimating land use change 

While land use can serve to estimate current risk, in order estimate how risk may change, it 

is necessary to get an estimate of future land use. Predicting land use changes and land use 

patterns for a future period is extremely difficult due to numerous factors and complex 

relationships that lead to land use decisions. Physical properties that make specific land 

uses possible can be described by using land capability assessments (Bibby et al., 1991, 

Brown et al., 2008). Climate change, through higher temperatures and different rainfall 

amounts, will influence how land can be used, for example by the capability of soils to 

produce crops. It is envisaged that land capability will change in Scotland with some areas 

becoming more capable of crop production, and some areas more capable of grass 

production sustaining livestock (Brown et al., 2008). Where this happens, these catchments 

could see an intensification of agricultural practices, potentially putting them at higher risk 

for degrading water quality. Changes in land capability could thus be used as a first 

approximation to potential future land uses and projecting changes in land capability 

identifies where catchment have an increased risk through climate change and related land 

use changes.   

Current and projected land capability data were provided, derived with the methods 

described in Brown et al. (2008). Future land capability projections were derived using 

projections in soil moisture deficit (inverse of SER) and AAT. The same procedure outlined 

in 3.4 was used for future UKCP18 climate data to develop a future bioclimate and land 

capability ‘reasonable worst case’ scenario, assuming that irrigation and drainage 

infrastructure continues to be available so that land use is optimised according to the 

capability class for that location. 

 

6.3 Results and discussion 

E. coli concentrations show skewed distributions in almost all catchments (Figure 6.1 & 

Figure 6.2), with the vast majority of catchment showing no or very little presence of E. 
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coli with occasional contamination events. Some catchments show E. coli presence almost 

all year round with strong spikes. Very few catchments have generally elevated E. coli 

levels. There is no indication that catchments generally show seasonality for E. coli 

presence.
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Figure 6.1: Boxplots showing the distribution of E. coli concentrations per water abstraction source. Due to a small number of exceptionally high concentrations, this 

plot only allows to distinguish that a few catchments have generally elevated E. coli concentrations and extremely high peak concentrations. 
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Figure 6.2: Boxplots showing the distribution of E. coli concentrations per water abstraction source, including all data but y-axis capped at 1000 CFU per 100ml for 

better comparison. It is distinguishable that many catchments normally have E. coli concentrations of close to 0, some have usually slightly elevated concentrations and a 

few have generally comparatively high concentrations of E. coli. Almost all catchments have high outliers and most show a right skewed distribution.  
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6.3.1 Regression models 

The model was run without interactions (1A) and including interactions (1B) for 

comparison. The residual plots of these models (Figure 6.3) did not indicate major 

problems with the residuals and hence the models, but they show that it is likely that the 

few catchments with very high medians will influence the model to a high degree. The 

modelling was therefore repeated with these catchments removed (leaving catchments with 

E. coli median concentrations below 100 – 2A and 2B).  

As the future projection of E. coli contamination risk has to be based on land capability, it 

is of interest to see how models perform that are based on land capability rather than actual 

land use. The model was therefore rerun on the complete data set substituting land use 

percentages and livestock numbers with percentage of land capability classes 1, 2, and 3 

(suitable for arable agriculture) and percentage of land capability classes 4-5 (suitable for 

higher intensity livestock). Variables describing climate and soil characteristics were not 

included as these are used in the calculation of land capability. The model was therefore 

only run without interactions (3). 

The various regression models are summarised in Table 6.1. Model 1A, without 

interactions terms, includes as independent variables the type of source (with median 

concentrations in rivers being higher), a negative correlation with relief ratio, which could 

be due to less agricultural activity in steeper areas), and positive correlations to all land 

cover variables (except urban area cover which was excluded from the model). These could 

indicate contamination from wildlife and from livestock. Model 1B, with interaction terms, 

retains some more variables, such as a positive correlation with area, indicating larger 

catchments as having higher E. coli medians. A negative correlation with average organic 

carbon content in the topsoil could be explained by a reflection of more natural, peaty 

catchments with less livestock, and a positive correlation with AAT could reflect a 

geographical pattern with catchments in the East being more intensively used, as well as an 

effect of temperature on microbial growth and reproduction. Percentage of urban area is 

included in this model with a positive correlation, unsurprising as urban areas offer 

contamination possibilities through e.g., sewer overflows (Barbosa et al., 2012). Number of 

septic tanks has a negative correlation, which is counterintuitive as septic tanks are a point 

source of pollution, however there are only few catchments with septic tanks in this dataset. 
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The average number of cattle is also, surprisingly, negatively correlated. Median pH and 

SER were positively correlated. Higher pH could indicate more agricultural activity, 

especially as grassland sustaining higher amounts of livestock tend to have higher soil pH. 

Increases in precipitation could be due to better connectivity of pollution sources to the 

water body (Tetzlaff et al., 2012). 

Retained interactions were between SER and number of cattle and median pH, with the 

former being positively and the latter being negatively correlated. This means in 

catchments with a higher number of cattle, larger amounts on rainfall lead to higher E. coli 

medians, possibly due to a better connection of source to receptor. In catchments with a a 

more basic pH, rainfall has a more pronounced decreasing effect, which seems to contradict 

the first interaction, as higher numbers of cattle would be expected in areas with higher soil 

pH. Interactions were also retained for AAT and area with a negative correlation, and for 

AAT and septic tanks with a positive correlation, meaning higher AAT corresponds to 

lower E. coli medians especially in larger catchments, and to higher E. coli medians 

especially where there are septic tanks.   

With the reduced dataset, without interactions, the model is very simple but only explains a 

low amount of variation (23%). The only retained variables are type of source, relief ratio, 

and percentage of improved grassland, with the coefficients having the same directions as 

in models 1A and 1B. In comparison to the model for the bigger dataset, percentage of 

semi-natural land cover, coniferous forest, and arable areas are not included. For arable 

areas, this is probably due to there being only a few catchments with only little arable area 

cover left in this dataset.  

When including interactions, the model improves in terms of variability explained (31%), 

but there are still only a few variables left: type of source, relief ratio, average number of 

cattle, median pH, SER and the interactions of SER and average number of cattle and pH 

median, with the same coefficient directions as in model 1B. 

Land capability does not work as well as actual land use in the models (with only 36% of 

variability explained). However, it results in a very simple model that uses few variables, 

with both categories of land capabilities included. Considering these only few explanatory 

variables, the variation explained is still quite high. The use of this model for an initial 



212 

 

 

projection of E. coli concentrations for a future period for the purpose of a risk screening 

seems justified. 
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Table 6.1: Multiple linear regression models with log-transformed median E. coli concentration as response variable (n=154; *** p<0.001, ** p<0.01, * p<0.05; - = was eliminated 

during the modelling process, N/A = not included in the modelling process). 

Variable Coefficients and significance Comment 

 1A. 

Without 

interaction 

terms 

1B.  

With 

interaction 

terms 

2A. 

Without 

interaction 

terms, 

reduced 

dataset 

2B.  

With 

interaction 

terms, 

reduced 

dataset 

3. Without 

interaction 

terms, with 

land 

capability 

 

Variability explained 46% 58% 23% 31% 36%  

RSME/(max-min) 0.15 0.16 0.23 0.23 0.16  

Source: Loch 

             River 

-0.26 

 0.83*** 

-0.11 

 0.87*** 

-0.23 

 0.93*** 

-0.07 

 0.97*** 

-0.26 

 0.84*** 

This suggests that median concentrations in 

rivers tend to be higher than in reservoirs 

(lochs not significant). 

Area - 0.007** - - - E. coli median concentrations are higher in 

larger catchments. 

Relief ratio -6.37*** -4.77** -3.76*** -4.94** -4.17* Steeper reliefs reduce E. coli concentrations. 

This could be due to less agricultural 

activity and less livestock kept on these 

lands. 

Average topsoil organic carbon 

content 

- -0.02* - - N/A E. coli median concentrations are lower in 

catchments with more organic carbon in the 

soil.  

AAT  - 0.0008 - - N/A E. coli median concentrations are higher 

where AAT is higher. 

% Semi-natural land cover 0.04*** 0.04*** - - N/A Positive correlations might be due to E. coli 

contamination through wildlife. 

% Coniferous forest cover 0.03** 0.04*** - - N/A Positive correlations might be due to E. coli 

contamination through wildlife. 

% Arable area/ 

% area of prime land 

0.08*** 0.07** - - 0.075*** Arable areas can contribute to faecal 

pathogen presence through slurry 

application, or catchments with higher 

arable area cover could be prone to also 

have higher population densities.  

% Improved grassland/ 

% area with land capability classes 3-

0.08***     0.06*** 0.03*** - 0.01* Livestock on grassland is a major source of 

faecal pathogen contamination. 
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% Urban area - 0.89* - - N/A There could be incidents of e.g., sewer 

overflows in urban areas. 

Number of septic tanks - -0.84* - -  Septic tanks are a point source of pollution, 

making a negative correlation 

counterintuitive. 

Average no. of cattle - -0.009 - -0.006 N/A Cattle is a source of E. coli contamination, 

making a negative correlation 

counterintuitive.  

Catchment pH Median value - 0.8* - 1.51*** N/A Catchments with higher pH values tend to 

have higher E. coli concentrations. This 

could be an indicator for agricultural 

activity, especially grassland and the 

number of livestock. 

SER - 0.02** - 0.03*** N/A Higher rainfall amounts could keep sources 

connected to the water body. 

Interaction SER and: 

   Average no. of cattle 

 

   Catchment pH median value 

N/A 

 

 

 

0.00009*** 

 

-0.003** 

N/A 

 

 

 

0.00007** 

 

-0.004** 

N/A In catchments with a higher number of 

cattle, more rainfall would correspond to 

higher E. coli concentrations. This could be 

due to an increased transport from the field 

to the water source. In catchments with 

lower median pH, higher rainfall 

corresponds to an increased E. coli median 

concentration.  

Interaction AAT and: 

   Area 

 

   Septic tanks 

N/A  

 

-0.000006** 

 

0.0009* 

N/A - N/A In larger catchments, higher AAT 

corresponds to lower E. coli median 

concentrations. In catchments with more 

septic tanks, higher AAT corresponds to 

higher E. coli median concentrations. 
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Figure 6.3: Residual plots for multiple linear regression models with log-transformed median E. coli concentration as response variable and catchment characteristics as 

independent variables (n=154). Numbers correspond with models in Table 6.1. For each model, four plots are presented: in the upper left corner, residuals are plotted against fitted 

values, to assess if residuals have non-linear pattern that could indicate non-linear relationships, with distinguishable patterns indicating that no-linear relationships are present that 

the model cannot account for. In the upper right corner, a quantile-quantile plot for residuals allows evaluation of normal distribution of residuals (points should follow the straight 

line), as error terms must be normally distributed in a regression model. In the lower left corner, a scale-location plot shows if residuals are spread equally along the range of 

predictors, to check assumption of equal variance (homoscedasticity), with a straight line and randomly spread points indicating homoscedasticity. In the lower right corner, 

standardized residuals are plotted against leverage to find influential outliers, with points outside the red dashed lines influencing the regression line. 
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6.3.2 Sensitivity testing 

For most catchments (107), no significant correlation with any of the rainfall periods 

could be observed (Table C.8). Only three catchments were classified as “Short”, 34 as 

“Medium”, and 10 as “Long” (Figure 6.4). 

In the regression modelling, these categories were not retained in the model as a 

variable or in interaction terms. While some catchments may experience an effect of 

rainfall amounts (increasing concentrations, but no dilution effects could be detected as 

there were no significant negative correlations), overall, these hydrological differences 

seem to have no major bearing on median concentrations or how other factors such as 

land uses affect concentrations. In terms of catchment management, it might however be 

of importance to understand if source areas only get connected after a certain amount of 

rainfall, as it may offer opportunities to disconnect pathways.  
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Figure 6.4: Spatial distribution of catchment categories allocated through the results of the Spearman's 

rank correlation tests run per catchment on sampled E. coli concentrations from 2011 – 2016 and different 

corresponding amounts of rainfall (daily total rainfa rainfall (daily total rainfall, and total rainfall of the 

preceding 3, 10, and 30 days) split by season (March to October – summer; November to February – 

winter). “Long” = at least one strong or two moderate correlations to a long rainfall period; “Medium” =  

at least one strong or two moderate correlations to a medium rainfall period; “None” = no or only one 

moderate correlation;  “Short” - at least one strong or two moderate correlations to a shorter rainfall 

period. 
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6.3.3 Land use change 

The future land capability assessment was based on projected climate data for the period 

2041-2060 from the UKCP18, from a model driven by a higher-end scenario (see 3.4). 

It assumes that water is available for irrigation, so that drought is no limiting factor to 

land use. It thus represents a ‘worst case’ scenario. Under this scenario, biggest changes 

in land use can be observed in the South and East of Scotland (Figure 6.5), especially 

with shifts towards land that is more capable of sustaining arable agriculture (LC 1-3.2), 

and to a smaller extend towards land capable of sustaining the keeping of livestock (LC 

4-5). Looking at how the distribution of land capability changes in the catchments 

(Figure 6.6), for many catchments especially in the Northeast, land classed as 4 or 5 

shifts into the upper classes 1-3, so could potentially develop from a livestock-

dominated landscape to one dominated by arable agriculture. Other catchments see a 

shift from land formerly classed as not capable of sustaining intensive agriculture to 

land classed as 4 or 5, and have a significantly higher percentage of these classes as a 

consequence, especially in the South of Scotland and on Shetland. Some catchments see 

increases in both these groups of LCs. 
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B A 

Figure 6.5: LCs calculated as in Brown et al. (2008), using A. climate indicator data from the baseline period 1981-2000 and B. 

projected climate indicator data from the UKCP18 for the period 2041-2060. Biggest changes especially in increases in LCs 2 and 

3 can be observed in the South, along the Central Belt, and along the Northeast coast of Scotland. 
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A B 

Figure 6.6: Changes in percentage of catchment area classified as A. LC 1-3, or B. LC 4 – 5, according to land 

capability projections derived with UKCP18 projections for a future period of 2041-2060 for climate indicators used 

in bioclimate and land capability classifications (Brown et al., 2008). 
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6.3.4 Conclusions for the risk screening 

Model 3 was used to project future E. coli medians (Table C.7 & Figure 6.7A). This 

model is mainly driven by the change in LC 1-3.2, so the catchments showing the 

highest increases in E. coli median are those that show the biggest increases in these 

LCs. Catchments in the South are showing more moderate increases. Orkney 

catchments also show increases, whereas most catchments in the Northwest are 

unaffected. Comparing model estimates for the baseline period with the actual values on 

which it was modelled (Figure 6.7B), there are some strong over- or underestimations, 

which is to be expected since the variability explained by the model is less than 40%. 

The risk map identifies as high risk some of the catchments that are already of concern 

in the Northeast of Scotland, but also highlights some catchments that are currently not 

problematic in terms of E. coli, especially in the South. As with the TOC maps, these 

screenings and allocated risk levels can now be combined with metrics that would 

represent the vulnerability of individual source-treatment systems and the national 

supply system.   
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Figure 6.7: A. E coli risk map, based on projections for E. coli median concentrations from model 3, using projected 

percentages of catchment area with LC 1-3 and 4-5 (derived with UKCP18 climate data for 2041-2060 following 

procedures as in Brown et al. (2008). Point size reflects projected change in E. coli median concentration. Shade 

reflects current (2011-2016) E. coli median concentration. B. Model performance – indicates if the model is over- or 

underestimating the median by reflecting the difference between actual E. coli median concentration and estimated 

E. coli median concentration by the model.  

B A 
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6.4 Limitations and further approach 

While land use in the form of improved grassland and arable areas are significant 

factors to explain median E. coli concentrations, they still only explain a rather low 

amount of variation. This could be due to several reasons, for example related to data 

issues, a mismatch between the scale of the data used to produce explanatory variables 

and the size of the catchment, or local conditions influencing the impact of overarching 

pressures. For example, if and how faecal indicator organisms (FIO) arrive at a surface 

water body will much depend on hydrological connectivity (Donnison et al., 2004, 

Tetzlaff et al., 2012, Neill et al., 2018). Nevertheless, land use can highlight where there 

is a potential for contamination and hence where catchments are at higher risk of 

elevated E. coli concentrations. These catchments can be targeted for further analysis, 

looking at critical source areas so a better estimation of risk can be obtained next to a 

starting point for mitigation approaches. 

Projections in land capability to derive E. coli median concentration estimates for a 

future period are used as a basis for screening future risk for E. coli contamination. 

Contamination with faecal pathogens has been linked to land management, especially 

the number of livestock kept on a field, the application of slurry onto fields, and sources 

like farmyards and septic tanks (Hooda et al., 2000; Vinten et al., 2004). Land capability 

is one factor that contributes to determining how the land is used. Other factors, such as 

artificial change of natural conditions (e.g., drainage or irrigation), or farming traditions 

and practices, can lead to the land not being used according to its capacity. Furthermore, 

there may be local conditions not captured in the data used to calculate land capability 

that result in misclassification. Therefore, land capability (current or future) does not 

necessarily mirror land use.  

Furthermore, specific land use does not translate into specific amounts of 

contamination.  If and how much faecal pathogens reach the water body depends on a 

large proportion on local conditions and management.  For example, the area where 

livestock is kept will determine how well, and when, it is connected to the water. 

Farming practices like the timing of slurry application, buffer strips, or preventing direct 

access of livestock to the water course also make a difference (Newell-Price, 2011).  

In comparison to the multiple linear regression model on TOC medians, the model for 

E. coli medians is easier to interpret and it is easier to understand what is projected and 

where the limitations are. The screening map should only be used as an indication of 
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general trends, rather than relying on the absolute values estimated for specific 

catchments for the future period. Catchments identified as high risk with this first risk 

screening can be examined further to integrate local conditions, to determine risk more 

accurately for these individual catchments (see Appendix D for suggestions). Further 

investigation could also explore which areas would be most detrimental for 

intensification in terms of water quality, what the impact of different forms of land use 

and practices might be on water quality, what management options could reduce the 

pressure, and what alternative land uses might be mutually beneficial alternatives. 

Direct effects of climate change, for example temperature dependent bacterial growth 

and reproduction, and hydrological connectivity of flow paths depending on weather 

events, should also be included in a further investigation. This could be achieved by 

more detailed, process-based models, and/or through the use of scenarios. 

E. coli and coliform data are available for a wide range of catchments and tends to be at 

best weekly, but usually monthly or even three-monthly data. The models therefore 

need to be able to cope with low frequency data. Relevant catchment characteristics data 

will also be needed and might be available for the local and field scale, such as number 

of livestock, especially if landowners are involved in the process. The model should 

achieve a good representation of hydrological connectivity and pathways within the 

catchment to identify areas of high importance for water quality outcomes, and hence 

for intervention. An added challenge for models dealing with pathogens is their ability 

to multiply and die-off, and the complex, and partly poorly understood and predictable, 

relationships of the rates with the characteristics of the medium, e.g., soil/water 

temperature (Oliver et al., 2016). For decision-makers, a projection of E. coli 

concentration change with confidence margins would be useful for a first evaluation if 

engagement in the catchment is worthwhile. An evaluation of a range of different 

scenarios (climate, land use and management) would be most useful to establish 

potential management options and to engage stakeholders in a pro-active conversation 

about the future of the catchment. A model should therefore be simple enough to 

generate results in a reasonable time for a good number of scenarios and be 

understandable to a variety of stakeholders in terms of changing impacts and their 

consequences. At the same time, it needs to be reliable enough, as well as transparent 

enough, to gain the trust of those involved (Oliver et al., 2009).  
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7. Scotland as a ‘Hydro Nation’ and national exemplar to 

anticipate and respond to risks to raw water quality arising 

from climate change: lessons learned 

The study suggested a staged approach to support a systematic inclusion of risks from 

climate change and building capacity to anticipate, respond and change within the water 

utility (Figure 1.1). In this approach, hazards, exposure, and vulnerabilities are 

identified to assess current patterns of risk to raw water quality in stage 1. Changes 

across space and time are examined in stage 2, enabling identification of changes in risk 

patterns. This requires understanding about relationships between different water 

quality parameters and their controls, as well as patterns of exposure and similarities 

between catchments in terms of vulnerability to pressures. The results support 

evaluation of risk control options for supply sites and the supply network at stage 3, and 

planning and decision-making on the programme and strategic level of the water 

company at stage 4.  

This approach was tested for the public water supply system in Scotland, focusing on 

stages 1 and 2. This chapter discusses the findings from trialling the approach in terms 

of impacts of climate change on water quality, attempting to answer RQ 1 (7.1), 

implications for risk assessment and management (RQ 2, 7.2), the role of a catchment 

approach to manage risks (RQ 3, 7.3), gives a summary and some concluding remarks 

(7.4), and finishes with suggestions for further research and policy recommendations 

(7.5). 

 

7.1 Climate change and drinking water quality 

Water utilities, such as Scottish Water, are providers of public water supplies, 

wastewater treatment, and have wider responsibilities regarding the health of 

underpinning aquatic ecosystems. Utilities are bound by compliance responsibilities for  

multiple water quality parameters, for which they have standards to meet. In developed 

economies, as exemplified by the family of nations in the European Union, respective 

regional and national utilities will have a good idea about which parameters are 

problematic, at which areas, under which conditions, and have an estimate about the 

frequency of occurrence. Climate change might upend these patterns by changing the 

frequency or magnitude, but also by adding new parameters of emerging concern, either 
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known or completely unknown. While studying the effect of climate change of one 

parameter in an individual catchment might provide some answers to the former 

aspects, the latter will remain unaddressed. It is therefore important that these studies 

are carried out in a context that enables transferability – within the catchment, meaning 

there is some indication about effects on “overall” water quality to understand viability 

of the individual water supply system in terms of water quality; and between 

catchments, meaning inferences can be made for other catchments, reflecting on the 

viability of the complete supply system.  

In the present national-scale investigation, current water quality patterns were initially 

explored and related to catchment characteristics (4). Scotland has diverse natural 

conditions that are reflected in water quality, and the individuality of catchments are 

also seen in water quality variability. It was still possible to discern overall patterns 

related to catchment characteristics as well as geographically. Very broadly, two ‘types’ 

of catchments were distinguished with “upland” (dominated by semi-natural land cover, 

acidic, organic soils types with high yields of organic matter and metals, found 

predominantly in the West of Scotland) and “lowland” (with more intensive agricultural 

use, higher pH, and higher baseline concentrations of E. coli and coliform bacteria, 

found predominantly in the Northeast of Scotland) catchments, but acknowledging that 

these are stereotypical with many catchments falling somewhere in between and 

reacting to further controls, which however could not clearly be defined.  

Following on from this, two water quality indicators (TOC and E. coli) were then 

chosen as diagnostic to be explored in more detail with regard to shifting patterns in 

space and time (5 and 6). Drivers for changes in water quality and areas of high risk 

were identified for each of the water quality indicators. For TOC, it was concluded that 

climate change is likely to have a direct effect on water quality through changes in 

precipitation patterns, especially due to prolonged periods of drought in summer 

followed by intense rainfall events. Depending on catchment characteristics, this could 

mean potential for increased production of DOC as wetness as an inhibiting factor 

decreases, coupled with increased temperatures; potential for increased mechanical 

disturbance during drought periods; or potential for increased peaks in concentrations 

after drought periods, where the buffering capacity of the system is low (especially river 

systems). For E. coli, it was concluded that climate change is likely to have a more 

indirect effect due to land use and management being a predominant factor in pollution 

risk, and changes in climate that favour more intensive agricultural practices carrying 
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the risk of FIO pollution were projected for the Northeast as well as the “squeezed 

middle” of Scotland.  

