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Deep eutectic solvents (DESs) are a class of versatile and green emerging materials. Despite the huge amounts of
applications proposed in the last years, studies on their thermal stability are often missing. In this short review, we
propose a guide for a correct evaluation of DES thermal stability, conducted mainly by dynamical thermog-
ravimetry (TGA). We collected all the data reported in the literature on choline chloride (ChCl)-based DESs, as
proof of concept to show the potentialities of the technique, highlighting all the parameters that need to be
considered for a correct analysis, with particular attention to the possible sources of misleading interpretations
(e.g. the adsorbed water, or the formation of undesired products during DES preparation). In many cases, the
additional use of isothermal TGA, or TGA coupled with online techniques such as Fourier Infra-Red Spectroscopy
or Mass Spectrometry, may help for the data interpretation. Besides, we summarize in a graph the degradation
temperatures of many DESs and their precursors, intended as an operative guide to choosing the correct DES for
different applications. The findings reported to date, highlight the potentialities of thermal analysis on DESs, as a
powerful tool to obtain essential information on their applicability, and to implement the knowledge of their
nanostructure from a molecular point of view.

1. Introduction

Deep eutectic solvents (DESs) are a class of emerging materials
commonly formed by a hydrogen (or halogen) bond acceptor (HBA), and
a hydrogen (or halogen) bond donor (HBD) which form a eutectic
mixture whose melting point is lower than what would be expected if the
mixture behaved ideally in the liquid phase, giving rise to the definition
of “Deep Eutectic” [1]. Their preparation simplicity (no purification is
required), high yield, low-cost, low vapour pressure, and low toxicity
make them appealing in many fields, ranging from the organic synthesis
(e.g. (bio)catalysis), to industrial or biotechnological applications (e.g.
biomasses dissolution and modification, metal processing) [2,3]. Despite
the impressive amounts of studies reported in the recent literature on
their applications, studies on their thermal stability are often missing.
Nonetheless, these studies are fundamental to determine their tempera-
ture range of applicability and the safety conditions for their use, which
include the identification and the toxicity study on the degradation

compounds. Moreover, thermal degradation studies could furnish inter-
esting information on the DES nanostructures, in some cases still unclear.

In this frame, we report here a comprehensive review on the thermal
stability of DESs made with choline chloride (ChCl), one of the most
common HBA due to its inexpensiveness, biodegradability and low
toxicity. We collected all the data reported to date on ChCl-based DESs
thermal stability (Fig. 1), and we propose an applicative plot which can
help to choose the correct DES for different applications, based on their
degradation temperature. We also proposed a guide for the correct usage
of the instruments for thermal analysis, in particular for dynamical
thermogravimetry (TGA).

2. Thermal degradation studied by dynamical TGA
Craveiro et al. reported the degradation temperature of a set of nat-

ural DESs (NADESs) performed by Differential Scanning Calorimetry
(DSC) [7]. Beyond this paper, dynamical TGA (a powerful technique

Abbreviations: ChCl, Choline Chloride; DESs, Deep Eutectic Solvents; DSC, Differential Scanning Calorimetry; FTIR, Fourier Transormed Infra-Red; HBA, hydrogen
bond acceptor; HBD, hydrogen bond donor; ILs, Ionic Liquids; MS, Mass Spectrometry; NADESs, natural DESs; TGA, Thermogravimetric Analysis.
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Fig. 1. Chemical structures of DESs discussed in this review, with the onset temperature of the DES degradation and the related HBD reported in the literature. The samples,
identified by DES ID number, are ordered in each family group by the growing molar mass of HBD. The T,nse: data were taken from the references: a: [4]; b: [5]; c: [6]; d: [7]; e:
[8L f: [9); & [10); h: [11]; & [12]; m: [13] n: [14].

already used to assess the thermal stability of ionic liquids [15,16]) is the Fig. 2a highlights that the pure components usually have a sharp mass
main technique proposed by the authors to assess the DES thermal sta- loss in a narrow temperature range, while many DESs degrade in a larger
bility. Representative thermal profiles obtained for a DES and its pre- interval, with the presence of more loss steps in TGA, due to the degra-
cursors (HBD and ChCl) are reported in Fig. 2a. dation (or evaporation) of HBD and ChCl in the DES network. The mass
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Fig. 2. a) Representative thermogram of a DES and its precursors obtained by dynamical TGA; b) two possible degradation mechanisms of ChCl, proposed by Gonzalez
et al. [8] with the first one preferred; c) practical guide for a correct evaluation of DES thermal stability; d) graphical determination of Togser and Tpeak On @ dynamical
TGA performed on DES 3 (DES number ID reported in Fig. 1) at 20 °C/min.
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loss below 100 °C, visible in many DESs and ChCl, is generally due only to
the evaporation of water adsorbed during the DES preparation or
handling, due to the strong hygroscopicity of ChCl, unless one of the
precursors is also a low-boiling compound. Besides this step, HBDs are
usually less thermally stable than ChCl, and DESs display an intermediate
behaviour [8]. The thermal profile of DESs could show more steps than
the ones shown by the precursors; this behaviour can be explained by the
formation of side products during the DES preparation, or by the pres-
ence of clusters with slightly different thermal stability, highlighting the
complex nature of these compounds.