Rising trends in dissolved organic carbon have already raised concerns and required 

some investment into treatment within Scottish Water (Scottish Water, n. d.), and an 

assessment of the viability of continuing to upgrade treatment works to cope with rising 

concentrations is urgently needed. Similar trends and concerns are reported from other 

nations with large areas of peatland, such as in Northern Europe and North America. 

Similarly, pathogens, and especially E. coli are a focus for treatment around the world 

due to the potential disastrous consequences. A risk screening for these two water 

quality indicators is therefore in itself of interest for Scotland and many other countries. 

However, these parameters were also chosen in this case study as they were identified in 

the first analysis step as diagnostic and representative for a “type” of catchment. As 

colour correlated positively with aluminium, iron, manganese, and turbidity, and DOC 

is influenced and mobilised by the same processes as these parameters, it is likely that 

catchments experiencing increasing concentrations in TOC will also have increased 

metal and turbidity concentrations. E. coli has a long tradition as an indicator for faecal 

contamination, so projected increases in E. coli contamination risk also mean an 

increased risk for other FIO such as Cryptosporidium. As the increases are driven by 

increased agricultural, and especially arable use, it can also be hypothesised that issues 

around agricultural diffuse pollution, such as increasing nitrate or pesticide 

concentrations are probable. The typology is also a starting point to understand if 

emerging concerns are likely to become problematic at specific sites, although further 

fine-tuning would be needed especially if these emerging issues have different main 

drivers. 

The hypotheses around the usefulness of diagnostic water quality indicators could be 

further tested either by enlarging the empirical analysis, for example looking at the 

datasets of two or more parameter within one or several catchments, and their 

relationships to rainfall/flow, or process-based models looking at more than one 

parameter. It would also be interesting to combine these two approaches to understand 

how strong the relationships are over space and time – do they vary e.g., during high 

flow and base flow conditions, and are there controls in catchments that could override 

them, leading to a decoupling? This could address some of the shortfalls of 

summarising data to median and 95th percentiles, help untangle some of the controls that 
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could not be clearly distinguished in this study, and shape a more detailed typology of 

catchments.  

Such a typology of catchments based on water quality outputs coupled with an 

understanding of controlling processes and underlying sensitivities is crucial in helping 

transfer findings of more detailed studies to other catchments. The initial attempt at an 

overarching typology (4) could identify predominant water quality concerns, relate them 

to certain catchment characteristics that were reflected to an extent in geographic 

distribution, and identify that local conditions must have an overriding influence in 

places. A typology based on response to climatic triggers as established for TOC during 

the risk screening (5.3.3) however constitutes a better step towards this goal, as it 

allowed to distinguish catchments based on their sensitivities, relate this to catchment 

characteristics and thus reflect on processes that dominate water quality responses. This 

simultaneously allowed to draw inferences regarding climate change and to understand 

how insights from one catchment might be transferred to others.  

The analysis covered catchments across Scotland and reflected most of the natural and 

man-made conditions encountered in the country, except for exclusively urban areas and 

with an underrepresentation of arable agriculture. In terms of drinking water quality, 

these exceptions should not make transferability to either Scottish Water catchments 

that were not included in this study, or catchments used for private water supplies, 

invalid, as these would be similar catchments to the ones included in the study. Models 

are based on catchment characteristics which in turn were derived from freely available 

data, so characterisation of these catchments would be possible and model estimates 

could be produced for these. These estimates can be used in a similar way to this study, 

if the indicative nature of the numeric results with regard to risk is acknowledged, rather 

than using them as values to base a response strategy on. While the models itself could 

not be used for areas beyond the scope of the study, the methods could easily be 

adjusted to similar datasets for other regions to derive an understanding of relationships 

between water quality and catchment characteristics and a potential impact of climate 

change.  

The strength of the dataset lay in its large spatial coverage together with a good number 

of sampled parameters. This opened up some exploration of the concept of space for 

time substitution, where spatial patterns and differences are used to infer how changing 

conditions shape the environment (Huang et al., 2019). This was especially relevant for 
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the E. coli risk screening, where changes in climate would mean some catchments could 

see land use changes that would make them more closely resemble more intensively 

used catchments. Land use and management were identified as main drivers, and the 

model used to project risk in E. coli contamination was based on the assumption that 

catchments in the South and along the “lowland/highland divide” of Scotland would 

come to resemble Northeast areas of Scotland more closely. At the same time, at various 

points the analysis flagged up that catchments are incredibly complex with interactions 

between a multitude of characteristics. Many catchment conditions have evolved over 

thousands of years. Meanwhile, climate change advances at unprecedented rates, 

making it likely that comparable climate or land use conditions will be met by differing 

conditions in topography, geology, or soils, creating new and unique combinations, and 

potentially upending the potential for space for time substitution. In this case, an 

understanding of processes and their consequences is more appropriate as a base to 

formulate hypotheses about future outcomes.  

Best insights were achieved when combining different methods and approaches. This 

was the case when analysing several water quality indicators at the same time (4), as 

well as when focusing on TOC (5). Different statistical methods allowed to unpick 

different aspects and patterns in the data, leading to a more comprehensive view of the 

catchments and their water quality. Exploring intra-annual patterns (5.3.2), sensitivities 

to climate variables (5.3.3), and linear relationships to catchment characteristics for 

baseline concentrations (5.3.4) led to a first formulation of catchment categories as well 

as to quantitative projections of future concentrations. This allowed risk level allocation 

and prioritisation and provided a transferability frame for any further in-depth analysis 

for priority areas, supporting strategic decision-making.  

 

7.2 Assessing and managing risks from climate change 

Risk assessment is a way for water utilities to achieve their overarching goal of securing 

reliable and safe drinking water at affordable cost. Climate change adds complexity that 

standard approaches to risk assessment cannot address. For example, changes can occur 

in the likelihood of occurrence and magnitude of hazards, the nature of hazards, patterns 

of exposure, and in vulnerabilities. Uncertainty enters through several routes, with 

uncertainty around climate change projections, potentially increased through 

downscaling to a catchment scale; uncertainty about processes within a catchment and 
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how these will be influenced, and uncertainty about future changes in the catchment due 

to socio-economic drivers. The complexities and interrelatedness of systems often make 

predictions unachievable and assigning probabilities impossible.  

Risk assessment is needed to understand how risks can be management and to support 

decisions on risk control. Taking consideration of the impacts of climate change in risk 

management means that part of the risk assessment is to identify where knowledge is 

limited, how this influences the ability to project what will happen in future, if more 

knowledge will support better decision-making, and if the cost of procuring more 

knowledge is justified. Especially the latter aspect resonates with the mandate of water 

companies to supply water with a quality of the required standard at minimum cost. 

Risk screening has been identified as a tool to support this through identifying priorities 

(for the nature of risks, for areas, or for systems), and outlining the nature and 

magnitude of uncertainties, and possible responses.  

 

7.2.1 Risk screening  

In the case study, the available data were initially used to screen the subset of national 

water supply catchments to better understand current patterns of hazards, exposure and 

vulnerability (4), effectively mirroring stage 1 of the proposed approach to integrate 

climate change impacts into risk assessment (Figure 1.1). The screening highlighted 

risks around colour and bacteriological parameters, associated with inherent catchment 

characteristics such as topography and soils, and land use and management. Also seen 

as diagnostic (see 7.1), TOC and E. coli were further analysed to understand main 

drivers for concentrations, how these might change over time and what the 

consequences would be. The analyses highlighted increases in risk especially for 

catchments in the South of Scotland due to decreases in SER, and in the Northeast and 

along the lowland/highland divide due to increased potential for agriculture, for TOC 

and E. coli respectively.  

The risk screenings thus delivered several insights. First, they confirmed important 

drivers for concentrations and key processes upon which adaptive management should 

focus. For TOC, direct effects of climate change were discovered, as rainfall amounts as 

well as temperature were related to TOC concentrations, and these relationships could 

be explained by process knowledge. This identification of key drivers and processes 

supports a first indication of suitable adaptation and mitigation measures. For example, 
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catchments identified as “temperature” driven (mainly wet, peaty catchments) are 

hypothesised to be especially vulnerable to a decrease in summer precipitation as 

wetness is an inhibiting factor in these catchments, meaning that a priority measure for 

these catchments should be to sustain water tables and wetness, to prevent a loss of 

sphagnum mosses, and support the integrity and health of associated ecosystems. For E. 

coli, indirect effects of climate change were identified as land use is a main control of 

contamination baselines and climate change is anticipated to remove constraints for 

associated land uses. While this doesn’t mean other potentially important drivers should 

be disregarded, the screening based on these premises supports a first risk scoring, 

prioritisation, and helps to focus potential further assessments to steer adaptive 

management. The screening suggests that management should focus on active 

engagement to incentivise water positive behaviour in catchments with increasing risk.  

Second, they outlined the major limitations to our knowledge and sources of 

uncertainty. For TOC, uncertainty relates predominantly to the nature of risk factors, as 

natural processes and responses to climate triggers depending on different underlying 

catchment vulnerabilities are not well known. For E. coli, while risk factors, i.e., 

sources of contamination, are relatively well studied, the difficulty arises from forward 

projection of these factors and often overriding effects of local conditions. This also 

gives first indications of possible response options by understanding if and how 

uncertainties might be reducible (and if this is desirable). For TOC, it could be possible 

to reduce uncertainty through better understanding processes of TOC/DOC production, 

release, transport, and transformation. The risk screening identified catchments and 

catchment types where further monitoring and/or process modelling might be 

particularly beneficial, either because the catchment was identified as high risk, or 

because it might produce insights transferable to catchments of the same “category”, or 

both. The risk screening also highlighted the benefits of the natural integrity of 

ecosystems as they seem to be more resilient to future climate change. For E. coli, 

identification of critical source areas, scenario development, and ecosystem services 

assessment would be tools to reduce uncertainty, and/or provide a basis for decision-

making under uncertainty, thus supporting further planning, engagement, and decision-

making. Early stakeholder involvement could improve and steer modelling, encourage 

behaviour beneficial to water quality, and simultaneously generate other benefits to 

landowners, opening opportunities for ecosystem services based schemes.  
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Third, they identified areas of high risk and enabled risk mapping and ranking. 

Combining projections with details about the supply system, such as the treatment 

envelope of the plant, the number of people served by the plant, etc., identifies which 

systems are at risk of failing statutory requirements. These can be prioritised for the 

development of response options, which could include a more detailed investigation. 

Scores could also be allocated, to connect the outcomes and decisions made on 

programme level to planning on operational level and to established risk assessment 

procedures under Water Safety Plans.  

 

7.2.2 Follow-on – priority catchments 

The risk screening identified catchments that were at higher risk of seeing deterioration 

in water quality with regard to specific water quality aspects either because they appear 

to be more vulnerable to specific changes (in case of colour/TOC), or because they have 

a higher potential for increases in anthropogenic pressures (in case of E. coli). For some 

of these identified high-risk catchments, it can be indicated to follow up with further 

analyses to get a clearer picture of possible negative impacts and their consequences, 

and an evaluation of risk response options, supporting stage 3 of the process as laid out 

in Figure 1.1. As the risk screenings are based on statistical models, further 

investigation could address some of their limitations, and by focusing on an individual 

catchment, can better consider processes and individualities of the catchment, and focus 

on traits that have an impact on a local and field scale. For some individual sites, higher 

frequency sampling from real-time monitoring at water treatment works is stored for 

approximately three months (personal communication, Scottish Water), and could serve 

to look at fluctuations in concentrations over a shorter period of time.  

Process-based models could improve understanding of processes around TOC and 

further develop the typology developed in 5.3.3. One of the challenges with models to 

help understand carbon concentrations in surface water is the need to include both 

carbon dynamics, and the biogeochemical processes of DOC production, in the 

terrestrial environment, and the hydrological flow-paths that route DOC into the aquatic 

environment, and processes therein (Birkel et al., 2014). Two specific developments of 

widely used process-based models are SWAT-DOC and INCA-C, which combine 

modelling carbon dynamics in terrestrial as well as aquatic environments. They have 

similar data requirements and have both shown to work reasonably well in temperate or 
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boreal, mainly forested catchments (see 2.2.3 II). They offer the potential to evaluate the 

impact of changes in land use and management as well as shifts in climate. Both models 

are complex and highly parametrised. It is argued that the advantage of highly complex 

models is an increase in understanding of likely cause-effect relationships and system 

behaviour (Wade et al., 2008), and they are likely to be more reliable at reproducing the 

processes (McDonald & Urban, 2010). On the other hand, an addition of complexity 

and parameters makes the models susceptible to overparameterization and equifinality 

(Beven, 2012), meaning that differently parametrised models may perform equally well, 

so that it might become impossible to distinguish between the effects of parameters. 

This reduces process understanding and increases uncertainty. 

Simpler models are argued to put the emphasis on processes that hold independently of 

spatial scales, and thus provide a stronger basis for projecting future system behaviour 

under changing conditions (Kirchner, 2006). However, such models don’t work so well 

in exploring DOC dynamics in relation to land management (Birkel et al., 2014). 

Simpler models for soils DOC also don’t necessarily include processes in the aquatic 

environment, so an additional model to simulate what happens to DOC in streams and 

reservoirs would be required. Again, there are multiple alternative ways forward to 

advance the science, as exemplified by the FREEDOM-BCCR project within selected 

water-supply reservoirs operated by Scottish Water, which specifically looked at DOC 

concentration trajectories in drinking water sources and the influence of climate change 

(Monteith et al., 2021). Within this project, the lake model PROTECH was used and 

newly parameterised to understand the production of DOC within reservoirs and the 

implications of changes in climate on these processes (Pickard et al., 2021). 

Flow data are required for calibration and validation in all models, and the lack of flow 

data when looking at routine data from water utilities is likely to be a widespread issue, 

as data will mainly be only available for chemical parameters. A particular disadvantage 

of all of these models with regard to their usability for water utilities is that they seem to 

struggle with simulation of higher concentrations (Du et al., 2019; Futter et al., 2007; 

Meshesha et al., 2020), which is particularly problematic as the higher values are the 

most interesting in terms of water safety planning. Instead of aiming for an accurate 

simulation or projection of water quality, the focus of modelling could be on improving 

process understanding and identifying critical source areas. Calibration of a model and 

sensitivity and uncertainty analysis would contribute to this. Using several different 

models might help to understand effects of different parametrisation and process 
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representation, although the effort involved in this might not be feasible for water 

suppliers, when compared to the outcome. Generally, any modelling will show what 

data requirements are for improving model accuracy and reducing uncertainties around 

model outputs.  

In terms of more directly informing management decisions, a simpler model as 

developed by Birkel et al. (2014) could be particularly suited to be used in smaller 

headwater catchments with limited land use options to more quickly gauge the impacts 

of changes in temperature and precipitation, whereas more complex models such as 

INCA-C and SWAT-DOC would be best used for specific, high concern catchments 

with good data availability, that are a priority for mitigation and adaptation action. Here, 

careful modelling could help to understand carbon dynamics, how carbon 

concentrations might change and the associated circumstances, and how specific actions 

can influence these. While time consuming, the effort is justified by the priority given to 

the catchment due to prior identification as high concern and possible high benefit.  

For E. coli, further analysis could identify for example critical source areas (and thus 

priority areas for management intervention) under a range of climate and land use 

scenarios. INCA-Pathogens, SWAT and HSPF are all established models that have been 

extensively tested for modelling of FIO, including for scenario analysis both in terms of 

management and of climate (see 2.2.3 II). They all have similar requirements in terms 

of data and studies have usually found them to perform acceptably to satisfactorily, and 

comparisons between them found no major differences in performance (Im et al., 2003; 

Nasr et al., 2007; Singh, Knapp & Demissie, 2004; Zeckoski et al., 2009). Generally, 

these models are aimed at larger, agricultural catchments, although SWAT has also been 

applied to very small catchments (Coffey et al., 2010). A specific challenge for 

modelling pathogens is their ability for growth and die-off, at rates which are influenced 

by environmental factors and highly complex (Oliver et al., 2009). As is the case for 

TOC, the models would require a certain amount of flow and water quality data for 

calibration. This would make them a better option for the larger catchments that are 

already of current concern (in the Northeast of Scotland), and where data are usually 

weekly or biweekly. Using them would be especially challenging for those catchments 

that have been identified as not yet of concern, but potentially increasing in risk, as it is 

likely that E. coli data will be very infrequent. Good calibration may not be achieved, 

and it may be difficult to distinguish dominant processes within the catchment. The 

initial risk screening can here be used to highlight catchments with low frequency data 
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collection, where higher frequency monitoring should start, in order to gain a better 

basis for modelling due to potential negative future impacts. 

For prioritising spatial targeting of mitigation measures, there might also be scope for 

less complex, risk-based models to determine relative risk of source areas (Oliver et al., 

2016). Risk-based methods such as SCIMAP-FIO (Porter et al., 2017) can be quicker 

than process-based models, more accessible and communicable, and account for the 

many uncertainties from limited knowledge of pathogen growth and die-off and from 

limited data. They are especially useful when it comes to identifying and prioritising 

source areas, to support local management, but relative risk will not inform about 

changes in absolute risk and hence about impacts of future changes to drinking water 

quality risk. It would be possible to add complexity to the model that would allow an 

estimation of changes in relative risk due to changing climate, but calibration of this 

more complex model would be required, undermining the simplicity of the approach 

(Reaney et al., 2011).  

The risk screenings elucidated drivers and specific pressures linked to water quality 

deterioration, areas of uncertainty, and highlighted particular catchments with higher 

risk of climate change related impacts on water quality. They highlight many questions 

that could be further explored to gain a better understanding of the nature and 

magnitude of change and of the associated aleatory and epistemic uncertainty, which 

will support assessment of suitable response options. While process-based and risk-

based models can potentially deliver outputs to develop this understanding, most of 

these models require extensive data in order to achieve acceptable calibration and are 

time consuming to set up. Only if parameterisation and calibration is done with 

attention and care, these models will achieve their maximum potential and provide 

useful information for risk management. For water utilities, this means that the effort 

will have to be weight against the gain. Where the output from the insights process-

based models can give is expected to be valuable, adequate data collection (e.g., higher 

frequency water quality indicator sampling, flow data collection, etc.) and model 

development can be carried out. Results from model runs, especially when used with 

scenarios, can also be used to communicate different options to stakeholders to find 

mutually beneficial management responses.  

However, models still have limitations, including that they often struggle with 

uncertainty in their outputs even when data input is high, and that results obtained from 
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them are not necessarily transferable to other catchments. Categorisation such as carried 

out within the TOC risk screening (see 5.3.3) could help to gain an insight which 

processes may be shared in other locations. The limitations again emphasise the need 

for robust adaptation actions, including the (re-)creation of resilient catchments that are 

able to buffer or adapt to future changes and keep providing ecosystem services.  

 

7.2.3 Follow-on – the complete supply system 

While the risk screening identified priority catchments for follow-up that could include 

further investigation and intervention, it also provided insights and a frame for 

consideration of the totality of the supply system that allows a more strategic approach 

to integrating climate change information, enabling stage 4 of the proposed approach. 

As discussed in 7.1, it supports transferability of insights gained from more detailed 

follow-on investigation in priority catchments, and to areas and catchments currently 

not included in the study or monitored, giving some ideas about long-term viability of 

areas and catchments as drinking water sources. Additionally, rather than considering 

climate change impacts in some priority catchments and evaluating response options for 

these catchments individually, climate change and its consequences can be considered 

for the complete supply system and business. This could include, or lead to, general 

decisions about preferences for dealing with uncertainty, hence moving from risk 

management (at the operational level) to uncertainty management (at the strategic and 

programme level).  

Regionally, overarching scenarios could be built around scenarios used in climate 

change assessments, and consider further socio-economic aspects especially important 

to water utilities, such as changes in consumer behaviour and water consumption, use of 

alternative water sources, and water reuse schemes. Once these scenarios have been 

developed, they can be used in strategic planning for long-term viability of the utility 

(Luís et al., 2021), but they can also be used in the risk assessment for individual 

supplies, providing comparable assessments and a more holistic view. As they would 

consider wider business objectives, they give more consideration to consequences of 

risk control options and management decisions for aspects other than water quality, 

such as carbon offset, supporting other business objectives like achieving net zero. In 

turn, at the operational level, evaluating the effect of response options with regard to 

their outcome on water quality as well as other aspects ensures that measures, for 
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example under the umbrella of net zero, are spatially well targeted and consider 

biophysical opportunities, rather than driven by socio-economic factors (Brown, 2020). 

 

7.3 The role of catchment management and ecosystem-based adaptation 

Experiences suggest that there is huge potential in catchment interventions to improve 

water quality in terms of economic, but also non-economic and societal benefits (see 

2.3), and catchment approaches under the umbrella of EbA could become a crucial 

overarching strategy to increase water utilities’ resilience to future changes. But there 

are also challenges associated with a catchment approach that may pose barriers for 

water utilities to explore this potential.  

 

7.3.1 Challenges and opportunities of a catchment approach 

Catchment-based initiatives need time to develop their potential and are therefore often 

only beneficial in the long-term. They still usually need an up-front investment and are 

thus financially disadvantageous in the short-term. They might also benefit some 

stakeholders, but mean a disadvantage to others. Therefore, catchment-based measures 

might need a finance plan or financial incentives for other stakeholders. In this context, 

Payment for Ecosystem Services schemes become especially interesting. These schemes 

constitute a concept to internalize environmental costs that are often not accounted for 

through the creation of markets (Schomers & Matzdorf, 2013). Compensating 

landowners for employing practices that are less harmful to the environment, or in this 

case more specifically cause less pollution to water sources, means that costs associated 

with water pollution are taken account for by paying for less impactful practices.  

The case of Vittel shows that the lack of trust between stakeholders is an obstacle to 

successful negotiation, and that acceptance of farmers for mitigation measures is 

increased when taking part in determining which measures to adopt, and when these are 

tailored to their farms (Depres et al., 2008). Hence, a strong bottom-up element is 

necessary. This also helps to ensure that catchment schemes are advantageous to some 

stakeholders, which take an interest in the continued success of it. The necessary 

process can reduce conflict and enhance understanding of each other, as can be seen in 

the example of the Watershed Agricultural Council in New York (Appleton, 2002). It is 

also a means to engage the people that live in the catchment in formulating visions for 

the future of the region they live in. The bottom-up element however also brings along a 
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specific management effort to make sure that views of stakeholders are heard 

throughout the processes and over the duration of the project. Often, the voluntary 

nature of the implementation of mitigation measures is a crucial aspect to engage key 

stakeholders (Appleton, 2002). Apart from being often regarded with suspicion by 

regulating bodies and non-governmental environmental organisations, voluntary 

initiatives can mean that measures are taken up that are most attractive to the land 

manager, rather than the most effective measures in terms of water quality (Willett & 

Porter, 2001).  

Other challenges include the need to target mitigation measures well to the specific 

circumstances of the catchment, in terms of hydrology and socio-economic conditions, 

to make sure that the most effective measures to create win-win situations are chosen. 

This also means well conducted and comprehensive prior and accompanying 

monitoring. While some  local interventions can reduce water pollution at the site scale, 

evidence showing performance at larger, e.g., whole catchment scales is sparse. For 

several reasons, it is difficult to assess the effectiveness of catchment-based mitigation 

measures such as changes to land management practices. Firstly, there are multiple, 

often highly interdependent, factors operating in a catchment such as economic, 

political, and climatic conditions that make it difficult to trace changes back to specific 

interventions. For example, mitigation measures for nitrate in agricultural catchments as 

implemented in NVZs in the UK have not led to the expected improvements (Worrall et 

al., 2009), which could be due to positive impacts being masked by opposing trends 

from other pressures. Secondly, there is a time lag between implementation of 

mitigation measures and observable results, e.g., due to buffering of soils or 

accumulation of nutrients in the soil, and temporal lags can also differ for different 

interventions (Dunn et al., 2014). To evidence effects of mitigation measures, it is 

necessary to entangle their effects from other factors such as climate variations, land use 

changes, and influences of other economic and policy drivers. 

A particular challenge regarding climate change mitigation and adaptation actions stems 

from the fact that activities carried out under a climate change umbrella are often not 

connected to ecosystem services and a catchment approach, with climate change seen as 

a more cross-cutting issue whereas activities carried out under a catchment management 

approach are seen as commitments for nature conservation or ecosystem services 

planning (Wamsler et al., 2014). Consequently, there are several aspects that may be 

overlooked. Catchment approaches to improve water quality might fail to integrate 
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information on climate change and thus to achieve long-term improvements in water 

quality, or have unwanted side effects. For example, Iacob et al. (2014) point out that 

afforestation could exacerbate existing drought problems if drier summers are projected. 

Measures to improve water quality, especially afforestation, land use change or 

ecosystem restoration, will have to consider future climate conditions to ensure long 

term viability. Catchment-based measures with a focus on one ecosystem service, such 

as water quality regulation, may fail to adequately consider wider benefits, especially 

climate mitigation and adaptation benefits, and appear a less attractive option – vice 

versa, carbon storage measures might not consider trade-offs, or additional benefits, 

missing out on opportunities. 

 

7.3.2 Catchment approaches and risk management 

The uncertainty over concrete outcomes of projects for improving water quality, and 

challenges for framing project and programme intervention costs against complex, 

harder to monetize, multiple benefits in more than one area of interest, means that the 

potential beneficiaries, water supply companies and consumers, often perceive 

catchment-based approaches as high risk. The difficulty of quantifying non-economic 

benefits makes it difficult to incorporate these benefits into economic valuations of risk 

control options, which is often the basis for decision-making. Therefore, current 

approaches, where risk control options are assessed within the framework of an 

individual supply site, require a shift towards ‘systemic thinking’, where trade-offs and 

co-benefits between ecosystem services are considered across space, time, and 

organisational structures to optimise representation of societal values (Everard & 

McInnes, 2013). While this may seem like a deviation from the “core” mission of water 

utilities to provide sufficient, safe, and affordable drinking water, it supports 

internalising all the costs associated with achieving this, and capitalising on all the 

benefits gained. This in turn allows a fuller, more comprehensive evaluation of these 

measures as a response option in risk assessment and management, especially with 

regard to assessing their robustness. This requires information flow between the 

different management levels of the drinking water provider (see 2.2.2 II) in the planning 

and decision-making process.  

Response and control options for an individual water supply system, including 

catchment-based approaches, are made at the operational level and are likely to revolve 
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around water quality. Wider benefits may be considered but will only become relevant 

if they are communicated and taken into account on the levels where these are 

considered: on the programme level where long-term viability of the complete supply 

system is considered, and the strategic level, where overall business aspects including 

moving towards net zero, energy efficiency, customer trust, etc. are considered. Vice 

versa, where EbA for supporting net zero is considered, this should be prioritized in 

catchments where most additional benefits can be achieved, especially for water quality. 

The challenge in expressing wider and additional benefits in monetary terms may then 

also be less pronounced. Achieving politically desirable outcomes such as contributing 

to carbon offset, building customer trust, achieve a positive perception with consumers 

as well as on a political level, can be better considered and valued at a strategic level. 

There are several examples where drinking water suppliers have taken a catchment 

approach to complement their traditional treatment, and have found not only an 

economic benefit, but also increased other benefits that are expressed as ecosystem 

services enhancement. Lessons learned from these experiences include the need to 

engage landowners and other stakeholders to give them a certain degree of autonomy 

over the selected measures, the requirement of prior and accompanying monitoring to 

ensure maximum effectiveness of implemented measures, and a potential to use new 

market approaches to value water resources such as Payment for Ecosystem Services.  

In view of mounting pressures, increasing catchments’ resilience to change helps 

counterbalancing the negative impacts on water quality, while achieving wider benefits 

for the provider and a range of other stakeholder. ICM, EbA and NbS are key concepts 

that need to be incorporated into drinking water quality risk management and water 

safety planning. Assessing, and being able to capitalise on, all benefits of a measure are 

likely to move catchment-based initiatives towards low regret options, whereas the 

energy-intensive nature of treatment is likely to reduce reliance on treatment alone. In 

fact, those promoting NbS see them as part of a multi-measure solution, rather than an 

alternative to engineered approaches (Seddon, Chausson et al., 2020). This sits well 

with an approach of using different, and complimentary, types of response options as 

systemic interventions (Brown & Everard, 2015). While this typology of response 

options is formulated in a policy context, the typology could serve water utilities to 

characterise different risk control options, for example in their ability to control for 

specific water quality outcomes; in their potential to achieve additional benefits to either 

the company or other stakeholders; in the degree of necessary involvement of 
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stakeholders; etc. This could lead to a mixture of options that achieve a maximum of 

additional benefits with a “back up” that ensures meeting statutory requirements in 

water quality.  

Focusing on the catchment, its health and resilience, will not only support reaching the 

statutory requirements for drinking water quality, but also shifts the understanding of 

“good water quality” towards a more holistic perspective that resonates with other 

stakeholders, and policy and regulatory frameworks such as the Water Framework 

Directive. “Good ecological status” is linked to the type of catchment – different 

catchments will yield different water quality profiles. Understanding what kind of 

catchments will produce what kind of water quality (see a first attempt in 4.4.2) allows 

to identify drivers, pressures, and key processes that become the focus of climate 

change adaptation, by supporting the catchment to yield its “optimum” quality. Water 

treatment then becomes the tool to deliver specific requirements for drinking water 

where water quality naturally exceeds those.  

 

7.4 Summary and conclusion 

Climate change will have negative impacts on water quality, either directly through 

changes in hydrology, often associated with more frequent extreme events, or indirectly 

by increasing pressures on water resources and their catchments. Integrating climate 

change information into risk assessment to prepare for and address impacts through 

mitigation and adaptation actions is a current major challenge for water utilities. Current 

risk assessment and management in the water utility sector is usually built on traditional 

views of risk as consisting of the likelihood of occurrence of an event multiplied by its 

consequences, and Water Safety Plans are an accepted frame for risk assessments of 

single supply systems from source to tap. Climate change challenges this concept, with 

deep uncertainty making accurate predictions and assigning of likelihoods unattainable. 

With this in mind, the research proposed a framework to build capacity to integrate 

climate change considerations into risk assessment and management, and used a 

national assessment of Scotland to test the framework and answer three research 

questions: 
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RQ 1: How is climate change likely to impact raw water quality of Scotland’s 

public water supplies? 

In two assessment steps, different methods of empirical analysis were used to piece 

together a picture of current issues in public water supply sources in Scotland and their 

linkages to catchment properties, underlying vulnerabilities, and spatial patterns. Two 

water quality indicators, colour and E. coli, could be identified as of concern and 

diagnostic for a suite of water quality issues stereotypically associated with ‘upland’ 

and ‘lowland’ catchments. Analysing pressures and catchment vulnerabilities for them 

more closely was necessary to understand how changes in climate and land use could 

impact different catchments. Projections for climate and land use changes then allowed 

evaluating how risk of contamination might change in the future over the national 

supply system, and implementing a first risk scoring. Visualising the results in risk 

maps showed spatial patterns in risk development.  

The TOC risk map highlighted catchments susceptible to decreases in rainfall over the 

summer, and to a lesser extend to increases in temperatures, leading to risk of overall 

increases in TOC concentrations and increases in peak concentrations. From a 

diagnostic point of view, it is likely that apart from TOC, other soil-derived water 

quality parameters mobilised by similar processes show similar risk patterns. Due to the 

projected pattern of change in the climate variables, this particularly highlighted 

catchments in the South and East of Scotland. The E. coli risk map focused on increases 

in agricultural land use potential as risk factor for contamination, and highlighted 

increasing risks in the Northeast as well as the “squeezed middle” of Scotland.  

RQ 2: How can risks to water quality from climate change be managed in a 

drinking water context? 

Rather than using a risk matrix of likelihood of occurrence and severity of consequence, 

derived from analysing past trends, the research focused on spatial and temporal 

patterns in water quality to understand dominant processes and connect this to 

vulnerability of catchments to pressures. This allowed to formulate hypothesis around 

impacts of projected changes, and visualising these by mapping change in exposure to 

specific hazards for identified vulnerable sites. Risk was thus assessed as a consequence 

of hazard, exposure and vulnerability, showing it to be a workable concept when 

attempting to integrate climate change information into risk assessment and 

management. 
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The assessment constituted a high-level risk screening, which provides a basis for risk-

ranking and further investigation of individual sites, feeding into Water Safety Plans. It 

identified areas of uncertainty, pointing towards appropriate methods to either reduce 

uncertainty (e.g., through additional monitoring and modelling), or deal with it through 

robust approaches (underpinned e.g., through scenario modelling and analysis). It 

provides a frame for transferability, and for strategic evaluation of long-term viability of 

the water supply. Ongoing review of the risk screening including its different 

approaches (catchment-water quality relationships, typologies, scenarios of change) 

supports adaptive management.  

RQ 3: What role does a catchment approach play in mitigating and adapting to 

climate change? 

In this study, catchments were understood as crucial systems within the supply system 

onto which risk control should be focused, rather than a variable start point in a row of 

nodes for risk management. This puts the focus on building ecosystem resilience to 

changes and opens up potential for multiple benefits. Connecting overarching objectives 

of the water utility to risk assessment and management at the operational level further 

emphasises this. In this context, ecosystem services assessment, or similar, of the supply 

sources including their catchments become a crucial tool to understand wider 

implications of control options, rather than a “nice to have” add-on. Treatment works 

become the “last resort” safety net, catchments key assets, and EbA a core strategy. 

Moving towards and strengthening this concept resonates with Scotland’s mission to be 

a ‘Hydro Nation’, leading on innovative management of water resources and 

maximising their value. 

 

7.5 Further research suggestions and policy recommendations 

The analysis has highlighted several areas where further research could improve the 

findings, add further insights, or address new questions. 

The risk screening could be complemented in different ways, for example through 

generating predictions from the multiple linear regression models using different 

climate projections, to test sensitivity of the predicted water quality outcomes. As more 

data become available over time, the possibility to analyse annul trends grows, or to 

compare different years especially when climate extremes (such as very dry or wet 

seasons) occur. This could add further approaches to risk screening and provide 
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additional pieces of the puzzle. Improved data to represent catchment characteristics 

would improve this further. The developed models could be tested on catchments 

outside the scope of the study to check their performance, and to test transferability. The 

analysis could also be repeated for different water quality indicators, or a group of water 

quality indicators. Multi-target regression could be a promising approach to achieve a 

more holistic picture, especially to further test the diagnostic nature of the water quality 

indicators. It could also serve to identify “hot spots” for priority intervention. Especially 

for TOC, including further water quality indicators could help to sharpen the 

categorisation that has been developed and create a clearer picture of different “types” 

of catchments and their sensitivities and vulnerability. This would be especially useful 

as a basis for building climate change resilience as it combines empirical findings with 

process knowledge and would additionally allow a quicker estimation of where water 

quality concerns may appear when their emergence is first noted. There is also a strong 

link to water quantity through catchments having been identified as being sensitive to a 

reduction in SER for different reasons. A better understanding of relationships between 

water quality and water quantity should improve assessments of long-term viability of 

supply systems.  

The study utilised a dataset from the routine monitoring of a water utility. This meant 

there were certain limitations (see 3.1), especially the lack of accompanying data for 

e.g., flow, temperature etc. While it is acknowledged that collecting data like flow and 

temperature would mean a considerable increase in monitoring effort, it might be 

possible to adjust sampling to better support similar studies, such as ensuring equally 

spaced sampling intervals. Based on this work, some catchments could be chosen where 

a large suite of parameters are sampled at a higher frequency. Real-time monitoring data 

could be stored for a longer period at selected treatment works, which would open up 

more possibilities for investigation especially for an analysis of peak concentrations. 

There should also be discussion about harmonising datasets from different institutions 

and to create a national database, to support combining data for better analysis. 

As described in 7.2.2, there is a lot of potential for follow-on investigation in identified 

high risk catchments (see Appendix D for examples). This could span from trying to 

achieve more accurate water quality predictions (for one or more parameter), ecosystem 

services assessment, to scenario development. All of these are a good basis for 

stakeholder engagement. Again, this could range from mere information about water 
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positive behaviour, to workshops to develop a shared vision for the catchment, or to the 

creation of incentive schemes such as payment for ecosystem services. 

The risk screening should also regularly be updated with new data. Over time, identified 

options for the future will close, while others will emerge. Management needs to be 

sufficiently adaptable to deal with these changing circumstances and risk screening 

provides a tool to anticipate and respond to a range of possible futures. This can include 

attempts to make catchments resilient to changing conditions, so that water quality and 

quantity remains stable, adaptable treatment, and identification of supplies to 

supplement or replace existing supplies if required, etc. 

There is a need to think and work across levels and hierarchies within a water utility to 

make sure that overall goals and visions are taken account of at the operational level, 

and that contributions of individual sites are incorporated into strategic planning. 

Additionally, working across technical groups and divisions can enhance information 

flow and holistic thinking, and bringing together expertise for example from those 

walking the catchments, running models, and carrying out risk assessments (Giffoni et 

al., 2022). As a way towards this, an ES or EbA framework could be developed where 

priority ecosystem services for the utility are identified, and their delivery assessed over 

the utility and/or at individual supply systems. This would provide a basis to develop 

strategies to create win-win situations where risk control and management enhances a 

maximum of services, and thus increase efficiency to meet business priorities (Gärtner 

et al., 2022). Finally, while providing safe and reliable drinking water is the overarching 

goal for a water utility, it is one of many uses we make of our water resources. Scotland, 

with its ambition to be a ‘Hydro Nation’, could be an international example for and 

leader towards breaking up established structures of compartmentalising water usages, 

by working across organisations to create, and compensate for, ecosystem services 

provisions to accurately reflect societal needs and priorities.  
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Appendices 

 

A. Available data sets 

 

A.1 Climate change risk to raw water quality data set 1: Catchment characteristics 

DOI 10.15132/10000197, “DS1_SWCatchmentdataall.csv” 

 

A.2 Climate change risk to raw water quality data set 2: Subset catchment 

characteristics & water quality summary 

DOI 10.15132/10000198, “DS2_SWCatchmentWaterQualitySubset.csv” 

 

A.3 Climate change risk to raw water quality data set 3: Water quality (TOC, Iron, 

Manganese, Turbidity & Colour) 

DOI 10.15132/10000199, “DS3_TOCColourSeries.csv” 

 

A.4 Climate change risk to raw water quality data set 4: Colour time series 

DOI 10.15132/10000200, “DS4_ColourTimeSeries20102016.csv” 

 

A.5 Climate change risk to raw water quality data set 5: TOC & climate data 

DOI 10.15132/10000201, “DS5_TOCClimateSeries20132016.csv” 

 

A.6 Climate change risk to raw water quality data set 6: E. coli & rainfall data 

DOI 10.15132/10000202, “DS6_EcoliRainfallSeries20102016.csv”
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B. Example R codes 

 

B.1 PCA 

 

# Load packages and dataset 

library(“FactoMineR”) 

library(“factoextra”) 

data <-read.csv(“DS2_SWCatchmentWaterQualitySubset.csv”)  

# Choose required variables 

tmp <- data[,c(“Alu50”,”Col50”,”Iron50”,”Mang50”,”pH50”,”Turb50”,”Coli50”,”Ecoli50”,”Area”,”ReliefRatio”,”SlopeLittle”,”SlopeSteep”, 

“GeologyLimestone”,”GeologySandstone”,”TOCAverage”,”BFIAvergae”,”SPRAverage”,”Heather15”,”Decid15”,”Urban15”, 

“Arable15”,”Imprgrass15”,”Cattle”,”Sheep”,”SepticTank”,”TempMeanAnnual”,”PrecTotAnnual”,”PrecdaysAnnual”)]  

tmp[,c(7,8)]<-tmp[,c(7,8)]+1 # add 1 to Coliform and E.coli medians for log transformation 

tmp[,c(1,2,3,4,6,7,8)] <- log10(tmp[,c(1,2,3,4,6,7,8)]) # log transform water quality medians except pH 

# run PCA 

res.pca <- PCA(tmp, scale.unit=TRUE, quanti.sup =9:28, graph = TRUE) 

# quanti.sup indicates columns of tmp corresponding to the supplementary variables 

# The remaining columns/variables are used for the PCA 

res.pca$eig 

res.pca$var 

res.pca$quanti.sup 

scores <- res.pca$ind 

sweep(res.pca$var$coord,2,sqrt(res.pca$eig[1:ncol(res.pca$var$coord),1]),FUN="/") #calculates the loadings 

dimdesc(res.pca) #caluclates correlations and significance 

par(pty="m") 

# Biplot 

fviz_pca_biplot(res.pca, pointsize=2, label="var", labelsize=7, col.quanti.sup="grey40", 
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                col.var = "black",geom.var=c("arrow","text"), # This defines symbol and labels for the columns (variables) 

                col.ind = "black",  

                geom.ind=c("point","text"), # This defines symbol and labels for the rows 

                repel=TRUE, # to avoid label overplotting  

                title="") + 

  ylab("PC2") + xlab("PC1")+ theme(axis.text = element_text(size=18), 

                                   axis.title = element_text(size=20)) 
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B.2 RDA 

 

# load package and data 

library(vegan) 

library(corrplot) 

data <- read.csv("DS2_SWCatchmentWaterQualitySubset.csv")  

# Choose required variables 

tmp <- data[,c("Alu50","Col50","Iron50","Mang50","pH50","Turb50","Coli50","Ecoli50","Area", 

"ReliefRatio","SlopeLittle","SlopeSteep","GeologyLimestone","TOCAverage","BFIAvergae","SPRAverage","Heather15","Decid15","Conif15", 

"Urban15","Arable15","Imprgrass15","Cattle","Sheep","SepticTank","TempMeanAnnual","PrecTotAnnual","PrecdaysAnnual")]  

tmp[,c(7,8)]<-tmp[,c(7,8)]+1 # add 1 to Coliform and E.coli medians for log transformation 

tmp[,c(1,2,3,4,6,7,8)] <- log10(tmp[,c(1,2,3,4,6,7,8)]) # log transform water quality medians except pH 

water<- tmp[,c(1:8)] 

pred<- tmp[,c(9:28)] 

# run RDA 

m1<-rda(water~., pred) # full model 

m0<-rda(water~1, pred) # null model 

mback <- step(m1, test="perm") # backward elimination of non-significant variables 

mback # look at remaining variables 

corrplot(cor(pred)) # check for potential mulitcollinearity 

# remove slope variables and only retain ReliefRatio to avoid multicollinearity 

mown<-rda(water~ReliefRatio + BFIAvergae + TOCAverage + Imprgrass15 + Arable15 + Urban15 + Sheep + Cattle + PrecdaysAnnual, data = pred) 

mown 

summary(mown) 

anova(mown) # significant model 

vif.cca(mown) # check variance inflation factors 

# between 1.2 and 2.3, which is moderate so no concern 

par(pty="s") 
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plot(mown, display="sites", xlim=c(-2,3), cex.lab=2, cex.axis=2) 

points(mown, display="sites", pch=19, cex=1.5) 

points(mown, display="species", pch=3, cex=2, scaling=1) 

text(mown, display="species", cex=2.5, scaling=1.5)   

points(mown, display = "cn", col="darkgrey", scaling=1) 

text(mown, display="cn", col="darkgrey", cex=2.5, scaling=1) 
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B.3 Cluster analysis 

 

# load packages and data 

library(cluster) 

data<-read.csv("DS2_SWCatchmentWaterQualitySubset.csv") 

# Choose required variables 

means<-data[,c("Alu50", "Col50", "Iron50", "Mang50", "Turb50", "pH50", "Coli50", "Ecoli50")] 

means<-scale(means) # scaling to 0 means 

# Run PAM 

d2<-dist(means, method="euclidean") 

means.pam<-pam(d2,5) # adjust number of clusters as required 

plot(means.pam) 

clusplot(means, means.pam$cluster, main='2D representation of the Cluster solution', color=TRUE, shade=TRUE,labels=2, lines=0) 

kruskal.test(data$Alu50~data$Cluster) #test if difference between clusters is significant 
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B.4 Linear regression models colour-TOC/iron/manganese/turbidity 

 

# load packages and data 

library(dplyr) 

library(broom)  

library(reshape2)  

options(scipen=999) 

colTOC<-read.csv("DS3_TOCColourSeries.csv") 

colTOC<-na.omit(colTOC) # remove entries where no TOC data 

GROUPS <- unique(colTOC$Catchment.ID) # Specify groups, one unique model per group (per catchment) 

# run model in a loop 

for (i in 1:length(GROUPS)){ 

  CURRENT_GROUP <- GROUPS[i] 

  df <- filter(colTOC, Catchment.ID==CURRENT_GROUP) # subset the dataframe 

  fit <- lm(Colour ~ TOC+Iron+Manganese+Turbidity, data = df) # Build a model, include variables as required 

  coeff <- tidy(fit) # Get a pretty data frame of the coefficients & p values 

  coeff <- coeff[,c(1,2,5)] # Extract P.Value & Estimate 

    # Rename (intercept) to INT for pretty column names 

  coeff[coeff$term=="(Intercept)", ]$term <- "INT" 

    # Make it into wide format with reshape2 package. 

  coeff <- coeff %>% melt(id.vars=c("term")) 

    # Defactor the resulting data.frame 

  coeff <- mutate(coeff, 

                  variable=as.character(variable), 

                  term=as.character(term)) 

  # Rename for prettier column names later 

  coeff[coeff$variable=="estimate", ]$variable <- "Beta" 

  coeff[coeff$variable=="p.value", ]$variable <- "P" 

  coeff <- dcast(coeff, .~term+variable)[,-1] 

  rsquared <- summary(fit)$r.squared 
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  # Create a df 

  row <- cbind(data.frame(group=CURRENT_GROUP, rsquared=rsquared), coeff) 

    # If first iteration, create data.frame -- otherwise: rowbind 

  if (i==1){ 

    RESULT_ROW = row 

  } 

  else{ 

    RESULT_ROW = rbind(RESULT_ROW, row) 

  } # End if. 

} # End for loop 

RESULT_ROW[,c(2:12)]<-round(RESULT_ROW[,c(2:12)], 4) 

write.table(RESULT_ROW, "TOCIronMangTurbColourmodel.csv") # specify file name as required 
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B.5 Shape-based clustering on colour time series 

 

# load packages and data 

library(reshape2) 

library(imputeTS) 

library(TSrepr) 

library(dtwclust) 

ts<-read.csv("DS4_ColourTimeSeries20102016.csv") 

ts<-na_interpolation(ts, option = "linear") # Interpolate missing values 

ts[,c(2:155)]<-log10(ts[,c(2:155)]) #log data 

AllTS<-t(ts) # Switch rows and columns 

colnames(AllTS)<-AllTS[1,] 

AllTS<-AllTS[-1,] 

#Extract seasonal profiles 

class(AllTS)<-"numeric" 

SP<-apply(AllTS, 1, function(x) repr_seas_profile(x, 365, meanC)) 

SPall<-t(SP) 

#Clustering 

spclustering<-tsclust(SPall, type="partitional", k=2, preproc=zscore, distance = "sbd", centroid = "shape")  

#clustering on time series shapes for yearly means, specify number of clusters with k=... 

spclustering 

plot(spclustering) 

SPClusters<-predict(spclustering) 

write.csv(SPClusters, "SPCLusterList.csv") 

 

  



B-9 

 

 

B.6 Climate sensitivity testing for TOC 

 

# Load packages and data 

library("lubridate") 

sens<-read.csv("DS5_TOCClimateSeries20132016.csv") 

# Seperate by season 

# Create a column with months first 

sens$Date<-format(sens$Date) 

sens$month<-month(sens$Date) 

sens$season<-ifelse(sens$month==1, "winter", ifelse(sens$month==2, "winter", ifelse(sens$month==3, "spring", ifelse(sens$month==4, "spring", 

ifelse(sens$month==5, "spring", ifelse(sens$month==6, "summer", ifelse(sens$month==7, "summer", ifelse(sens$month==8, "summer", 

ifelse(sens$month==9, "autumn", ifelse(sens$month==10, "autumn", ifelse(sens$month==11, "autumn", ifelse(sens$month==12, "winter", 

NA)))))))))))) 

# Seperate 

sensWinter<-sens[which(sens$season=="winter"),] 

sensSpring<-sens[which(sens$season=="spring"),] 

sensAutumn<-sens[which(sens$season=="autumn"),] 

sensSummer<-sens[which(sens$season=="summer"),] 

# Spearman's correlation test per catchment 

# Split catchments 

catch<-split(sensSummer, sensSummer$Catchment.ID) # adjust dataset as required 

#Test function 

regr<-cor.test(~TOC+Rainfall03, data = catch[[i]], method="spearman", continuity=FALSE, conf.level=0.95)$estimate 

#Run loop for Spearman's rank correlation coeffiencient, adjust variable as required 

for (i in names(catch)){ 

  regr[i]<-cor.test(~TOC+Rainfall03, data = catch[[i]], method="spearman", continuity=FALSE, conf.level=0.95)$estimate # $p.value for significance 

  print(regr[i]) 

}  
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B.7 Linear regression models on TOC medians per category 

 

# load packages and data 

library(foreign) 

library(Hmisc) 

library("PerformanceAnalytics") 

library("corrplot") 

library(caret) 

data <- read.csv("DS2_SWCatchmentWaterQualitySubset.csv") 

datacomp<-data[!is.na(data$TOCMedian),] # Remove rows with missing values 

n=nrow(datacomp) 

modelfullBIC<-with(datacomp, aov(log(TOCMedian) ~ Area+ElevationReliefRatio+ 

                               ReliefRatio+Aspect+TOCAverage+BFIAvergae 

                             +Other15+Conif15+Arable15+Imprgrass15+Deer+ 

                             +Sheep+Cattle+pwsurplus81+aat55for810+pHMed)) 

modelfinalBIC=step(modelfullBIC,k=log(n)) 

summary.lm(modelfinalBIC) 

### This model explains 47%. 

### Let's check behaviour of residuals. 

par(mfrow=c(2,2)) 

plot(modelfinalBIC)  

### Validation 

set.seed(0) 

train_control <- trainControl(method = "repeatedcv", number = 10, repeats = 10) 

modelfinalBIC <- train(log(TOCMedian) ~ Area+ReliefRatio+TOCAverage 

                        +Imprgrass15+Sheep+pwsurplus81+aat55for810+pHMed, data = datacomp, method = "lm",  

                        trControl = train_control) 

print(modelfinalBIC) 
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### RSME 0.4 R2 0.45 MAE 0.32  

mean(log(datacomp$TOCMedian)) # 1.59 

0.4172285/(max(log(datacomp$TOCMedian))-min(log(datacomp$TOCMedian))) #0.13 

# Model for category 

subrain<-data[which(data$CategoryTOC=="Rainfall"),] 

subraintemp<-data[which(data$CategoryTOC=="Rainfall+Temp"),] 

subtemp<-data[which(data$CategoryTOC=="Temp"),] 

subwetup<-data[which(data$CategoryTOC=="Wetup"),] 

subnone<-data[which(data$CategoryTOC=="None"),] 

# repeat above for each dataset 
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B.8 Linear regression models on TOC medians with interactions 

 

# load packages and data 

library(foreign) 

library(Hmisc) 

library("PerformanceAnalytics") 

library("corrplot") 

library(caret) 

data <- read.csv("DS2_SWCatchmentWaterQualitySubset.csv") 

datacomp<-data[!is.na(data$TOCMedian),] # Remove rows with missing values 

n=nrow(datacomp) 

# In this analysis we treat TOCMedian as the response and introduce all variables at the same time plus a two-way interaction with one variable at a 

time 

# Group 1 = interactions with pwsurplus81                      

fullprec<-

with(datacomp,aov(log(TOCMedian)~CategoryTOC+Area+ElevationReliefRatio+ReliefRatio+Aspect+TOCAverage+BFIAvergae+Other15+Conif15

+Arable15+Imprgrass15+Deer+Cattle+Sheep+pwsurplus81+aat55for810+pHMed+pwsurplus81*(CategoryTOC+Area+ElevationReliefRatio+ReliefR

atio+Aspect+aat55for810+TOCAverage+BFIAvergae+Other15+Conif15+Arable15+Imprgrass15+Deer+Cattle+Sheep+pHMed))) 

modelprecBIC=step(fullprec,k=log(n)) 

summary.lm(modelprecBIC) 

# Group 2 = interactions with aat55for810            

fulltemp<-

with(datacomp,aov(log(TOCMedian)~CategoryTOC+Area+ElevationReliefRatio+ReliefRatio+Aspect+TOCAverage+BFIAvergae+Other15+Conif15

+Arable15+Imprgrass15+Deer+Cattle+Sheep+pwsurplus81+aat55for810+pHMed+aat55for810*(CategoryTOC+Area+ElevationReliefRatio+ReliefRa

tio+Aspect+pwsurplus81+TOCAverage+BFIAvergae+Other15+Conif15+Arable15+Imprgrass15+Deer+Cattle+Sheep+pHMed))) 

modeltempBIC=step(fulltemp,k=log(n)) 

summary.lm(modeltempBIC) 

# Group 3 = Category interactions                   
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fullcat<-

with(datacomp,aov(log(TOCMedian)~CategoryTOC+Area+ElevationReliefRatio+ReliefRatio+Aspect+TOCAverage+BFIAvergae+Other15+Conif15

+Arable15+Imprgrass15+Deer+Cattle+Sheep+pwsurplus81+aat55for810+pHMed+CategoryTOC*(aat55for810+Area+ElevationReliefRatio+ReliefRa

tio+Aspect+pwsurplus81+TOCAverage+BFIAvergae+Other15+Conif15+Arable15+Imprgrass15+Deer+Cattle+Sheep+pHMed))) 

modelcatBIC=step(fullcat,k=log(n)) 

summary.lm(modelcatBIC) 

### Try this model on its own 

### This model explains 54%. 

### Let's check behaviour of residuals. 

par(mfrow=c(2,2)) 

plot(modelcatBIC)  

### Let's look at the predictive capability of the model 

par(mfrow=c(1,1)) # reset plotting pane 

plot(log(datacomp$TOCMedian),predict(modelcatBIC)) # Plot the response against the predicted values of the response 

### Formalise this as a linear model 

modelcatBICform <- with(datacomp,lm(predict(modelcatBIC)~log(datacomp$TOCMedian))) 

abline(modelcatBICform) # This plots a straight line through the data by least-squares 

### If the model predicted the response perfectly, then they would be linked by a straight line of slope 1 

### If we insert such a line on the plot as a reference line we can make that comparison 

abline(0,1) 

### Validation 

set.seed(0) 

train_control <- trainControl(method = "repeatedcv", number = 10, repeats = 10) 

modelcatBICVal <- train(log(TOCMedian) ~ CategoryTOC + Aspect + TOCAverage +  

                       Conif15 + Imprgrass15 + Deer + Sheep + pwsurplus81 + aat55for810 +  

                       pHMed + CategoryTOC:Conif15, data = datacomp, method = "lm", trControl = train_control) 

print(modelcatBICVal) 

### RSME 0.38 R2 50% MAE 0.3 
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0.3811012/(max(log(datacomp$TOCMedian))-min(log(datacomp$TOCMedian))) #0.125 

confint(modelcatBIC) 

# Group 4 = Other possibly important interactions   

fullother<-

with(datacomp,aov(log(TOCMedian)~+CategoryTOC+Area+ElevationReliefRatio+ReliefRatio+Aspect+aat55for810+pwsurplus81+TOCAverage+BF

IAvergae+Other15+Conif15+Arable15+Imprgrass15+Deer+Cattle+Sheep++pHMed+TOCAverage:Conif15+TOCAverage:Imprgrass15+TOCAverage

:Other15+TOCAverage:Sheep+TOCAverage:Cattle+TOCAverage:Deer+ReliefRatio:TOCAverage+ReliefRatio:Aspect+ReliefRatio:Conif15+ReliefR

atio:Other15+ReliefRatio:Imprgrass15+ReliefRatio:Sheep+ReliefRatio:Cattle+ReliefRatio:Deer+TOCAverage:pHMed)) 

modelotherBIC=step(fullother,k=log(n)) 

summary.lm(modelotherBIC) 

# Put this all together now.                         

modelprecBIC 

modeltempBIC 

modelcatBIC 

modelotherBIC 

modelfullBIC<-with(datacomp, aov(log(TOCMedian) ~ CategoryTOC + Area + ReliefRatio + Aspect  

                                 + TOCAverage + Other15 + Conif15 + Imprgrass15 + Deer +  

                                   Sheep + pwsurplus81 + aat55for810 + pHMed + pwsurplus81:aat55for810 +  

                                   Sheep:pwsurplus81 + pwsurplus81:pHMed + CategoryTOC:Conif15 

                                 +  TOCAverage:Deer + ReliefRatio:Conif15 + ReliefRatio:Deer)) 

modelfinalBIC=step(modelfullBIC,k=log(n)) 

summary.lm(modelfinalBIC) 

### This model explains 57%. 

### Let's check behaviour of residuals. 

par(mfrow=c(2,2)) 

plot(modelfinalBIC)  

### Let's look at the predictive capability of the model 

par(mfrow=c(1,1)) # reset plotting pane 
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plot(log(datacomp$TOCMedian),predict(modelfinalBIC)) # Plot the response against the predicted values of the response 

### Formalise this as a linear model 

modelfinalBICform <- with(datacomp,lm(predict(modelfinalBIC)~log(datacomp$TOCMedian))) 

abline(modelfinalBICform) # This plots a straight line through the data by least-squares 

### If the model predicted the response perfectly, then they would be linked by a straight line of slope 1 

### If we insert such a line on the plot as a reference line we can make that comparison 

abline(0,1) 

### Validation 

library(caret) 

set.seed(0) 

train_control <- trainControl(method = "repeatedcv", number = 10, repeats = 10) 

modelBICVal <- train(log(TOCMedian) ~ ReliefRatio   

                     + TOCAverage + Conif15 + Deer +  

                       Sheep + pwsurplus81 + aat55for810 + pHMed + pwsurplus81:aat55for810 +  

                       Sheep:pwsurplus81 + pwsurplus81:pHMed  

                     +  TOCAverage:Deer + ReliefRatio:Conif15 + ReliefRatio:Deer, data = datacomp, method = "lm", trControl = train_control) 

print(modelBICVal) 

### RSME 0.35 R2 56% MAE 0.28 

0.3464227/(max(log(datacomp$TOCMedian))-min(log(datacomp$TOCMedian))) #0.11 

confint(modelfinalBIC) 

## Let's get the predictions for future climate 

dataFutureRed<-datacomp[,-c(230,231)] 

names(dataFutureRed)[names(dataFutureRed)=="pwsurplus50"] <- "pwsurplus81" 

names(dataFutureRed)[names(dataFutureRed)=="aat55for205"] <- "aat55for810" 

prediction2050TOC<-predict(modelfinalBIC, newdata=dataFutureRed, interval="confidence") 

PredictTOCInteractionsAll<-cbind(datacomp,prediction2050TOC) 

write.csv(PredictTOCInteractionsAll, "Predictions2050TOCBIC_Interactions_All.csv") 

predictionsCurrent<-predict(modelfinalBIC, newdata=datacomp, interval = "confidence") 



B-16 

 

 

PredictTOCInteractionsAll<-cbind(datacomp,predictionsCurrent) 

write.csv(PredictTOCInteractionsAll, "PredictionsCurrentTOCBIC_Interactions_All.csv") 
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B.9 Linear regression models on E. coli medians 

 

# Load data  

data <- read.csv("DS2_SWCatchmentWaterQualitySubset.csv") 

# In this analysis we treat EcoliMed as the response and introduce all variables at the same time plus a two-way interaction with one variable at a time      

data$Source <- as.factor(data$Source) 

data$Category_Ecoli <- as.factor(data$CategoryEcoli) 

options(scipen=999)# Disable scientific notation 

n=nrow(data) 

# Model without interactions                         

modelfull<-

with(data,aov(EcoliMed~Source+Area+ElevationReliefRatio+ReliefRatio+Aspect+aat55for810+TOCAverage+BFIAvergae+Other15+Conif15+Arabl

e15+Imprgrass15+Urban15+Deer+Cattle+Sheep+SepticTank+pHMed+pwsurplus81)) 

modelfinalBIC=step(modelfull,k=log(n)) 

summary.lm(modelfinalBIC) 

### This model explains 71%. 

### Let's check behaviour of residuals. 

par(mfrow=c(2,2)) 

plot(modelfinalBIC)  

### Try log the response 

modelfull<-

with(data,aov(log(EcoliMed+1)~Source+Area+ElevationReliefRatio+ReliefRatio+Aspect+aat55for810+TOCAverage+BFIAvergae+Other15+Conif15

+Arable15+Imprgrass15+Urban15+Deer+Cattle+Sheep+SepticTank+pHMed+pwsurplus81)) 

modelfinalBIC=step(modelfull,k=log(n)) 

summary.lm(modelfinalBIC) 

### This model explains 46%. 

### Let's check behaviour of residuals. 

par(mfrow=c(2,2)) 
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plot(modelfinalBIC)  

### Let's look at the predictive capability of the model 

par(mfrow=c(1,1)) # reset plotting pane 

plot(data$EcoliMed,exp(predict(modelfinalBIC)-1)) # Plot the response against the predicted values of the response 

### Formalise this as a linear model 

modelfinalBICform <- with(data,lm(exp(predict(modelfinalBIC)-1)~data$EcoliMed)) 

abline(modelfinalBICform) # This plots a straight line through the data by least-squares 

### If the model predicted the response perfectly, then they would be linked by a straight line of slope 1 

### If we insert such a line on the plot as a reference line we can make that comparison 

abline(0,1)  

### Validation 

library(caret) 

set.seed(0) 

train_control <- trainControl(method = "repeatedcv", number = 10, repeats = 10) 

modelBICVal <- train(log(EcoliMed+1) ~ Source + ReliefRatio + Other15 +  

                       Conif15 + Arable15 + Imprgrass15, data = data, method = "lm", trControl = train_control) 

print(modelBICVal) 

### RSME 0.94 R2 41% MAE 0.78 

0.9350434/(max(log(data$EcoliMed+1))-min(log(data$EcoliMed+1))) #0.15 

confint(modelfinalBIC) 

# Model with LCA                                     

modelfullLCA<-

with(data,aov(log(EcoliMed+1)~Source+Area+ElevationReliefRatio+ReliefRatio+Aspect+SepticTank+PrimeLand8120_v2.4+LCA3_5_8120_v2.4)) 

modelfinalLCA=step(modelfullLCA,k=log(n)) 

summary.lm(modelfinalLCA) 

### This model explains 32%. 

### Run with PrimeLand including class 3 
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modelfullLCA<-

with(data,aov(log(EcoliMed+1)~Source+Area+ElevationReliefRatio+ReliefRatio+Aspect+SepticTank+PrimeLandIncl3_8120_v2.4+LCA4_5_8120_v

2.4)) 

modelfinalLCA=step(modelfullLCA,k=log(n)) 

summary.lm(modelfinalLCA) 

### This model explains 36%. 

confint(modelfinalLCA) 

### Let's check behaviour of residuals. 

par(mfrow=c(2,2)) 

plot(modelfinalLCA)  

### Let's look at the predictive capability of the model 

par(mfrow=c(1,1)) # reset plotting pane 

plot(data$EcoliMed,exp(predict(modelfinalLCA)-1)) # Plot the response against the predicted values of the response 

plot(log(data$EcoliMed+1),predict(modelfinalLCA)) # Plot the response against the predicted values of the response 

### Formalise this as a linear model 

modelfinalBICform <- with(data,lm(predict(modelfinalLCA)~log(data$EcoliMed+1))) 

abline(modelfinalBICform) # This plots a straight line through the data by least-squares 

### If the model predicted the response perfectly, then they would be linked by a straight line of slope 1 

### If we insert such a line on the plot as a reference line we can make that comparison 

abline(0,1)  

### Validation 

library(caret) 

set.seed(0) 

train_control <- trainControl(method = "repeatedcv", number = 10, repeats = 10) 

modelBICVal <- train(log(EcoliMed + 1) ~ Source + ReliefRatio + PrimeLandIncl3_8120_v2.4 +  

                       LCA4_5_8120_v2.4, data = data, method = "lm", trControl = train_control) 

print(modelBICVal) 

### RSME 0.997 R2 33% MAE 0.82 
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0.9971493/(max(log(data$EcoliMed+1))-min(log(data$EcoliMed+1))) #0.16 

confint(modelfinalLCA) 

dataFutureRed<-data[,-c(59,60)] 

names(dataFutureRed)[names(dataFutureRed)=="PrimeLandIncl3_2050mean"] <- "PrimeLandIncl3_8120_v2.4" 

names(dataFutureRed)[names(dataFutureRed)=="LCA4_5_2050mean"] <- "LCA4_5_8120_v2.4" 

prediction2050Ecoli<-predict(modelfinalLCA, newdata=dataFutureRed, interval="confidence") 

PredictEcoli<-cbind(data,prediction2050Ecoli) 

write.csv(PredictEcoli, "Predictions2050EcoliBIC_LCA.csv") 

predictionsCurrent<-predict(modelfinalLCA, newdata=data, interval = "confidence") 

PredictEcoliAll<-cbind(data,predictionsCurrent) 

write.csv(PredictEcoliAll, "PredictionsCurrentEcoliBIC_All.csv") 

### Extract residuals 

mod_summary<-summary.lm(modelfinalLCA) 

write.csv(mod_summary$residuals, "EcoliModelResiduals.csv") 

# Model with reduced dataset (E.coli medians <100)   

datared<-data[data$EcoliMed<100,] 

# Follow steps as above 

# Model with interactions as in B.8 
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B.10 Rainfall sensitivity testing for E. coli 

 

# load package and data 

library("lubridate") 

sens<-read.csv("DS6_EcoliRainfallSeries20102016.csv") 

# Seperate by season 

# Create a column with months first 

sens$Date<-format(sens$Date) 

sens$month<-month(sens$Date) 

sens$season<-ifelse(sens$month==1, "winter", ifelse(sens$month==2, "winter", ifelse(sens$month==3, "summer", ifelse(sens$month==4, "summer", 

ifelse(sens$month==5, "summer", ifelse(sens$month==6, "summer", ifelse(sens$month==7, "summer", ifelse(sens$month==8, "summer", 

ifelse(sens$month==9, "summer", ifelse(sens$month==10, "summer", ifelse(sens$month==11, "winter", ifelse(sens$month==12, "winter", 

NA)))))))))))) 

# Seperate 

sensWinter<-sens[which(sens$season=="winter"),] 

sensSummer<-sens[which(sens$season=="summer"),] 

# Spearman's correlation test per catchment - all together 

# Split catchments 

catch<-split(sens, sens$Catchment.ID) # adjust dataset as required 

# Rainfall 

# Test function 

regr<-cor.test(~Ecoli+Rainfall, data = catch[[i]], method="spearman", continuity=FALSE, conf.level=0.95)$estimate 

#Run loop for Spearman's rank correlation coeffiencient, adjust variable as required 

for (i in names(catch)){ 

  regr[i]<-cor.test(~Ecoli+Rainfall, data = catch[[i]], method="spearman", continuity=FALSE, conf.level=0.95)$estimate 

  print(regr[i]) 

} 

# $p.value for significance 
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C. Model outputs 

 

C.1 Model outputs from the colour-TOC/iron/manganese/turbidity linear regression 
 

Table C.1: Model output for linear regression on colour as dependent variable and TOC as independent 

variable for data from 2013-2016. Coloured cells include coefficients that are statistically significant 

(p<0.05). 

Catchment 

ID 

R2 Intercept TOC 

388 0.99 -8.84 10.25 

393 0.99 -5.63 10.39 

425 0.97 -2.52 6.00 

407 0.97 -5.87 10.22 

276 0.96 -3.09 7.75 

338 0.96 1.27 6.32 

451 0.95 5.67 7.45 

456 0.95 -7.46 10.43 

411 0.95 -2.57 7.77 

299 0.94 3.15 6.35 

21 0.94 1.67 7.81 

268 0.94 -2.04 8.06 

33 0.94 -1.69 7.72 

427 0.93 -4.31 9.06 

412 0.92 -0.16 6.66 

273 0.92 -0.12 7.84 

446 0.92 -6.80 8.72 

280 0.92 -2.36 7.44 

398 0.91 0.25 7.51 

277 0.91 -0.09 7.20 

442 0.91 -14.38 10.25 

16 0.91 -6.83 8.26 

296 0.91 -0.72 5.12 

416 0.90 1.33 6.78 

278 0.89 2.18 6.77 

376 0.89 -9.62 10.18 

335 0.87 -0.31 7.19 

334 0.87 -0.39 9.32 

34 0.86 -3.09 8.38 

384 0.86 -3.90 9.03 

75 0.86 -0.48 6.42 

343 0.86 1.36 7.48 

432 0.85 -8.37 7.74 

342 0.85 4.85 6.21 

339 0.85 1.76 8.01 

271 0.85 5.63 7.07 

25 0.84 2.06 7.62 

418 0.82 0.61 6.97 

337 0.82 -1.42 7.69 

297 0.81 6.91 6.52 

365 0.81 -6.27 5.75 

330 0.81 -34.27 8.58 

445 0.81 -10.94 11.44 

89 0.81 0.46 7.08 

434 0.80 -11.35 8.80 

450 0.80 1.10 6.64 

433 0.80 -0.81 6.87 

437 0.79 -5.10 7.00 
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401 0.79 -6.36 9.96 

45 0.79 7.54 7.00 

340 0.79 0.66 6.46 

2 0.79 -9.06 8.86 

448 0.78 -2.42 4.21 

266 0.78 5.58 5.67 

279 0.76 3.64 6.30 

15 0.76 5.01 5.71 

212 0.74 2.56 6.54 

208 0.73 -1.16 8.01 

20 0.73 1.70 5.38 

270 0.73 2.79 6.60 

211 0.73 -1.75 7.06 

447 0.72 -23.70 10.65 

346 0.71 -7.60 6.77 

7 0.71 1.42 6.28 

17 0.69 -11.95 6.58 

422 0.66 8.94 5.90 

9 0.66 11.86 4.94 

222 0.65 0.84 6.58 

436 0.64 -11.85 8.41 

402 0.64 1.09 6.65 

305 0.63 1.99 6.17 

126 0.62 5.26 6.55 

59 0.62 -0.27 6.64 

357 0.61 -6.38 8.05 

429 0.61 -5.80 7.39 

80 0.61 11.78 6.81 

136 0.61 -2.16 7.12 

201 0.61 30.28 7.70 

146 0.60 15.57 8.26 

32 0.55 8.21 4.37 

344 0.53 -2.59 5.15 

103 0.52 8.22 6.23 

193 0.51 14.10 5.42 

192 0.49 8.40 5.28 

440 0.47 11.07 4.11 

43 0.47 8.36 4.53 

6 0.46 -6.03 7.53 

213 0.45 1.31 5.88 

410 0.45 14.44 3.06 

424 0.44 5.85 3.40 

415 0.42 20.65 3.89 

138 0.40 13.51 3.88 

320 0.40 4.81 3.65 

232 0.37 21.39 5.04 

349 0.36 26.38 2.88 

24 0.34 -2.41 4.35 

227 0.34 23.05 4.30 

368 0.33 1.35 3.47 

311 0.31 33.43 2.49 

426 0.31 6.66 2.56 

350 0.28 44.84 4.04 

203 0.27 32.28 3.40 

42 0.26 14.48 2.98 

319 0.25 3.77 3.91 

373 0.19 45.81 4.06 

116 0.18 12.48 2.14 

22 0.18 21.16 3.16 

356 0.17 8.47 0.12 
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215 0.15 29.63 1.53 

23 0.14 5.54 1.53 

312 0.13 107.56 2.56 

310 0.13 37.29 0.65 

452 0.12 20.42 2.20 

321 0.11 19.04 1.48 

30 0.10 18.20 1.38 

341 0.10 13.89 1.43 

327 0.10 24.26 2.31 

333 0.08 18.33 1.29 

167 0.07 24.69 0.57 

325 0.07 48.18 2.13 

131 0.07 17.69 0.33 

242 0.07 17.33 0.41 

127 0.05 59.26 1.03 

414 0.03 16.39 0.40 

214 0.01 62.33 0.42 

439 0.01 61.10 -0.28 

449 0.01 2.19 0.04 
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Table C.2: Model output for linear regression on colour as dependent variable and TOC, Iron and 

Manganese as independent variable for data from 2013-2016. Coloured cells include coefficients that are 

statistically significant (p<0.05). 

Catchment 

ID 

R2 Intercept Iron Manganese TOC 

388 1.00 -1.34 0.20 -1.22 4.18 

393 0.99 -4.99 0.09 -0.79 7.10 

407 0.99 3.18 0.13 -1.95 4.69 

451 0.98 4.49 0.09 -0.70 6.14 

456 0.98 8.32 0.14 -2.61 3.72 

425 0.97 -2.35 0.00 -0.06 5.93 

276 0.97 1.33 0.07 -3.42 5.60 

338 0.97 1.67 0.06 -0.53 5.49 

299 0.96 -0.16 0.08 -3.07 5.18 

296 0.96 -0.85 0.00 -0.26 6.37 

268 0.96 -2.31 0.06 -1.41 6.75 

21 0.95 -3.44 0.02 -0.16 7.47 

33 0.95 -2.32 0.01 -0.05 7.31 

411 0.95 -2.61 0.01 -0.03 7.62 

418 0.95 -4.99 0.00 -0.23 9.80 

273 0.94 -0.74 0.01 -0.28 7.34 

335 0.94 -0.19 0.14 -0.48 4.04 

446 0.94 -2.63 0.08 -0.25 6.17 

427 0.93 -2.73 0.01 -0.24 8.42 

412 0.93 -0.23 0.01 -0.05 6.20 

278 0.93 -0.78 0.01 -0.05 6.06 

280 0.93 -2.97 0.05 -0.65 6.49 

6 0.92 9.95 0.12 -0.11 1.43 

277 0.92 -0.75 0.01 -0.03 7.34 

432 0.92 -4.72 0.12 -0.44 4.34 

16 0.92 -8.12 0.01 -0.02 7.60 

342 0.91 7.50 0.06 -0.56 5.10 

442 0.91 -9.58 0.03 -0.13 8.72 

398 0.91 0.02 0.01 -0.05 7.42 

416 0.91 -0.11 0.01 0.01 6.15 

376 0.91 -8.50 0.04 -0.23 8.75 

266 0.91 0.38 0.17 -0.54 3.45 

271 0.90 12.49 0.04 -0.27 5.15 

340 0.89 4.76 0.11 -0.59 4.77 

334 0.88 0.26 0.03 -0.52 8.03 

434 0.88 1.02 0.15 -0.57 2.91 

330 0.88 -21.63 0.04 -0.09 5.86 

343 0.88 2.68 0.03 -1.03 7.14 

337 0.87 -2.44 0.06 -0.22 5.61 

339 0.87 0.32 0.03 -0.03 6.60 

15 0.87 5.06 0.00 -0.18 7.10 

384 0.86 -8.60 0.01 -0.01 8.51 

34 0.86 -2.47 0.01 -0.01 7.78 

365 0.86 -9.86 0.02 -0.03 5.71 

75 0.86 -0.30 -0.01 -0.02 6.48 

25 0.86 0.68 -0.01 0.03 8.11 

445 0.85 21.44 0.07 -2.17 6.51 

297 0.85 1.79 0.00 0.21 5.64 

450 0.83 -1.88 0.05 -0.14 6.68 

222 0.83 3.80 0.04 -0.18 5.38 

270 0.82 -2.48 0.21 -0.37 4.31 

437 0.82 -5.27 0.05 -0.13 6.09 

89 0.81 0.08 0.00 -0.01 7.13 

433 0.81 -1.36 0.02 -0.44 7.12 

401 0.81 -3.31 0.09 -0.90 6.47 
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45 0.80 6.57 0.02 -0.01 6.04 

402 0.79 0.52 0.08 -0.76 5.85 

279 0.79 1.36 0.06 -0.19 5.10 

448 0.79 -0.76 0.01 -0.06 3.48 

429 0.79 -19.41 0.01 -0.14 9.23 

2 0.79 -8.64 0.00 -0.01 8.80 

346 0.78 -5.30 0.11 -0.66 5.11 

208 0.76 -0.58 0.17 -0.08 3.94 

320 0.75 6.03 0.14 -0.57 2.80 

7 0.75 0.41 0.00 0.00 6.76 

20 0.75 0.78 0.02 -0.03 5.12 

212 0.74 1.89 0.01 -0.03 6.49 

447 0.74 -14.71 0.04 -0.19 8.24 

357 0.74 6.70 0.12 -0.35 5.30 

211 0.73 -3.04 0.01 0.00 6.89 

80 0.72 5.46 0.03 -0.05 6.31 

17 0.71 -16.54 0.00 0.01 7.08 

213 0.71 -2.17 0.02 -0.06 6.53 

59 0.70 5.56 0.03 -0.08 5.24 

136 0.70 -5.93 0.00 -0.03 8.35 

422 0.70 7.74 0.01 -0.04 5.09 

203 0.70 15.60 -0.02 -0.03 6.89 

9 0.69 13.41 0.01 -0.10 4.62 

344 0.68 0.52 0.19 -0.07 2.91 

192 0.68 7.48 0.06 -0.26 4.67 

126 0.68 3.79 0.00 -0.04 6.87 

146 0.66 33.37 0.02 -0.33 6.68 

311 0.64 27.92 0.10 -0.45 0.92 

436 0.64 -5.14 0.06 -0.38 5.91 

426 0.64 3.75 0.09 -0.98 1.56 

305 0.64 2.22 0.00 0.00 6.30 

201 0.62 32.34 0.01 0.00 6.83 

410 0.62 9.40 0.00 -0.01 4.98 

349 0.62 2.60 0.01 -0.24 6.98 

193 0.58 12.48 0.05 -0.13 4.85 

215 0.57 26.12 0.09 -0.09 0.72 

319 0.57 10.35 0.05 -0.18 1.89 

32 0.55 7.69 0.01 -0.02 4.04 

24 0.55 5.06 0.02 -0.09 2.87 

312 0.55 31.52 -0.01 0.00 8.11 

415 0.54 15.82 0.02 -0.14 4.89 

103 0.54 18.79 0.06 -0.18 2.33 

440 0.54 1.49 -0.08 -0.08 7.78 

232 0.52 17.24 0.01 -0.03 5.43 

368 0.52 -1.54 0.13 -0.37 2.17 

310 0.51 32.52 0.24 -0.43 0.27 

43 0.49 7.41 0.01 -0.02 4.66 

452 0.44 22.30 0.08 -0.57 1.21 

424 0.44 5.80 0.00 0.00 3.46 

350 0.43 8.10 -0.01 0.03 8.19 

138 0.42 12.54 0.00 -0.01 4.13 

449 0.42 0.51 0.19 0.14 -0.02 

22 0.40 19.16 0.04 -0.04 1.65 

23 0.38 3.44 0.01 -0.02 2.11 

325 0.36 33.91 0.15 -0.04 0.60 

227 0.35 22.84 0.00 -0.01 4.28 

42 0.30 13.55 0.02 -0.02 2.91 

321 0.30 18.70 0.09 -0.85 0.95 

414 0.29 8.93 0.00 -0.01 2.89 

30 0.29 16.79 0.04 -0.23 1.45 
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356 0.25 10.29 0.00 0.06 -0.36 

116 0.23 11.92 0.01 -0.06 2.19 

333 0.22 15.88 0.08 -0.13 1.03 

373 0.20 44.07 0.03 -0.09 3.27 

167 0.19 21.39 0.04 -0.10 0.49 

341 0.19 11.50 0.11 -0.43 1.21 

214 0.15 58.06 0.00 0.00 0.37 

127 0.15 50.11 0.02 -0.10 1.22 

327 0.12 23.61 0.02 -0.20 2.32 

242 0.11 15.41 0.00 0.00 0.98 

131 0.10 17.23 0.00 0.00 0.57 

439 0.03 65.11 0.01 -0.15 -0.38 
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Table C.3: Model output for linear regression on colour as dependent variable and TOC, Iron, Manganese 

and Turbidity as independent variable for data from 2013-2016. Coloured cells include coefficients that 

are statistically significant (p<0.05). 

Catchment 

ID 

R2 Intercept Iron Manganese TOC Turbidity 

388 1.00 -0.03 0.20 -0.96 4.20 -6.77 

393 0.99 -4.15 0.09 -0.75 7.09 -4.78 

407 0.99 4.59 0.14 -0.69 4.20 -19.36 

451 0.98 4.50 0.09 -0.70 6.15 -0.08 

456 0.98 8.60 0.14 -2.61 3.69 -1.00 

276 0.97 0.05 0.08 -1.40 5.45 -4.47 

338 0.97 1.45 0.07 -0.42 5.47 -2.08 

425 0.97 -2.35 0.00 -0.07 5.91 -0.10 

296 0.97 -2.08 0.01 -0.18 6.07 -1.02 

299 0.96 -0.06 0.09 -2.81 4.71 -3.83 

278 0.96 -1.16 0.02 -0.04 6.72 -5.55 

268 0.96 -2.47 0.06 -1.29 6.78 -0.80 

21 0.95 -3.72 0.02 -0.17 7.41 1.30 

411 0.95 -2.47 0.00 -0.07 7.42 4.97 

418 0.95 -4.70 0.01 -0.34 9.77 -0.29 

33 0.95 -2.50 0.01 -0.05 7.35 0.31 

273 0.94 1.77 0.01 -0.23 7.56 -4.09 

427 0.94 -2.01 0.01 -0.21 8.72 -5.04 

335 0.94 -0.01 0.16 -0.44 4.02 -2.90 

446 0.94 -5.76 0.07 -0.23 6.20 6.04 

280 0.94 -1.66 0.05 -0.61 6.34 -0.97 

6 0.94 11.01 0.14 0.00 1.45 -9.75 

412 0.93 -0.17 0.01 -0.06 6.09 -0.17 

15 0.93 0.56 0.01 -0.10 6.76 -1.01 

432 0.93 -4.14 0.11 -0.41 4.66 -3.10 

277 0.93 -1.75 0.01 -0.04 7.33 1.91 

16 0.93 -6.44 0.02 -0.04 7.30 -4.67 

442 0.92 -6.53 0.04 -0.03 8.50 -8.42 

342 0.92 6.55 0.06 -0.59 4.89 3.24 

376 0.91 -7.28 0.07 -0.22 8.08 -5.06 

398 0.91 0.03 0.01 -0.06 7.40 -0.17 

416 0.91 0.08 0.01 0.01 6.12 -1.25 

266 0.91 -0.04 0.17 -0.48 3.47 -0.77 

271 0.90 11.53 0.04 -0.30 5.16 2.65 

434 0.90 8.64 0.18 -0.38 2.52 -33.14 

340 0.89 4.83 0.11 -0.57 4.84 -1.61 

334 0.88 0.62 0.03 -0.47 8.00 -1.40 

330 0.88 -21.45 0.04 -0.09 5.85 -0.26 

343 0.88 2.02 0.04 -0.56 7.32 -4.62 

337 0.87 -1.08 0.07 -0.22 5.25 -2.69 

445 0.87 14.61 0.10 -1.18 5.59 -11.67 

75 0.87 -2.51 -0.03 -0.05 6.06 14.68 

384 0.87 -15.22 0.00 0.01 9.16 6.47 

339 0.87 -0.57 0.03 -0.05 6.69 1.06 

34 0.87 1.90 0.01 -0.01 7.44 -2.51 

365 0.86 -10.27 0.02 -0.03 5.69 0.99 

433 0.86 -7.93 0.01 -0.74 5.99 31.82 

25 0.86 -0.07 -0.01 0.03 8.07 1.71 

297 0.85 1.47 0.01 0.19 5.31 -1.93 

222 0.85 3.95 0.06 -0.20 4.81 -1.28 

450 0.84 -0.67 0.07 -0.12 6.60 -6.28 

270 0.83 -5.85 0.19 -0.44 4.52 11.96 

45 0.83 7.90 0.03 0.00 5.89 -3.30 

401 0.83 -0.19 0.11 -0.40 6.87 -39.88 

437 0.82 -4.39 0.05 -0.12 6.05 -1.72 
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89 0.81 0.26 0.00 -0.01 7.13 -0.09 

447 0.81 -3.92 0.07 -0.17 7.17 -13.75 

2 0.80 -4.52 0.01 -0.01 8.39 -3.32 

422 0.80 8.85 0.03 -0.09 5.74 -13.73 

402 0.80 -0.64 0.06 -0.77 6.08 2.97 

346 0.80 -3.87 0.13 -0.58 5.07 -8.81 

429 0.80 -18.47 0.02 -0.19 8.73 -1.61 

279 0.79 1.37 0.06 -0.19 5.10 -0.09 

448 0.79 -0.36 0.01 -0.05 3.41 -1.29 

357 0.79 0.63 0.05 -0.23 6.28 5.37 

320 0.78 8.42 0.14 -0.60 2.40 -3.10 

80 0.78 12.01 0.07 -0.11 3.75 -2.56 

208 0.76 -0.81 0.17 -0.07 4.00 1.19 

20 0.75 0.51 0.01 -0.02 5.12 1.02 

7 0.75 0.00 0.00 0.00 6.75 1.56 

212 0.75 2.36 0.01 -0.02 6.58 -1.71 

211 0.73 -2.62 0.01 -0.01 6.82 -0.10 

203 0.72 12.18 0.00 -0.04 6.37 -0.64 

213 0.72 -2.84 0.02 -0.08 6.41 2.33 

9 0.72 14.62 0.02 -0.13 4.30 -0.41 

449 0.71 2.52 -0.11 -0.01 -0.03 1.10 

17 0.71 -16.88 0.00 0.01 7.08 0.42 

59 0.70 5.61 0.03 -0.08 5.26 0.14 

136 0.70 -5.94 0.00 -0.03 8.35 0.00 

32 0.70 5.82 0.06 -0.05 2.87 -7.19 

426 0.69 1.52 0.08 -1.38 1.01 15.54 

192 0.69 7.97 0.08 -0.30 4.30 -0.80 

126 0.69 3.47 0.01 -0.03 7.08 -1.28 

344 0.68 0.35 0.19 -0.08 2.90 1.10 

305 0.67 1.77 0.00 -0.01 6.39 -0.37 

146 0.66 32.98 0.02 -0.33 6.64 1.02 

436 0.66 -3.73 0.09 -0.21 5.58 -9.62 

201 0.65 50.72 0.02 0.00 6.13 -4.30 

311 0.65 27.93 0.10 -0.48 0.63 1.60 

410 0.64 7.72 0.00 -0.02 4.89 2.43 

349 0.62 2.61 0.01 -0.24 6.98 0.00 

193 0.60 10.92 0.03 -0.11 5.28 2.39 

415 0.59 15.01 0.03 -0.13 4.96 -2.58 

215 0.58 24.28 0.09 -0.11 0.72 2.55 

138 0.57 2.86 0.00 0.00 6.09 -0.55 

319 0.57 10.26 0.05 -0.16 2.08 -2.61 

424 0.57 3.53 0.00 0.00 4.85 -1.23 

312 0.56 26.34 0.00 -0.01 8.03 -2.06 

368 0.55 -2.54 0.10 -0.43 2.01 4.54 

24 0.55 5.21 0.02 -0.09 2.87 -0.23 

103 0.54 20.27 0.06 -0.18 2.20 -1.08 

440 0.54 2.09 -0.08 -0.05 7.78 -1.94 

232 0.53 17.43 0.01 -0.03 5.41 -0.07 

310 0.52 32.56 0.25 -0.44 0.27 -0.98 

43 0.50 7.25 0.01 -0.02 4.65 0.16 

452 0.47 22.21 0.10 -0.47 1.11 -1.58 

22 0.45 19.86 0.06 -0.05 1.62 -3.82 

350 0.43 7.60 -0.01 0.02 8.24 0.04 

227 0.40 19.85 0.01 -0.02 5.06 -1.29 

23 0.39 5.00 0.01 -0.02 1.77 0.18 

325 0.39 36.43 0.17 -0.05 0.80 -10.90 

356 0.31 9.19 0.00 0.07 -0.24 0.07 

42 0.31 13.60 0.02 -0.02 2.97 -0.31 

414 0.30 8.43 0.00 -0.02 3.06 -0.27 

321 0.30 18.75 0.09 -0.84 0.96 -0.53 
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30 0.30 15.94 0.04 -0.25 1.43 2.83 

127 0.26 38.47 0.02 -0.08 2.85 -1.25 

341 0.23 11.77 0.11 -0.49 0.98 2.45 

116 0.23 11.96 0.01 -0.06 2.17 -0.06 

333 0.23 15.81 0.08 -0.13 0.99 0.81 

167 0.22 21.42 0.04 -0.09 0.54 -1.05 

373 0.21 45.33 0.03 -0.09 3.20 1.25 

439 0.17 67.65 -0.01 -0.08 -0.77 0.32 

214 0.15 57.73 0.00 0.00 0.40 -0.05 

131 0.15 16.45 0.00 0.00 0.99 -0.11 

327 0.13 23.05 0.02 -0.24 2.20 4.64 

242 0.11 15.39 0.00 0.00 0.98 0.01 

 

  



C-10 

 

 

C.2 Shape-based clustering outcomes and catchment cluster allocation 

 

Table C.4: Catchment allocation to cluster, for reservoirs and lochs. Clustering based on seasonal profile 

extracted from time series 2011-2016 with daily values interpolated, logged, and means taken for every 

day of the year. The k-shape algorithm was used and run five times with k=2. The two resulting clusters 

were identified as either “sine” (seasonal profile looking as expected) or “v-shape” (seasonal profile with 

dip in summer and peak in winter) and catchment allocation to cluster noted. Final group was allocated 

according to which cluster the catchment fell into predominantly. 

Water source Cluster run Allocated group 

 1 2 3 4 5  
Reservoirs 

1 sine sine sine sine vshape sine 
2 sine vshape sine sine vshape sine 
3 sine sine sine sine sine sine 
4 sine vshape sine sine vshape sine 
5 sine sine sine sine sine sine 
6 sine sine sine sine sine sine 
7 sine vshape sine sine vshape sine 
8 sine sine sine sine sine sine 
9 vshape vshape vshape vshape vshape vshape 

10 vshape vshape vshape vshape vshape vshape 
11 vshape vshape vshape vshape vshape vshape 
12 sine vshape sine sine sine sine 
13 sine sine sine sine sine sine 
14 vshape vshape vshape vshape vshape vshape 
15 sine sine sine sine sine sine 
16 sine sine sine sine sine sine 
17 sine sine sine sine sine sine 
18 sine sine sine sine sine sine 
19 vshape vshape vshape vshape vshape vshape 
20 sine sine sine sine sine sine 
21 vshape vshape vshape vshape vshape vshape 
22 sine vshape sine sine vshape sine 
23 sine sine sine sine sine sine 
24 sine sine sine sine sine sine 
25 sine sine sine sine sine sine 
26 sine sine sine sine sine sine 
27 vshape vshape vshape vshape vshape vshape 
28 sine sine sine sine sine sine 
29 vshape vshape vshape vshape vshape vshape 
30 vshape vshape vshape vshape vshape vshape 
31 sine sine sine sine sine sine 
32 sine sine sine sine sine sine 
33 sine sine sine sine sine sine 
34 vshape vshape sine vshape vshape vshape 
35 sine vshape sine sine vshape sine 
36 sine sine sine sine sine sine 
37 sine sine sine sine sine sine 
38 vshape vshape vshape vshape vshape vshape 
39 sine sine sine sine sine sine 
40 sine vshape sine sine vshape sine 
41 sine sine sine sine sine sine 
42 vshape vshape vshape vshape vshape vshape 
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43 sine sine sine sine sine sine 
44 vshape vshape sine vshape vshape vshape 
45 vshape vshape vshape vshape vshape vshape 
46 sine sine sine sine sine sine 
47 sine sine sine sine sine sine 
48 sine sine sine sine sine sine 
49 sine vshape sine sine vshape sine 
50 sine vshape sine sine vshape sine 
51 vshape vshape sine vshape vshape vshape 
52 sine vshape sine sine vshape sine 
53 sine sine sine sine sine sine 
54 sine sine sine sine sine sine 
55 vshape vshape sine vshape vshape vshape 
56 sine vshape sine sine vshape sine 
57 sine sine sine sine sine sine 
58 sine sine sine sine sine sine 
59 sine sine sine sine sine sine 
60 sine vshape sine sine vshape sine 
61 sine sine sine sine sine sine 
62 sine sine sine sine sine sine 
63 vshape vshape sine vshape vshape vshape 
64 vshape vshape vshape vshape vshape vshape 
65 sine sine sine sine sine sine 

Lochs 
1 sine sine sine sine sine sine 
2 sine sine vshape vshape vshape vshape 
3 sine sine vshape vshape vshape vshape 
4 vshape vshape sine sine sine inconclusive 
5 sine sine sine sine sine sine 
6 sine sine sine sine sine sine 
7 sine sine vshape vshape vshape vshape 
8 sine sine sine sine sine sine 
9 sine sine sine sine sine sine 

10 sine sine sine sine sine sine 
11 vshape vshape vshape vshape vshape vshape 
12 sine vshape sine vshape vshape inconclusive 
13 sine sine sine sine sine sine 
14 sine sine sine sine sine sine 
15 sine sine sine sine sine sine 
16 vshape vshape vshape vshape vshape vshape 
17 sine sine sine sine sine sine 
18 sine sine sine sine sine sine 
19 sine sine sine sine sine sine 
20 sine sine sine sine sine sine 
21 sine sine vshape vshape vshape vshape 
22 sine sine sine sine sine sine 
23 sine sine vshape vshape vshape vshape 
24 sine sine sine sine sine sine 
25 sine sine vshape vshape vshape vshape 
26 sine sine vshape vshape vshape vshape 
27 sine sine sine sine sine sine 
28 sine sine vshape vshape vshape inconclusive 
29 vshape vshape vshape vshape vshape vshape 
30 sine sine sine sine sine sine 
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31 sine sine sine sine sine sine 
32 sine sine vshape vshape vshape vshape 
33 sine sine sine sine sine sine 
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C.3 TOC climate sensitivity relationships and group allocations 
 

Table C.5: Results of Spearman's rank correlation tests run per catchment on sampled TOC concentrations from 2013 – 2016 and corresponding 3-day antecedent rainfall (short 

rainfall), 60-day antecedent rainfall (long rainfall), and 60-day antecedent mean temperature (temperature), split by season. Rho values are given with highlights indicating statistical 

significance (p<0.05). Included are also season of maximum and minimum mean TOC concentrations, overall TOC median and the ratio between the concentration median and 

concentration range per catchment.  

 TOC concentrations Summer Autumn Winter Spring all Category 

 Max Min Med Rat 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture  

1 Sum Win 4.35 0.85 0.77 0.58 0.03 0.47 -0.30 -0.15 0.15 -0.01 0.43 0.47 0.10 0.24 0.38 -0.09 0.25 Rainfall 

2 Sum Spr 3.85 0.86 0.69 0.36 0.76 0.74 0.78 -0.15 0.02 0.21 -0.07 0.43 -0.11 0.76 0.31 -0.04 0.58 Rainfall+Temp 

3 Sum Win 2.9 1.09 0.75 0.12 0.68 0.76 0.05 -0.05 -0.03 0.13 0.09 0.76 -0.34 0.07 0.55 -0.17 0.39 Rainfall+Temp 

4 Aut Sum 7.4 0.9 0.26 0.43 0.39 -0.03 -0.03 0.16 0.08 -0.33 0.66 0.30 -0.26 0.62 -0.01 -0.39 0.72 Wet up 

5 Sum Win 3.9 0.72 0.73 -0.04 0.36 -0.37 -0.33 0.76 0.38 -0.57 0.44 0.59 -0.15 0.71 0.11 -0.58 0.84 Rainfall+Temp 

6 Aut Sum 8.75 0.24 0.17 0.61 0.15 0.25 0.50 -0.67 -0.23 -0.43 0.53 0.06 0.38 0.24 0.07 0.28 0.13 Wet up 

7 Sum Spr 1.5 2.33 0.72 0.53 0.52 0.57 0.13 0.08 0.49 -0.47 0.27 0.79 0.20 0.43 0.67 0.10 0.41 Rainfall 

8 Aut Spr 6.5 0.6 0.54 -0.11 0.37 0.41 0.40 0.27 0.24 -0.19 0.50 0.76 -0.76 0.49 0.09 -0.55 0.70 Rainfall 

9 Sum Win 1.1 2.17 0.67 -0.03 0.67 0.73 -0.56 -0.19 0.34 -0.35 0.65 0.43 -0.54 -0.11 0.47 -0.48 0.35 Rainfall+Temp 

10 Sum Win 2.4 0.99 0.72 -0.31 -0.25 0.39 -0.08 0.29 -0.12 0.13 0.16 0.55 0.19 0.31 0.39 -0.26 0.35 Rainfall 

11 Sum Win 4.45 0.53 0.63 0.22 0.27 0.73 0.12 0.63 0.25 -0.39 0.51 0.46 0.04 0.52 0.35 -0.25 0.62 Rainfall+Temp 

12 Sum Win 3.6 0.71 0.81 -0.14 0.82 0.51 -0.37 0.16 0.05 -0.16 0.45 0.58 -0.41 0.12 0.41 -0.47 0.59 Rainfall+Temp 

13 Sum Win 3.6 0.86 0.84 -0.12 0.39 0.64 -0.14 0.69 0.27 0.70 0.64 0.23 0.00 0.79 0.20 -0.41 0.78 Rainfall+Temp 

14 Win Spr 1.7 1.3 0.68 -0.04 -0.08 0.88 0.37 -0.14 0.67 -0.32 0.62 0.93 0.20 0.48 0.76 0.09 0.15 Rainfall 

15 Sum Win 12.25 0.4 0.58 0.32 0.70 0.11 0.12 0.61 0.38 -0.35 0.65 -0.11 -0.35 0.61 -0.08 -0.54 0.85 Rainfall+Temp 

16 Sum Spr 4.8 0.54 0.37 -0.17 0.23 0.38 0.69 -0.10 0.00 -0.06 0.82 -0.35 -0.21 -0.35 -0.02 -0.10 0.52 Wet up 

17 Sum Spr 5.8 0.57 0.20 -0.83 0.34 0.12 -0.22 0.00 0.31 -0.44 0.13 0.63 -0.07 0.83 0.06 -0.58 0.58 Rainfall+Temp 

18 Sum Win 3.1 0.83 0.73 -0.42 0.61 0.55 0.00 0.73 -0.07 -0.10 0.32 0.73 0.21 0.49 0.46 -0.32 0.66 Rainfall+Temp 

19 Sum Spr 3.7 0.62 -0.04 0.44 0.08 -0.23 -0.23 0.69 -0.19 -0.41 0.60 0.20 -0.30 0.52 -0.09 -0.50 0.78 Temp 

20 Aut Spr 9.8 0.23 -0.02 0.76 0.14 0.27 0.48 -0.65 -0.04 -0.04 0.70 0.04 0.39 0.32 0.15 0.50 -0.05 Wet up 

21 Win Spr 6.1 0.49 0.01 -0.20 0.46 0.25 0.47 -0.32 0.74 -0.35 -0.18 0.20 0.10 0.28 0.46 0.25 0.26 Rainfall 

22 Sum Sum 3.5 0.51 0.21 0.16 0.26 0.64 0.38 -0.47 -0.20 -0.20 0.35 0.34 -0.37 0.56 0.41 0.01 0.07 Rainfall 

23 Aut Spr 6.5 0.22 -0.07 0.16 0.19 0.12 0.13 -0.35 -0.08 -0.26 0.52 -0.11 0.12 -0.05 0.09 0.15 0.01 None 

24 Aut Win 7.3 0.7 0.27 0.76 0.58 0.52 0.61 0.49 0.87 0.38 0.43 0.82 0.81 0.13 0.52 0.55 0.70 Wet up 

25 Win Aut 7.75 0.44 0.31 0.60 0.59 0.42 0.64 -0.17 0.09 -0.40 0.65 0.40 0.36 0.56 0.16 -0.01 0.60 Rainfall+Temp 

26 Sum Spr 3.5 0.68 0.80 0.69 0.22 0.58 0.61 -0.38 0.72 0.36 0.66 0.61 0.36 0.21 0.76 0.46 0.35 Rainfall 

27 Aut Sum 3.2 0.41 0.13 0.36 0.28 -0.11 0.45 -0.50 -0.02 -0.18 0.07 0.02 0.22 -0.46 0.11 0.31 0.00 Wet up 
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 TOC concentrations Summer Autumn Winter Spring all Category 

 Max Min Med Rat 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture  

28 Sum Win 3.85 1.07 0.68 0.36 0.40 0.34 -0.38 0.54 0.58 0.10 0.66 0.02 -0.44 0.65 0.17 -0.60 0.79 Rainfall+Temp 

29 Sum Win 8.2 0.48 0.37 0.56 0.20 0.42 -0.01 0.62 -0.08 0.23 0.13 0.52 0.22 0.52 0.18 -0.24 0.74 Wet up 

30 Win Sum 0.9 3.03 0.50 -0.02 0.21 0.61 0.53 0.12 0.45 -0.11 0.26 0.80 0.02 0.54 0.66 0.14 0.23 Rainfall 

31 Aut Spr 7.4 0.19 0.17 0.38 0.45 -0.18 0.15 0.09 -0.03 -0.69 0.51 -0.11 -0.32 -0.11 0.12 -0.24 0.45 None 

32 Sum Spr 4.5 0.37 0.16 0.47 0.52 0.15 0.58 -0.18 0.00 -0.35 0.48 0.12 -0.29 -0.10 0.09 0.06 0.40 Wet up 

33 Aut Spr 7.7 0.23 0.29 0.38 -0.01 0.28 0.74 -0.21 0.01 0.19 -0.03 0.08 -0.28 -0.15 0.19 0.30 -0.07 Wet up 

34 Sum Win 3.7 0.76 0.70 0.55 0.48 0.41 0.28 0.70 0.13 -0.43 0.59 0.73 -0.06 0.58 0.28 -0.36 0.77 Rainfall+Temp 

35 Sum Win 3.3 0.64 0.60 0.19 0.27 0.41 0.18 0.05 0.52 -0.04 0.75 0.69 0.19 0.63 0.36 -0.23 0.63 Rainfall+Temp 

36 Win Sum 5.4 0.4 0.08 0.14 -0.08 0.19 0.50 -0.07 0.05 0.29 0.21 0.08 0.25 -0.31 0.17 0.51 -0.38 Wet up 

37 Win Sum 3.5 0.79 0.18 0.09 -0.45 -0.04 0.51 -0.34 0.05 0.45 0.20 0.05 0.42 0.09 0.09 0.45 -0.39 Wet up 

38 Sum Spr 4.25 0.51 0.01 0.20 0.75 -0.01 0.50 0.10 0.31 0.07 0.27 0.46 0.44 -0.20 0.15 0.19 0.39 Temp 

39 Sum Spr 15.9 0.23 -0.01 0.60 0.68 0.00 0.70 0.01 0.05 0.08 0.45 0.05 0.13 0.04 0.04 0.49 0.26 Wetup 

40 Aut Sum 3.6 0.37 -0.12 -0.46 -0.02 0.03 0.29 -0.50 -0.05 -0.84 -0.07 0.09 -0.53 -0.47 0.30 0.34 -0.16 None 

41 Aut Sum 9.6 0.18 0.11 -0.38 -0.09 -0.50 0.70 -0.68 0.34 -0.53 0.65 0.11 0.38 -0.31 0.31 0.48 -0.17 Wet up 

42 Sum Win 5.25 0.87 0.68 0.50 0.35 0.07 -0.10 0.34 0.14 -0.44 0.73 0.33 -0.18 0.17 0.21 -0.22 0.69 Rainfall 

43 Win Spr 6.8 0.3 -0.25 0.20 -0.42 -0.61 0.20 -0.67 -0.43 -0.24 -0.22 -0.26 -0.37 -0.48 -0.21 0.45 -0.46 None 

44 Aut Win 6.5 0.3 0.33 0.48 0.52 -0.09 0.02 0.01 0.31 -0.73 0.60 0.00 -0.12 0.77 -0.08 -0.35 0.71 None 

45 Aut Spr 2.7 1.67 -0.11 0.08 0.11 0.56 0.34 0.11 -0.31 -0.39 0.18 -0.67 0.26 0.32 0.01 -0.05 0.37 None 

46 Aut Spr 8.65 0.44 0.32 -0.42 0.49 -0.44 -0.08 0.24 0.16 -0.50 0.59 -0.06 -0.53 0.85 -0.11 -0.55 0.82 None 

47 Aut Spr 2.85 0.64 0.21 0.52 0.37 0.21 -0.32 0.05 0.38 -0.08 0.37 0.68 -0.08 0.33 0.25 0.00 0.32 None 

48 Sum Spr 4.25 0.56 0.86 0.87 -0.03 0.62 0.27 -0.53 0.76 0.36 0.26 0.77 -0.36 0.45 0.57 -0.11 0.49 Rainfall 

49 Sum Spr 2.1 1 0.48 -0.22 0.52 0.68 -0.29 0.22 0.94 0.38 0.37 0.27 0.03 0.35 0.63 -0.31 0.64 Rainfall 

50 Aut Spr 7.3 0.39 0.13 0.17 0.18 0.03 0.48 -0.60 -0.23 -0.46 0.41 0.27 -0.05 0.52 0.02 -0.03 0.33 Wet up 

51 Sum Sum 3.2 0.44 0.03 0.32 0.09 0.17 0.59 -0.58 0.01 0.16 0.11 0.13 -0.20 -0.02 0.13 0.40 -0.11 Wet up 

52 Aut Spr 6.05 0.15 0.36 0.79 0.11 0.09 0.72 -0.26 0.30 -0.43 0.26 -0.25 -0.76 -0.30 0.19 0.25 0.33 Wet up 

53 Sum Win 3.95 0.52 -0.16 0.13 0.69 -0.16 0.02 0.58 -0.60 -0.46 0.12 0.11 -0.68 0.16 -0.10 -0.25 0.69 Temp 

54 Spr Sum 8.55 0.58 0.26 0.24 0.34 0.14 0.31 -0.10 0.05 0.35 -0.29 0.08 0.47 -0.51 0.19 0.60 -0.41 Wet up 

55 Aut Spr 4.6 0.39 0.21 0.24 0.48 0.20 0.65 -0.25 0.51 -0.42 0.07 -0.48 -0.79 -0.12 0.08 0.13 0.22 Wet up 

56 Aut Sum 7 0.22 0.51 0.15 0.31 0.05 0.55 -0.11 -0.39 -0.04 -0.12 -0.49 -0.39 -0.06 0.00 0.09 0.08 None 

57 Sum Spr 5 0.09 0.86 0.32 -0.02 0.31 -0.44 -0.19 -0.30 -0.17 -0.33 -0.26 0.31 -0.32 0.27 0.09 0.09 Rainfall 

58 Aut Spr 6.5 0.28 0.25 0.51 0.31 -0.29 0.27 0.21 0.07 0.00 0.55 0.00 -0.68 0.24 0.08 -0.11 0.66 None 

59 Spr Sum 4.2 0.11 0.14 0.79 -0.12 0.22 0.40 -0.03 -0.01 -0.72 -0.01 -0.03 -0.19 0.18 0.15 0.17 0.11 Wet up 

60 Sum Win 4.4 0.34 -0.31 0.77 0.60 -0.57 -0.43 0.64 0.50 -0.50 1.00 -0.63 -0.11 0.95 -0.32 -0.42 0.72 Temp 
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 TOC concentrations Summer Autumn Winter Spring all Category 

 Max Min Med Rat 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture  

61 Sum Aut 5.4 0.7 0.40 -0.26 0.75 -0.44 -0.29 0.76 -0.04 -0.58 0.23 0.28 -0.07 0.76 0.00 -0.46 0.85 Temp 

62 Win Sum 8.4 0.17 -0.39 0.26 0.26 -0.31 0.41 -0.03 -0.27 -0.46 -0.35 -0.59 0.27 -0.74 -0.03 0.58 -0.59 None 

63 Sum Win 2.2 0.56 0.15 -0.13 -0.02 0.25 0.45 0.33 -0.15 -0.16 0.05 -0.12 -0.06 0.20 0.00 -0.17 0.37 None 

64 Sum Spr 3.6 0.57 0.10 -0.08 0.71 0.08 -0.25 -0.01 0.41 0.26 0.50 0.32 -0.23 0.75 0.13 -0.43 0.81 Temp 

65 Sum Win 4.7 0.34 0.24 0.56 0.76 0.17 0.42 0.17 -0.29 -0.60 0.24 -0.49 -0.51 -0.10 -0.01 -0.21 0.64 Temp 

66 Win Sum 3.8 0.47 0.14 -0.10 -0.02 0.33 0.70 0.02 0.16 -0.02 -0.19 -0.44 0.24 -0.69 0.04 0.35 -0.28 Wet up 

67 Sum Spr 4.05 0.74 -0.55 0.13 0.51 -0.67 -0.53 0.60 -0.22 -0.88 0.19 -0.12 -0.23 0.79 -0.27 -0.43 0.84 Temp 

68 Win Sum 7.1 0.43 -0.06 0.32 -0.29 0.18 0.54 -0.24 0.03 0.05 -0.33 -0.15 -0.06 -0.17 0.05 0.43 -0.43 Wet up 

69 Aut Spr 10 0.25 0.09 0.58 0.24 -0.07 0.45 -0.29 0.03 -0.60 0.78 0.15 0.25 0.34 0.04 0.02 0.33 Wet up 

70 Aut Sum 3.5 0.5 0.12 0.40 0.48 -0.22 0.08 -0.38 -0.14 -0.51 0.50 -0.06 -0.47 -0.09 -0.01 -0.09 0.42 Wet up 

71 Sum Win 3.9 0.63 0.52 -0.01 0.93 -0.27 -0.20 0.84 0.45 -0.55 0.47 0.08 -0.47 0.62 0.09 -0.46 0.90 Temp 

72 Sum Spr 10.35 0.25 0.73 -0.20 0.78 0.12 -0.32 0.23 0.73 0.72 0.43 0.84 0.32 0.56 0.67 0.10 0.51 Rainfall+Temp 

73 Aut Sum 8.1 0.15 0.52 0.81 0.38 -0.05 0.68 -0.77 0.03 -0.35 0.53 0.03 0.10 0.47 0.11 0.25 0.34 Wet up 

74 Aut Spr 12.55 0.32 0.07 0.31 0.71 -0.01 0.09 0.01 0.76 0.18 0.50 0.03 -0.37 0.87 0.18 -0.16 0.79 Temp 

75 Sum Spr 4.35 0.47 0.26 0.24 0.79 -0.38 -0.42 0.47 0.42 -0.38 0.65 -0.38 -0.72 0.41 -0.06 -0.40 0.82 Temp 

76 Sum Win 6.1 0.42 -0.09 0.73 0.77 -0.24 -0.25 0.82 -0.05 -0.07 0.46 0.20 -0.44 0.10 0.07 -0.19 0.72 Wet up 

77 Sum Aut 4.5 0.47 0.24 0.27 0.18 0.31 0.56 -0.14 0.19 -0.31 -0.21 -0.03 -0.17 -0.17 0.21 0.13 0.08 Wet up 

78 Win Sum 5.9 0.45 0.39 0.50 -0.06 0.32 0.27 -0.45 -0.19 -0.30 0.16 0.20 0.17 -0.61 0.14 0.29 -0.35 None 

79 Aut Win 8.95 0.45 0.55 0.51 0.73 0.16 -0.42 0.89 0.15 -0.40 0.71 -0.34 -0.35 0.74 0.05 -0.26 0.88 Temp 

80 Win Spr 6.9 0.38 0.12 0.44 0.33 0.08 0.37 -0.34 -0.33 -0.74 0.34 -0.03 -0.34 -0.41 0.09 0.03 0.24 Wet up 

81 Sum Win 6.85 0.42 0.13 -0.10 0.91 -0.01 -0.61 0.51 0.34 -0.53 0.67 0.32 -0.29 0.58 0.02 -0.47 0.87 Temp 

82 Aut Aut 9.95 0.23 0.61 0.42 0.39 0.31 0.42 0.04 0.44 -0.14 0.31 0.25 0.27 0.07 0.44 0.44 0.06 None 

83 Sum Spr 5.5 0.62 0.23 0.48 0.39 0.16 0.30 -0.11 -0.18 -0.51 0.48 -0.14 -0.35 0.46 0.04 0.04 0.63 Wet up 

84 Aut Spr 3.3 0.33 -0.31 0.59 -0.08 0.00 0.40 -0.24 0.01 -0.40 0.26 0.14 -0.24 0.04 0.14 0.21 0.01 Wet up 

85 Win Spr 5.9 0.14 -0.17 0.28 -0.05 0.37 0.55 -0.52 0.31 -0.45 0.38 -0.47 -0.25 -0.44 0.01 0.14 0.11 None 

86 Aut Spr 9.1 0.16 0.08 0.82 0.08 0.11 0.47 -0.06 -0.31 0.14 -0.16 0.27 -0.08 -0.27 0.03 0.43 0.15 Wet up 

87 Aut Spr 9.5 0.31 0.18 0.75 0.49 0.07 0.48 0.24 0.40 -0.05 0.45 -0.16 0.33 0.31 0.29 0.20 0.49 Wet up 

88 Aut Spr 3.55 0.43 0.31 0.39 0.75 0.11 -0.06 0.57 -0.42 -0.69 0.45 -0.38 -0.34 0.16 -0.06 -0.14 0.76 Temp 

89 Sum Spr 4.2 0.45 0.01 0.40 0.32 -0.13 0.33 -0.08 -0.17 -0.49 0.32 -0.11 -0.47 -0.25 -0.10 -0.05 0.31 Wet up 

90 Aut Sum 3.05 0.35 0.29 0.38 0.48 0.09 0.63 -0.22 -0.52 -0.52 0.48 0.48 -0.22 -0.36 0.26 0.16 0.35 Wet up 

91 Sum Win 5.45 0.6 -0.16 0.74 0.66 -0.02 -0.29 0.88 -0.11 -0.20 0.54 -0.19 -0.47 0.15 -0.22 -0.33 0.78 Wet up 

92 Sum Spr 7 0.41 0.16 0.64 0.72 0.13 0.64 -0.01 0.35 -0.21 0.69 0.05 -0.24 0.20 0.21 0.15 0.59 Wet up 

93 Win Sum 4.2 0.78 0.02 0.27 0.47 -0.05 0.19 -0.11 -0.03 -0.45 0.36 0.04 -0.29 -0.45 0.00 -0.02 0.29 None 
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 TOC concentrations Summer Autumn Winter Spring all Category 

 Max Min Med Rat 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture  

94 Win Spr 3.4 0.15 -0.21 0.13 0.05 -0.10 0.36 -0.04 -0.44 -0.45 0.52 -0.11 -0.20 0.16 -0.17 0.06 0.13 None 

95 Aut Sum 8.9 0.36 -0.21 0.67 0.49 0.74 0.30 -0.56 0.31 0.48 0.68 0.18 -0.04 0.26 0.46 0.55 0.14 Rainfall 

96 Aut Win 10.8 0.43 0.22 0.82 0.17 0.34 0.24 -0.30 0.25 -0.28 0.36 0.20 0.09 0.01 0.28 0.44 0.31 Wet up 

97 Aut Win 5.95 0.26 0.40 -0.27 0.49 0.22 0.49 0.14 0.55 -0.49 0.00 0.39 0.32 -0.14 0.29 0.07 0.17 None 

98 Sum Spr 6.5 0.2 0.35 0.60 0.70 0.09 -0.05 0.20 -0.28 -0.37 0.19 -0.31 -0.76 -0.31 -0.12 0.17 0.43 Wet up 

99 Win Spr 3.8 0.09 0.66 0.31 0.28 -0.16 -0.26 -0.45 -0.38 0.05 0.09 -0.22 -0.29 -0.15 0.03 0.15 -0.07 None 

100 Aut Sum 3.6 0.74 0.19 0.44 0.17 0.55 0.56 -0.59 -0.06 -0.35 0.38 0.24 -0.26 -0.12 0.17 0.14 0.19 Wet up 

101 Aut Sum 5.3 0.16 -0.07 0.81 -0.07 0.10 0.23 -0.07 -0.41 -0.05 0.38 -0.21 -0.40 -0.43 -0.05 0.26 -0.03 Wet up 

102 Sum Spr 5.75 0.85 0.68 0.30 0.46 0.66 0.08 0.75 0.42 -0.29 0.45 0.59 0.34 0.35 0.50 -0.21 0.77 Rainfall+Temp 

103 Sum Spr 6.4 0.14 -0.35 0.32 0.18 -0.49 0.77 -0.02 -0.11 -0.11 0.42 -0.22 0.00 -0.17 -0.14 0.09 0.54 Wet up 

104 Sum Win 2.6 0.92 0.45 0.09 0.42 0.61 -0.18 0.28 0.28 0.52 0.46 0.14 0.32 0.01 0.23 -0.30 0.63 Rainfall 

105 Sum Win 4.45 0.88 0.70 0.35 0.79 0.59 0.51 0.03 0.39 -0.13 0.56 0.29 0.02 0.71 0.29 -0.20 0.60 Rainfall+Temp 

106 Aut Spr 3.15 0.62 -0.18 0.67 0.37 0.56 0.86 -0.31 0.81 0.27 -0.05 0.70 0.54 -0.48 0.41 0.58 -0.03 Wet up 

107 Aut Spr 8.9 0.12 -0.09 0.66 0.28 0.23 0.52 -0.69 0.34 -0.37 0.30 -0.13 -0.18 -0.44 0.15 0.13 0.14 Wet up 

108 Aut Spr 18.8 0.2 0.01 0.63 0.50 0.03 -0.30 -0.22 -0.10 0.00 0.68 0.22 -0.23 0.32 0.08 -0.11 0.60 Wet up 

109 Sum Win 3.2 0.87 0.74 -0.02 0.36 0.38 0.28 0.13 0.05 -0.32 0.25 0.72 0.22 0.44 0.46 -0.06 0.53 Rainfall 

110 Sum Spr 2.1 0.83 0.15 0.48 0.41 -0.24 0.85 0.07 -0.18 -0.53 -0.13 0.21 -0.26 0.74 0.00 -0.10 0.65 Wet up 

111 Aut Spr 2.7 1.55 0.35 0.46 0.71 -0.04 0.35 0.59 0.37 -0.39 0.25 0.27 0.29 -0.30 0.16 0.15 0.32 Temp 

112 Sum Spr 3.15 0.71 0.40 0.72 0.35 0.67 0.36 -0.37 0.55 0.69 -0.50 0.85 0.24 -0.14 0.66 0.38 -0.12 Wet up 

113 Sum Spr 2.3 1.35 0.79 -0.18 0.44 0.54 0.06 0.28 0.72 0.41 0.45 0.61 0.00 0.67 0.49 -0.27 0.62 Rainfall+Temp 

114 Sum Spr 2.4 0.77 0.18 -0.25 0.44 0.38 -0.11 -0.04 0.20 -0.29 0.16 -0.16 -0.23 -0.03 0.13 -0.27 0.43 Temp 

115 Aut Sum 3.7 0.46 -0.17 0.70 0.43 -0.15 0.14 -0.55 0.13 -0.67 0.29 0.60 0.01 -0.86 0.32 0.49 0.24 Wet up 

116 Aut Win 5.5 0.44 0.54 0.69 0.11 0.40 0.23 0.56 0.13 -0.88 0.33 0.62 -0.05 -0.09 0.26 -0.07 0.72 Wet up 

117 Sum Spr 6.05 0.81 0.62 0.31 0.45 0.60 0.15 0.68 0.62 -0.31 0.51 0.59 0.34 0.35 0.54 -0.18 0.75 Rainfall+Temp 

118 Sum Win 6.75 0.59 -0.03 0.02 0.69 -0.48 -0.71 0.63 0.25 -0.18 0.25 0.47 -0.07 0.84 -0.20 -0.58 0.84 Temp 

119 Sum Win 3.2 0.97 0.63 0.05 0.52 0.80 0.54 -0.18 -0.78 -0.30 -0.25 0.64 -0.26 0.78 0.20 -0.35 0.57 Rainfall 

120 Sum Spr 2.8 0.77 -0.04 0.08 0.19 0.14 0.34 -0.23 -0.25 -0.65 0.26 0.09 -0.26 -0.24 -0.03 -0.18 0.29 None 

121 Win Spr 7.05 0.52 0.44 0.72 0.25 0.70 0.48 -0.69 0.60 0.19 0.20 0.36 0.57 -0.16 0.51 0.59 -0.07 Rainfall 

122 Sum Win 3.6 0.61 0.61 -0.06 0.56 0.70 0.13 0.14 0.12 0.07 0.65 0.24 -0.34 0.51 0.23 -0.40 0.73 Rainfall+Temp 

123 Sum Win 4.45 0.72 0.80 -0.05 0.59 0.05 -0.73 0.51 0.22 0.20 0.17 0.64 -0.08 0.57 -0.11 -0.48 0.80 Rainfall+Temp 

124 Sum Win 9.7 0.57 0.34 0.35 0.38 0.12 -0.38 0.51 0.20 -0.15 0.45 0.51 -0.43 0.73 0.20 -0.58 0.76 Temp 

125 Aut Sum 8 0.37 -0.10 0.10 -0.24 0.43 0.42 -0.57 0.21 0.10 0.39 0.23 0.26 0.07 0.22 0.46 -0.20 Wet up 

126 Aut Spr 5.4 0.28 -0.03 0.36 -0.04 0.37 0.60 -0.62 -0.06 0.34 0.38 -0.08 0.52 0.02 0.23 0.63 -0.36 Wet up 
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 TOC concentrations Summer Autumn Winter Spring all Category 

 Max Min Med Rat 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture 

Short 

rainfall 

Long 

rainfall 
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ture 

Short 

rainfall 

Long 

rainfall 
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ture 

Short 

rainfall 

Long 

rainfall 

Tempera-

ture  

127 Aut Win 7.35 0.33 -0.22 0.38 0.62 0.67 -0.17 0.23 0.40 -0.30 0.44 0.05 0.26 0.85 0.05 -0.31 0.85 Rainfall+Temp 
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C.4 Model estimates for TOC median values for projected climate data 

 

Table C.6: Outputs from the chosen multiple linear regression model for TOC median projections. Model 

estimate = estimate value derived when using projected climate change data (for AAT and SER); lower 

confidence and upper confidence interval = 5th and 9th percentiles; projected TOC median value = median 

TOC the model estimates (inverse log-transformed); projected change = difference between the projected 

median and the current (2013 – 2016) median. 

ID Model 

estimate 

lower 

confidence 

interval 

upper 

confidence 

interval 

Projected 

TOC median 

value 

Projected 

change in 

TOC median 

2 2.408791 2.121973 2.695609 11.12051 2.470507 

6 2.686025 2.230565 3.141484 14.67323 8.773232 

7 2.036096 1.686219 2.385973 7.660645 3.960645 

9 2.417386 1.988614 2.846158 11.2165 4.716498 

15 1.720312 1.343481 2.097143 5.58627 1.73627 

16 1.504174 1.107466 1.900881 4.500434 -3.69957 

17 3.055744 2.432945 3.678543 21.23698 14.23698 

20 1.994402 1.632942 2.355863 7.347811 5.047811 

21 1.905598 1.635015 2.17618 6.723424 3.523424 

22 3.286708 2.467634 4.105781 26.75464 19.05464 

23 3.31982 2.436432 4.203207 27.65537 22.65537 

24 3.23054 2.40033 4.060751 25.29332 18.89332 

25 1.719525 1.338736 2.100314 5.581875 -1.16813 

32 1.887549 1.541125 2.233974 6.603166 3.103166 

33 1.370374 1.001625 1.739123 3.936822 0.236822 

34 2.886481 2.4011 3.371862 17.9301 5.380104 

42 2.061883 1.72303 2.400736 7.860756 3.660756 

43 1.850856 1.538447 2.163265 6.365267 2.165267 

45 2.078871 1.812226 2.345516 7.995436 0.595436 

59 2.926347 2.390816 3.461878 18.65935 9.759349 

75 1.077273 0.724324 1.430223 2.936661 2.036661 

80 2.78807 2.349006 3.227134 16.24963 8.949634 

89 2.409434 2.130175 2.688692 11.12766 4.62766 

103 2.77434 2.356195 3.192486 16.02805 8.62805 

116 2.039823 1.757373 2.322273 7.689245 4.389245 

126 2.427549 2.11355 2.741548 11.33107 4.831073 

127 2.4256 2.094059 2.757141 11.30901 1.309011 

138 2.258692 1.658387 2.858997 9.570563 4.170563 

146 2.382277 1.825009 2.939546 10.82954 1.029539 

167 2.159931 1.833859 2.486004 8.670542 5.070542 

192 2.641912 2.307338 2.976485 14.04002 10.84002 

193 2.420667 2.03486 2.806475 11.25337 6.753365 

201 3.238406 2.774613 3.702198 25.49305 6.693045 

203 3.076988 2.553609 3.600368 21.69297 13.94297 

208 2.23483 1.765855 2.703806 9.344898 6.644898 

211 2.429529 1.937682 2.921377 11.35354 4.003537 

212 1.687558 1.541074 1.834042 5.406262 1.906262 

213 3.045093 2.512833 3.577353 21.01198 15.71198 

214 2.973506 2.304969 3.642043 19.56038 9.210377 

215 2.997342 2.50657 3.488115 20.03223 13.13223 

222 3.346562 2.747061 3.946062 28.4049 19.6549 

227 2.963003 2.497857 3.42815 19.35602 13.95602 

232 2.711386 2.259218 3.163554 15.05012 7.050118 
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242 2.34154 1.510295 3.172785 10.39724 6.14724 

266 1.311027 1.014721 1.607332 3.709981 0.109981 

268 1.566868 1.260208 1.873529 4.791618 0.941618 

270 1.292904 0.827197 1.758611 3.643351 -1.75665 

271 2.640219 2.326294 2.954144 14.01627 1.76627 

273 1.011649 0.694175 1.329122 2.750131 -0.14987 

276 1.015869 0.585798 1.445939 2.761762 1.261762 

277 1.263364 0.855894 1.670834 3.537301 -0.3627 

278 2.042902 1.658058 2.427747 7.712962 4.612962 

279 1.436008 1.020982 1.851034 4.20388 1.00388 

280 2.489043 2.193335 2.78475 12.04973 8.899733 

296 2.377466 1.940957 2.813975 10.77756 7.277557 

297 2.77365 2.281711 3.26559 16.01699 8.71699 

299 1.920128 1.315546 2.52471 6.82183 3.67183 

305 2.771435 2.220072 3.322797 15.98154 8.931545 

310 2.050067 1.85347 2.246663 7.76842 1.86842 

311 2.81649 2.377393 3.255587 16.71806 7.61806 

312 3.083578 2.584217 3.582939 21.83639 5.936394 

319 2.286274 1.91494 2.657608 9.838208 6.038208 

320 2.607453 2.229311 2.985596 13.56446 9.764463 

321 2.370217 1.649533 3.090901 10.69971 7.299711 

327 2.377912 1.871838 2.883985 10.78236 6.282362 

330 3.058554 2.505389 3.611719 21.29674 12.89674 

333 2.392587 2.080473 2.704701 10.94176 6.341761 

334 1.614292 1.35149 1.877093 5.024329 -1.47567 

335 0.925138 0.655216 1.195059 2.522215 0.122215 

337 1.669841 1.435505 1.904177 5.311323 1.711323 

338 0.890363 0.699452 1.081274 2.436014 1.336014 

339 1.492317 1.227145 1.757488 4.447387 -1.35261 

340 2.12435 1.82246 2.426241 8.367459 2.317459 

341 1.95954 1.540725 2.378356 7.096064 4.396064 

342 1.611898 1.226566 1.99723 5.012318 1.112318 

343 1.350902 1.104834 1.59697 3.860906 0.260906 

344 2.409464 2.040162 2.778765 11.12799 6.92799 

346 2.350026 2.030224 2.669828 10.48584 3.985838 

349 2.885168 2.369673 3.400663 17.90657 9.006567 

350 3.067798 2.493784 3.641811 21.49452 10.69452 

356 2.490077 1.960419 3.019735 12.0622 5.962203 

357 2.888821 2.411973 3.365668 17.9721 11.1721 

365 1.937646 1.705409 2.169883 6.942387 1.442387 

368 2.070179 1.575148 2.56521 7.926242 4.326242 

373 2.782664 2.367373 3.197956 16.16202 6.562025 

376 2.221763 2.021604 2.421922 9.223581 5.523581 

384 1.867687 1.598538 2.136836 6.473306 -3.22669 

388 1.223817 0.960295 1.487338 3.40014 -0.94986 

393 1.305417 1.090506 1.520327 3.689225 -1.56077 

398 1.975791 1.672414 2.279168 7.212322 2.412322 

401 1.700627 1.414062 1.987192 5.477381 1.027381 

402 1.298501 1.064823 1.532178 3.663799 0.613799 

407 1.77894 1.477292 2.080587 5.923572 0.173572 

410 2.535153 2.062123 3.008184 12.61837 9.318368 

411 1.989182 1.581597 2.396767 7.309552 5.209552 

412 1.659249 1.436531 1.881966 5.255362 2.655362 

415 2.373953 2.140038 2.607869 10.73977 5.239768 
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416 0.703496 0.444874 0.962117 2.020804 -1.5792 

418 2.234456 1.559072 2.90984 9.3414 6.4914 

422 2.549207 1.885644 3.21277 12.79696 8.546956 

424 1.981892 1.352745 2.611038 7.256456 4.856456 

425 1.51892 1.126948 1.910892 4.567291 2.867291 

426 0.831121 0.563482 1.09876 2.29589 0.19589 

427 1.78478 1.260185 2.309374 5.958268 1.508268 

429 2.640083 2.250343 3.029822 14.01436 4.514362 

432 1.868055 1.469029 2.267081 6.475689 1.025689 

433 1.64387 1.336442 1.951298 5.175158 0.825158 

434 2.051122 1.626867 2.475377 7.776623 1.676623 

436 2.909544 2.384815 3.434272 18.34842 11.34842 

437 2.338275 1.975023 2.701527 10.36334 5.663344 

440 2.347251 2.019476 2.675025 10.45678 4.50678 

442 2.267259 1.890472 2.644047 9.65291 0.70291 

445 2.65458 2.327807 2.981353 14.21901 7.369011 

446 1.755287 1.510737 1.999838 5.78511 1.38511 

447 2.537995 2.179601 2.89639 12.65428 4.554277 

448 2.853396 2.389938 3.316854 17.34659 13.29659 

449 1.791747 1.448973 2.134522 5.999927 3.799927 

450 1.713241 1.416756 2.009726 5.546911 1.996911 

451 1.834045 1.649952 2.018139 6.259156 1.809156 

452 2.768509 2.321841 3.215177 15.93486 8.834858 

456 1.814263 1.511314 2.117211 6.136549 0.086549 

1311 2.383036 2.132348 2.633725 10.83776 8.03776 

1361 2.577167 1.937398 3.216936 13.1598 9.659802 

3001 1.685605 1.425163 1.946046 5.395712 1.445712 

3251 3.140442 2.549912 3.730972 23.11409 13.16409 

4141 2.217424 1.426924 3.007925 9.183644 5.983644 

4391 2.368658 2.055694 2.681622 10.68305 2.133046 
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C.5 Model estimates for E. coli median values for projected land use data 

 

Table C.7: Outputs from the chosen multiple linear regression model for E. coli median projections. 

Model estimate = estimate value derived when using projected land capability data (for LCA and LCL); 

lower confidence and upper confidence interval = 5th and 9th percentiles; projected E. coli median value 

= median E. coli the model estimates (inverse log-transformed); projected change = difference between 

the projected median and the current (2011 – 2016) median. 

Catchment 

ID 

Model 

estimate 

lower 

confidence 

interval 

upper 

confidence 

interval 

Projected E. 

coli median 

value 

Projected change 

in E. coli median 

1 1.531978 3.627321 1.268304 1.795652 2.627321 

2 1.494472 3.456981 1.237458 1.751485 0.456981 

6 1.492642 3.448834 1.127837 1.857447 2.448834 

7 0.94072 1.561825 0.464197 1.417242 0.561825 

8 1.269433 2.558834 0.981419 1.557447 0.558834 

9 1.566884 3.791695 1.321077 1.812691 0.791695 

15 1.692481 4.432943 1.320445 2.064517 3.432943 

16 2.163395 7.700628 1.855356 2.471434 4.700628 

17 1.502806 3.494284 1.244598 1.761015 2.494284 

18 1.896683 5.663752 1.60551 2.187855 2.663752 

20 2.150893 7.592528 1.846942 2.454844 5.592528 

21 2.528769 11.53807 2.152132 2.905407 10.53807 

22 1.54448 3.685535 1.277874 1.811087 0.685535 

23 7.357858 1567.473 4.885822 9.829893 1566.473 

24 1.453013 3.275977 1.08752 1.818506 2.275977 

25 1.09857 1.999874 0.725811 1.47133 -1.00013 

31 1.183484 2.265731 0.839292 1.527675 1.265731 

32 1.542855 3.677926 1.277995 1.807715 2.677926 

33 1.855009 5.391755 1.552678 2.157339 2.391755 

34 1.548648 3.705103 1.280988 1.816307 0.705103 

39 1.163147 2.199989 0.816563 1.509732 1.199989 

42 1.440296 3.221944 1.186886 1.693705 2.221944 

43 1.450765 3.266376 1.091505 1.810025 2.266376 

45 1.419459 3.134882 1.165478 1.67344 0.134882 

59 1.639663 4.153433 1.390948 1.888379 1.153433 

63 2.75159 14.66752 2.274421 3.228759 11.66752 

75 1.442438 3.230999 0.916546 1.96833 1.230999 

76 2.106579 7.22007 1.834352 2.378805 5.22007 

80 2.501317 11.19855 1.653553 3.349082 8.198554 

89 2.400651 10.03036 1.642168 3.159135 7.03036 

103 4.29219 72.12641 3.155318 5.429061 69.12641 

116 3.614995 36.15115 2.795106 4.434884 35.15115 

126 1.997288 6.369046 1.547611 2.446965 3.369046 

127 2.201476 8.038346 1.605657 2.797295 4.038346 

138 5.304862 200.3132 3.774873 6.83485 199.3132 

146 2.736272 14.42935 2.286866 3.185677 11.42935 

167 2.094856 7.124271 1.669492 2.52022 6.124271 

192 2.269675 8.676258 1.647763 2.891588 7.676258 

193 1.809463 5.10717 1.275188 2.343739 4.10717 

201 1.632422 4.116252 1.368981 1.895863 0.116252 

203 2.233883 8.336052 1.640947 2.82682 4.336052 

208 2.444353 10.52309 1.746006 3.1427 9.523091 

211 2.085907 7.05189 1.418233 2.75358 3.05189 
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212 1.99651 6.363317 1.718675 2.274346 4.363317 

213 2.15927 7.664806 1.575481 2.743058 6.664806 

214 2.484545 10.99566 1.638324 3.330765 6.995657 

215 2.556553 11.89131 1.812215 3.300892 10.89131 

222 1.959817 6.098028 1.625112 2.294522 2.098028 

227 4.51544 90.41774 3.505257 5.525622 89.41774 

232 3.163302 22.64856 2.602398 3.724206 18.64856 

242 8.578804 5316.74 5.527713 11.62989 5312.74 

266 2.146726 7.556795 1.844077 2.449375 6.556795 

268 2.196734 7.995588 1.876523 2.516945 6.995588 

270 1.004787 1.731325 0.635833 1.37374 -0.26867 

271 2.659336 13.2868 2.253598 3.065073 10.2868 

272 2.765738 14.89076 2.257711 3.273764 12.89076 

273 1.984198 6.27321 1.704753 2.263643 5.27321 

276 2.000867 6.395467 1.72172 2.280015 4.395467 

277 0.858929 1.36063 0.435625 1.282232 -0.63937 

278 2.280082 8.777481 1.922507 2.637657 7.777481 

279 2.105052 7.207528 1.813643 2.396461 5.207528 

280 5.065788 157.5053 4.198331 5.933245 156.5053 

294 7.917869 2744.914 5.756055 10.07968 2739.914 

295 5.418753 224.5975 4.367383 6.470122 219.5975 

296 8.752623 6326.26 6.204897 11.30035 6321.26 

297 3.188542 23.25304 2.318297 4.058787 19.25304 

299 2.750967 14.65777 1.782037 3.719897 12.65777 

302 4.959238 141.4852 4.073254 5.845223 140.4852 

303 7.843767 2548.793 5.762983 9.924552 2543.793 

305 9.323303 11194.9 6.523656 12.12295 11189.9 

310 1.525443 3.59718 1.233131 1.817755 2.59718 

311 1.69383 4.440279 1.304218 2.083442 1.440279 

312 2.345013 9.433407 1.864229 2.825797 5.433407 

316 2.256021 8.545034 1.442531 3.069511 5.545034 

319 1.305732 2.690391 0.924211 1.687253 1.690391 

320 1.823938 5.196211 1.272763 2.375113 4.196211 

321 2.071537 6.937014 1.670977 2.472097 4.937014 

327 1.727235 4.625079 1.458992 1.995478 2.625079 

330 1.450849 3.266737 1.091915 1.809784 1.266737 

332 1.934189 5.918432 1.650083 2.218296 4.918432 

333 1.263165 2.536595 0.907491 1.618838 1.536595 

334 1.671644 4.320909 1.288401 2.054888 2.320909 

335 1.788331 4.979463 1.461819 2.114843 3.979463 

336 1.556982 3.744482 1.287105 1.826859 1.744482 

337 1.204821 2.336162 0.856642 1.553 0.336162 

338 1.896683 5.663752 1.60551 2.187855 4.663752 

339 1.871678 5.499196 1.574208 2.169149 2.499196 

340 1.344446 2.83606 1.079609 1.609282 1.83606 

341 2.426245 10.31631 1.986428 2.866063 8.316313 

342 2.213404 8.146797 1.886462 2.540345 6.146797 

343 2.096717 7.139405 1.807149 2.386285 5.139405 

344 1.523643 3.588914 1.261731 1.785556 2.588914 

346 1.531978 3.627321 1.268304 1.795652 1.627321 

349 3.079409 20.74554 2.416221 3.742596 16.74554 

350 2.337711 9.357501 2.007004 2.668418 5.357501 

352 1.031706 1.805848 0.584962 1.478449 -2.19415 

356 3.52409 32.9229 2.75511 4.293071 28.9229 
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357 1.695882 4.451452 1.439842 1.951922 3.451452 

365 1.907581 5.736775 1.372938 2.442225 4.736775 

367 1.125717 2.082427 0.373314 1.87812 1.082427 

368 1.342345 2.828009 0.967363 1.717326 0.828009 

369 1.6977 4.461371 1.43705 1.95835 1.461371 

373 1.363182 2.90861 0.981536 1.744828 -0.09139 

376 1.208989 2.350095 0.860476 1.557501 0.350095 

384 2.284249 8.818312 1.924585 2.643914 5.818312 

387 2.013369 6.488507 1.734029 2.29271 3.488507 

388 1.830005 5.233916 1.519455 2.140554 4.233916 

393 2.050876 6.774708 1.768826 2.332926 5.774708 

394 1.042293 1.835713 0.682511 1.402075 -0.16429 

398 2.409271 10.12584 1.979579 2.838963 9.125844 

400 1.033959 1.812176 0.672333 1.395584 0.812176 

401 2.000867 6.395467 1.72172 2.280015 5.395467 

402 1.075632 1.931846 0.722066 1.429199 0.931846 

405 1.204821 2.336162 0.856642 1.553 -0.66384 

407 2.088382 7.071847 1.800513 2.376252 6.071847 

410 4.019463 54.67119 3.096351 4.942574 53.67119 

411 2.247633 8.465301 1.710106 2.785159 7.465301 

412 1.796666 5.029509 1.473557 2.119774 4.029509 

415 2.11231 7.26732 1.803297 2.421324 5.26732 

416 1.529953 3.617961 1.061837 1.998069 2.617961 

418 4.550504 93.68008 3.753946 5.347062 92.68008 

422 4.018727 54.63024 3.303773 4.733681 53.63024 

424 5.437626 228.8958 4.388498 6.486753 226.8958 

425 1.684869 4.391747 1.025581 2.344157 3.391747 

426 2.067545 6.905395 1.783284 2.351807 5.905395 

427 1.91752 5.804061 1.630637 2.204402 3.804061 

428 1.431961 3.186901 1.178454 1.685468 0.186901 

429 1.549366 3.708482 1.290278 1.808453 0.708482 

432 0.763079 1.14487 0.291626 1.234531 -0.85513 

433 1.06313 1.89542 0.707454 1.418807 -0.10458 

434 1.167315 2.213352 0.820714 1.513915 0.213352 

436 1.279834 2.596043 0.920935 1.638733 0.596043 

437 1.258997 2.521888 0.904057 1.613937 0.521888 

440 1.652832 4.221748 1.348016 1.957648 2.221748 

442 1.043301 1.838571 0.588142 1.498459 -1.16143 

443 1.490304 3.438446 1.233825 1.746783 -0.56155 

444 0.90477 1.471363 0.501375 1.308164 -0.52864 

445 1.636163 4.135425 1.338542 1.933784 2.135425 

446 0.854761 1.350813 0.429537 1.279985 -0.64919 

447 1.594896 3.927814 1.313428 1.876363 0.927814 

448 1.346512 2.843995 0.970247 1.722777 0.843995 

449 1.346512 2.843995 0.970247 1.722777 1.843995 

450 1.048562 1.853544 0.645588 1.451536 -0.14646 

451 2.150893 7.592528 1.846942 2.454844 5.592528 

452 3.284284 25.68986 2.667135 3.901432 24.68986 

456 2.109219 7.241804 1.816838 2.401601 6.241804 

1311 2.368454 9.680869 2.021086 2.715822 8.680869 

1361 3.005885 19.2041 2.404314 3.607456 18.2041 

3001 1.519476 3.56983 1.258385 1.780567 2.56983 

3251 1.491119 3.442064 1.236418 1.745821 0.442064 

3281 1.486137 3.419987 1.23015 1.742124 1.419987 
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3851 1.213156 2.364085 0.864278 1.562034 1.364085 

4141 6.512253 672.3419 4.491521 8.532986 671.3419 

4391 1.665334 4.28744 1.354857 1.975811 0.28744 
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C.6 E. coli climate sensitivity relationships and group allocations 

 

Table C.8: Results of Spearman's rank correlation tests run per catchment on sampled E. coli concentrations from 2011 – 2016 and corresponding daily total rainfall, and total rainfall 

of the preceding 3, 10, and 30 days for the summer season (March to October) and the winter season (November to April). Rho values are given with highlights indicating statistical 

significance (p<0.05). NA = no data. 

 
Summer 

   
Winter 

   
Category  

Rain_rho Rain03_rho Rain10_rho Rain30_rho Rain_rho Rain03_rho Rain10_rho Rain30_rho 

1 0.08 0.10 0.21 0.02 0.61 0.29 0.31 -0.23 None 

2 0.28 0.08 0.23 0.13 -0.14 -0.09 -0.18 -0.78 None 

6 0.41 0.46 0.30 0.25 -0.26 0.43 0.31 0.03 None 

7 0.46 0.41 0.29 0.13 0.37 -0.10 -0.12 -0.55 None 

8 0.33 0.24 0.29 0.02 0.44 -0.28 0.20 -0.71 None 

9 -0.18 0.43 0.33 0.00 -1.00 -0.50 0.50 0.50 None 

15 0.26 0.70 0.33 0.10 0.62 0.46 -0.03 0.19 Medium 

16 0.11 0.31 0.12 0.04 -0.20 -0.29 -0.05 0.16 None 

17 0.09 0.30 0.71 0.09 -0.30 -0.30 -0.70 -0.70 Medium 

18 0.00 -0.11 0.10 0.11 0.11 0.00 -0.04 -0.70 None 

20 -0.18 -0.29 -0.31 -0.37 -0.32 0.21 0.63 0.95 None 

21 0.43 0.52 0.30 0.01 0.29 0.50 0.20 0.20 None 

22 0.06 0.13 0.04 -0.03 0.63 0.67 -0.36 -0.05 None 

23 0.30 0.66 0.72 0.80 -0.59 0.18 0.35 -0.19 Medium 

24 0.23 0.06 0.10 -0.14 0.88 0.84 -0.10 -0.54 None 

25 0.16 0.28 0.00 -0.20 -0.27 0.35 -0.07 -0.23 None 

30 -0.18 0.18 0.08 -0.19 -0.80 0.40 0.80 0.40 None 

31 -0.08 0.52 0.81 0.66 0.40 0.14 0.45 0.35 Long 

32 0.46 0.24 0.27 0.15 0.13 0.25 0.33 -0.21 None 

33 0.13 0.24 -0.34 -0.09 0.47 0.62 0.58 0.38 None 

34 -0.14 -0.01 0.34 0.30 0.09 0.20 0.66 -0.37 None 

39 0.30 0.20 -0.07 -0.26 0.70 0.39 0.94 -0.39 None 

42 0.16 0.18 0.24 -0.10 0.02 0.16 0.68 0.19 None 
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Summer 

   
Winter 

   
Category  

Rain_rho Rain03_rho Rain10_rho Rain30_rho Rain_rho Rain03_rho Rain10_rho Rain30_rho 

43 0.31 0.52 0.35 0.05 0.01 0.20 0.56 0.58 Medium 

45 -0.03 0.19 0.22 0.01 -0.30 -0.07 -0.18 -0.08 None 

59 0.18 0.73 0.65 0.44 0.43 0.41 0.41 0.19 Medium 

63 0.16 0.61 0.71 0.31 0.13 0.15 0.24 0.05 Medium 

75 -0.05 0.28 0.00 0.06 0.78 0.07 -0.51 -0.44 None 

76 0.28 0.14 0.07 -0.17 0.67 -0.45 -0.11 0.11 None 

80 0.14 0.28 0.32 0.12 0.27 0.40 0.55 0.30 None 

89 0.14 0.49 0.50 0.30 0.70 0.90 0.60 0.00 Medium 

103 -0.13 0.17 0.39 0.08 -0.06 -0.64 -0.26 -0.20 None 

116 0.10 0.15 0.42 0.21 0.23 0.53 0.62 0.42 Medium 

126 0.10 0.50 0.45 0.19 0.09 0.44 0.39 0.13 Medium 

127 0.26 0.37 0.49 0.31 0.57 0.78 0.38 0.23 Medium 

131 0.28 0.51 0.52 0.21 -0.26 0.56 0.34 0.40 Medium 

136 0.44 0.29 0.33 0.22 0.35 0.34 0.42 0.51 None 

138 0.33 0.34 0.51 0.50 0.02 0.11 0.16 0.30 Long 

146 0.05 0.24 0.44 0.60 0.44 0.15 0.06 -0.09 Long 

167 0.04 0.42 0.51 0.02 0.16 0.44 0.21 0.19 Medium 

192 0.18 0.26 0.49 0.38 -0.45 -0.31 0.38 0.18 None 

193 -0.11 0.54 0.57 0.52 0.51 0.43 0.55 0.58 Medium 

201 0.14 0.36 0.42 0.38 0.01 0.17 0.27 0.04 None 

203 0.10 0.49 0.62 0.34 0.02 0.57 0.39 0.22 Medium 

208 -0.31 0.34 0.69 0.56 0.31 0.70 0.37 0.29 Long 

211 0.34 0.57 0.30 0.14 0.67 0.81 0.26 -0.57 Medium 

212 0.17 0.37 0.39 0.02 0.14 0.86 0.48 0.52 None 

213 0.10 0.46 0.45 0.34 -0.32 -0.68 0.00 -0.02 None 

214 0.04 0.30 0.65 0.60 0.46 0.75 0.64 0.58 Long 

215 0.42 0.72 0.67 0.06 0.02 0.23 0.33 0.24 Medium 

222 0.08 0.29 0.70 0.39 0.43 0.53 0.55 0.54 Medium 

227 0.04 0.13 0.45 0.41 -0.17 0.42 0.45 0.22 Long 
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Summer 

   
Winter 

   
Category  

Rain_rho Rain03_rho Rain10_rho Rain30_rho Rain_rho Rain03_rho Rain10_rho Rain30_rho 

232 0.05 0.26 0.42 0.41 -0.14 0.19 0.37 0.38 Long 

242 0.21 0.48 0.38 0.02 0.14 0.63 0.61 0.27 Medium 

266 0.02 0.22 0.15 -0.26 -0.41 -0.56 -0.62 0.72 None 

268 0.69 0.46 0.38 0.06 0.93 0.64 -0.18 -0.29 Short 

270 0.31 0.22 0.19 -0.27 0.00 0.61 0.61 0.00 None 

271 -0.24 -0.01 -0.14 -0.26 0.14 0.23 -0.20 0.00 None 

272 0.09 0.42 0.34 -0.22 0.79 0.21 0.36 -0.04 None 

273 -0.29 -0.11 -0.28 -0.10 0.81 0.31 0.05 0.04 None 

276 -0.31 0.21 0.18 0.05 0.66 0.60 0.60 0.60 None 

277 0.32 0.50 0.60 0.29 0.09 0.74 0.31 0.38 Medium 

278 -0.01 0.09 -0.04 -0.34 -0.15 -0.40 -0.10 -1.00 None 

279 0.13 -0.02 0.12 -0.19 0.59 0.78 0.63 0.30 None 

280 -0.02 0.15 0.21 0.31 -0.37 -0.03 -0.71 0.03 None 

294 0.28 0.54 0.49 0.38 0.20 0.28 0.11 0.23 Medium 

295 0.22 0.41 0.16 0.13 0.24 0.21 0.07 0.18 None 

296 0.29 0.69 0.62 0.69 0.43 0.82 0.90 0.40 Medium 

297 -0.17 0.35 0.10 0.09 0.49 0.19 -0.44 -0.61 None 

299 0.10 0.07 0.05 0.47 -0.32 -0.23 -0.28 -0.18 None 

302 -0.16 0.04 -0.07 -0.08 -0.21 -0.06 0.27 -0.15 None 

303 0.35 0.72 0.57 0.49 0.06 0.14 -0.13 0.07 Medium 

305 0.00 0.53 0.45 0.40 -0.17 0.65 0.09 0.04 Medium 

310 -0.03 0.26 0.23 0.06  NA   NA   NA   NA  None 

311 0.08 -0.15 0.26 0.13 0.71 0.71 0.71 0.35 None 

312 0.17 0.15 0.32 0.15 0.12 0.56 0.51 -0.59 None 

316 0.39 -0.10 0.11 0.25 0.58 0.58 0.80 0.53 None 

319 0.33 0.14 0.18 -0.10 -0.42 -0.42 0.30 0.24 None 

320 -0.02 0.37 0.41 -0.15  NA   NA   NA   NA  None 

321 0.38 0.58 0.20 0.31 0.74 0.35 0.41 0.29 None 

325 0.21 0.36 0.30 0.28 -0.10 0.10 0.52 0.10 None 
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Summer 

   
Winter 

   
Category  

Rain_rho Rain03_rho Rain10_rho Rain30_rho Rain_rho Rain03_rho Rain10_rho Rain30_rho 

327 0.03 0.17 0.32 0.16 -0.22 -0.15 -0.11 -0.19 None 

328 0.01 0.26 -0.02 -0.50 0.46 0.39 0.36 0.10 None 

330 0.34 0.14 0.10 -0.43  NA   NA   NA   NA  None 

332 0.06 0.61 0.34 0.53 0.36 0.25 -0.61 -0.52 Medium 

333 -0.12 0.09 0.38 0.43 0.34 0.68 0.68 0.54 None 

334 0.32 0.25 -0.17 -0.35 0.35 0.16 0.02 -0.63 None 

335 0.42 0.50 0.48 0.08 -0.11 -0.63 -0.30 -0.22 None 

336 0.30 0.09 0.31 0.05 -0.46 -0.12 0.23 0.70 None 

337 0.03 0.55 0.43 0.11 -0.68 0.17 -0.17 -0.34 None 

338 0.00 0.54 0.56 0.64 -0.39 -0.02 0.06 -0.76 Long 

339 0.18 0.42 0.36 0.02 0.39 0.33 -0.39 -0.58 None 

340 0.14 0.09 0.18 0.46 -0.65 -0.37 0.16 0.57 None 

341 0.03 0.29 0.26 -0.02 -0.34 -0.25 0.31 0.93 None 

342 0.12 0.13 -0.03 -0.29 -0.74 0.63 -0.21 0.32 None 

343 0.69 0.44 -0.20 -0.47 0.30 0.62 0.26 -0.18 Short 

344 0.20 0.02 0.56 0.45 0.41 0.00 0.21 0.00 None 

346 -0.12 0.33 0.14 -0.10 0.76 0.41 0.23 -0.11 None 

349 0.44 0.54 0.59 0.55 0.64 0.62 0.62 0.26 Medium 

350 0.22 0.44 0.49 0.34 0.51 0.49 0.45 -0.36 Medium 

352 0.17 0.44 0.33 0.01 -0.41 -0.30 -0.69 -0.43 None 

356 0.40 0.48 0.49 0.19 0.34 0.43 0.49 0.10 None 

357 0.13 0.31 0.01 0.19 0.45 -0.45 -0.45 -0.45 None 

365 -0.15 0.41 0.23 -0.14 0.05 0.23 0.05 -0.14 None 

367 0.12 0.04 0.36 0.35 -0.89 0.00 0.00 0.89 None 

368 0.04 -0.29 0.02 0.47 0.36 0.63 0.70 0.38 None 

369 0.32 0.21 0.41 0.30 0.13 -0.26 -0.19 -0.16 None 

373 0.48 0.56 0.97 0.35 0.55 0.51 0.52 0.44 Medium 

376 -0.19 0.02 0.72 0.48 -0.16 0.08 -0.20 -0.60 Medium 

384 0.36 0.40 0.38 0.42 -0.60 -0.10 -0.60 -0.70 None 
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Summer 

   
Winter 

   
Category  

Rain_rho Rain03_rho Rain10_rho Rain30_rho Rain_rho Rain03_rho Rain10_rho Rain30_rho 

385 0.09 0.26 0.50 0.50 0.35 0.57 -0.04 -0.47 None 

387 -0.02 0.34 -0.03 -0.26 -0.05 0.92 0.72 -0.67 None 

388 0.47 0.50 0.26 -0.14 -0.04 0.46 0.79 -0.04 Medium 

393 -0.24 -0.21 -0.06 -0.01 0.51 0.68 -0.17 -0.51 None 

394 -0.16 0.13 -0.06 0.16 -0.21 0.51 0.17 0.21 None 

398 -0.04 -0.08 -0.26 -0.37 0.25 -0.03 -0.14 -0.22 None 

400 0.10 0.61 0.30 -0.04 0.22 0.67 0.76 0.04 Medium 

401 0.07 0.15 0.06 -0.18 0.14 0.49 0.14 0.37 None 

402 0.20 0.21 0.34 0.65 0.32 -0.22 0.71 0.63 Long 

405 0.31 0.70 0.73 0.56 0.15 0.25 0.17 0.18 Medium 

407 0.11 0.42 -0.02 -0.19 -0.17 -0.85 -0.85 0.07 None 

410 0.28 0.54 0.51 0.03 0.40 0.40 0.40 -0.40 Medium 

411 -0.14 0.50 0.49 -0.14 0.61 0.82 0.51 0.39 Medium 

412 -0.15 -0.08 -0.53 -0.53 0.16 -0.09 -0.19 -0.60 None 

414 0.04 0.30 0.37 0.30 0.02 0.11 0.07 -0.03 None 

415 -0.05 0.39 0.27 0.22 0.12 -0.39 -0.61 -0.36 None 

416 0.09 0.24 0.10 0.15 -0.31 -0.22 0.31 -0.06 None 

418 0.12 0.20 -0.02 0.12 -0.10 0.15 0.67 -0.05 None 

422 -0.09 0.45 0.53 0.61 0.58 0.59 0.54 0.22 Long 

424 -0.13 -0.05 -0.24 -0.34 0.20 0.16 0.22 -0.31 None 

425 -0.37 0.32 -0.17 -0.20 0.65 0.88 0.58 0.21 None 

426 0.00 0.20 0.16 -0.19 -0.85 -0.78 0.17 -0.54 None 

427 0.24 0.25 0.37 0.03 0.26 0.33 0.07 -0.67 None 

428 0.15 0.42 0.19 -0.02 0.25 0.42 0.12 -0.11 Medium 

429 0.06 0.26 0.21 0.15 0.48 0.32 0.32 0.12 None 

432 0.33 0.40 0.10 0.02 0.60 0.49 0.09 0.52 None 

433 0.33 0.30 0.38 0.20 0.35 0.40 0.10 -0.18 None 

434 0.23 0.13 0.48 0.25 -0.16 0.03 0.27 0.38 None 

436 0.17 0.37 0.28 0.22 0.13 0.24 0.17 -0.18 None 
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Summer 

   
Winter 

   
Category  

Rain_rho Rain03_rho Rain10_rho Rain30_rho Rain_rho Rain03_rho Rain10_rho Rain30_rho 

437 -0.18 0.12 0.21 0.00 0.08 0.05 -0.17 -0.26 None 

439 0.00 0.42 0.26 0.15 0.24 0.23 0.22 -0.04 None 

440 0.18 0.14 0.24 0.02 -0.02 0.21 0.11 -0.09 None 

442 0.12 0.39 0.46 0.16 0.22 0.28 0.24 -0.21 None 

443 0.05 0.10 0.11 0.05 -0.05 0.22 0.30 0.07 None 

444 0.27 0.27 0.31 0.24 -0.17 -0.32 -0.40 -0.29 None 

445 0.03 0.17 0.25 0.26 -0.15 0.23 0.23 0.12 None 

446 0.27 0.26 0.40 0.27 -0.23 0.24 -0.30 -0.34 None 

447 0.08 0.22 0.36 0.32 0.36 0.31 0.21 -0.17 None 

448 0.78 0.29 0.28 0.18 0.39 0.62 0.17 0.28 Short 

449 -0.23 -0.07 0.24 -0.06 0.37 0.78 0.15 -0.15 None 

450 -0.19 0.07 -0.16 0.06 -0.21 0.67 0.67 0.39 None 

451 -0.23 0.43 0.03 0.10 -0.13 0.27 -0.18 -0.31 None 

452 0.02 0.20 0.01 -0.13 0.05 0.48 0.48 0.31 None 

456 -0.04 0.15 -0.18 -0.27 -0.15 -0.05 -0.42 -0.27 None 

 

  



D-1 

 

 

D. Suggestions for priority catchments 

TOC 

Catchment Catchment description Focus of investigation 

34 Reservoir, located in the West, cluster 3, 

categorised as “Temperature”, small 

catchment with little slope, very poorly 

drained soils, mainly semi-natural land 

cover, large increase in AAT projected, 

high TOC, aluminium, iron and manganese 

medians, high increase in TOC projected 

due to AAT increase (in combination with 

reduction in SER) 

Increase process understanding – 

test hypotheses of direct climate 

change impacts on catchments 

sensitive to temperature, and for 

multiple water quality parameter 

Review control options and ES 

assessment 

214 Reservoir, located in the South, cluster 4, 

categorised as “Rainfall+Temperature”, 

small catchment with little slope, 

exclusively sandstone bedrock, very 

organic soils, mainly semi-natural land 

cover, high number of livestock, high 

medians for metals, TOC, and turbidity, 

high projected increase. 

Increase process understanding – 

test hypotheses of direct climate 

change impacts and of land use 

impacts 

Test hypothesis of increase in 

variability and peak concentrations 

of TOC 

Review control options and ES 

assessment 

349 Loch, located on the Orkney Islands, cluster 

4, categorised as “Rainfall”, “inconclusive” 

shape, little relief, mostly igneous bedrock 

with a little limestone, high percentage 

coverage of improved grassland (~44%), 

medium to high median values for metals 

and colour/TOC, small increase projected 

due to small decrease in SER. 

Increase understanding of potential 

lack of buffering 

418 River, located in Northeast Scotland, cluster 

1, categorised as “None”, medium 

catchment size, some organic soils, mainly 

semi-natural land cover, large numbers of 

deer, high median pH, medium increase 

projected. 

Increase process understanding – 

what are main controls of DOC 

production, release, transfer, and 

loss? 

227 Reservoir, cluster 1, categorised as 

“Wetup”, “sine” shape, medium catchment 

in the South, mainly sandstone bedrock, 

very organic soils, mainly semi-natural land 

cover, slightly higher median values for 

metals, turbidity and TOC, large increase 

for TOC projected due to decrease in SER 

and increase in AAT. 

Increase process understanding – 

test hypotheses of direct climate 

change impacts on catchments 

sensitive rainfall over a longer 

period, and for multiple water 

quality parameter 

Review control options and ES 

assessment 

436 Loch, cluster 2, categorised as “Wetup”, “v-

shape”, medium sized catchment on the 

Outer Hebrides, mainly peat soils, mainly 

semi-natural land cover, low pH median, 

large increase in TOC projected. 

Increase process understanding, 

especially climate change effect in 

combination with acidification 

reversal. 
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E. coli 

Catchment Catchment description Focus of investigation 

349 Loch, located on the Orkney Islands, cluster 

4, little relief, mostly igneous bedrock with 

a little limestone, high percentage coverage 

of improved grassland (~44%), projected to 

increase in LC 3.2, high turbidity median 

values, slightly above average E. coli 

median, slight increase predicted 

Critical source areas – Are the areas 

projected to increase in capability 

increasing risk for water quality 

deterioration?   

295 River, large catchment in the Northeast, 

cluster 5, medium well drained soils, 

mostly semi-natural land cover with some 

arable and improved grassland cover, large 

increase in prime land projected, high 

coliform and E. coli median values, large 

increase predicted 

Critical source areas – Why are 

concentrations high?  

Scenario analysis – How could land 

uses change and what would the 

impact be? 

ES assessment and stakeholder 

engagement – Incentivise water 

positive behaviour  

294 River, large catchment in the Northeast, 

downstream of 295, cluster 5, mainly well 

drained soils, high percentage of arable 

(~11%) and improved grassland (~30%) 

cover, large increase in prime land (~70%) 

projected, high coliform and E. coli median 

values, large increase predicted 

Scenario analysis – How could land 

uses change and what would the 

impact be? 

ES assessment and stakeholder 

engagement – Incentivise water 

positive behaviour  

415 Reservoir, cluster 2, medium catchment in 

the Northeast, adjacent to 295, mainly 

semi-natural land cover, small increase in 

prime land and land capable for sustaining 

livestock projected, overall good raw water 

quality, low E. coli concentrations, small 

increase predicted 

Scenario analysis – How could land 

uses change and what would the 

impact be? 

 

414 Reservoir, cluster 1, medium catchment in 

the Northeast, some sedimentary bedrock 

and mainly well drained soils, mostly semi-

natural land cover and some coniferous 

forest (~17%), large increase in prime land 

(~37%) projected, low E. coli 

concentration, large increase predicted 

Scenario analysis – How could land 

uses change and what would the 

impact be? 

ES assessment and stakeholder 

engagement – Incentivise water 

positive behaviour 

227 Reservoir, cluster 1, medium catchment in 

the South, mainly sandstone bedrock, very 

organic soils, no agricultural land use 

despite large proportion of land capable for 

sustaining livestock, small increase 

projected, low E. coli concentrations, 

medium increase predicted 

Scenario analysis – How could land 

uses change? 

Critical source areas – Are areas 

projected to increase in capability 

increasing risk for water quality 

deterioration?   

 

 

TOC catchments were chosen to represent each climate sensitivity category and get a 

spectrum of colour annual time series shapes and clusters from the initial cluster 

analysis. 
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E. coli catchments were chosen for their close proximity but different current land uses 

and projections in land capability, giving a good coverage. More detailed information 

from these catchments could help understand patterns and inconsistencies observed 

between catchment characteristics and water quality outcomes in terms of FIO 

contamination, stakeholder preferences and possibilities for working together to achieve 

positive water quality and ES outcomes.  

Two catchments (227 & 349) were chosen for both parameter and could serve to get a 

more holistic picture.  