One of the most relevant parameters obtained by TGA is the onset
temperature of sample thermal degradation (Topser), usually calculated in
the mass loss curve as the intersection between the baseline and the line
passing by the first inflexion point (Fig. 2d) [17]. This temperature de-
termines the operative temperature range in which the samples can be
used without decomposing. Alternatively, the Tpeax (temperature of
maximum degradation rate, identified as the temperature corresponding
to the peak maximum in the derivative curve, DTG) can be reported.

An extensive collection of the onset temperatures for the thermal
degradation of different ChCl-based DESs (and their HBDs) reported to
date is shown in Fig. 1. Similar data are reported in the literature for
other types of DESs, e.g. phosphonium-based DESs [18], PEGylates DESs
[19], or hydrophobic natural DESs [20].

In general, the data reported in the literature for the DES thermal
stability may be difficult to compare. First of all, it is important to
remember that they depend on the experimental conditions used, e.g.,
the heating rate, the purity of the starting chemicals, or the water con-
tent; these elements are not always controlled during the formation of a
new DESs (in particular the water content in the starting chemicals), and
sometimes the experimental procedure for the DES preparation and the
thermal analysis conditions are not described precisely in the papers. In
some cases, authors discuss the samples' thermal stability without
defining whether they are considering Topser Or the Tpeak, in other cases,
they discuss the Topset, but they calculate it with non-standard
procedures.

Another factor that makes the comparison among different literature
data difficult is the use of dynamical TGA with various heating rates (5,
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10 or 20 °C/min). In principle, it is not wrong to use one rate or another,
remembering that different data can be correctly compared when ac-
quired at the same heating rate. However, it is also useful to remember
that, since the data are recorded dynamically during the thermal heating
scan, a higher heating rate could lead to an over-estimation of the real
data (especially for sharp mass losses), thus, the choice of the right speed
must be a compromise between a good data quality and a feasible anal-
ysis time. We suggest the use of a heating rate of 10 °C/min as a
reasonable compromise, aware that the general rule could be changed in
specific cases.

Two additional points could lead to a misinterpretation of TGA data:
i) as mentioned before, ChCl is highly hygroscopic; thus the samples can
absorb water during the handling and the storage, responsible for a mass
loss below 100 °C, which could be misinterpreted as the onset of DES
thermal degradation; this error can be avoided by the application of an
isothermal step at 80 or 100 °C before the thermal scan, when possible, to
get rid of the adsorbed water; ii) the occurrence of undesired reactions
during the DES preparation could lead to the presence of side products
which give unexpected peaks in the DTG curve. In the latter case, to avoid
misinterpretations, dynamical TGA can be implemented with the com-
bined use of other techniques, as described in detail in paragraphs 3 and
4. In summary, all these issues need to be evaluated to perform a correct
thermal analysis of DESs, as reported in Fig. 2c.

Finally, we collected some data on DES thermal stability in a scatter
plot (Fig. 3), useful to compare the operative range of different DESs.
More in detail, we reported the Topst of DES and HBD thermal degra-
dation respectively on the ordinate and abscissa axes. We added in the
graph the bisector (represented by two lines, accounting for experimental
error + 1 °C), useful to determine at first glance if the DES is more
thermally stable than the respective precursor, or vice versa. The plot can
also be intended as an application guide, which helps to choose the most
suitable DES based on the desired thermal stability.

We noticed that the onset temperature of DES thermal degradation
(apart from DES 43, 25, 17, 32, 11 DES 2:1) is comparable to that of the
corresponding HBD precursor, and in some cases even higher. In accor-
dance with Wenjun et al. [5], we hypothesize that the presence in the
DES nanostructures of a uniform and well-spatially distributed H-bond
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Fig. 3. Application plot for the usage of ChCl-based DESs, based on their thermal stability. DESs are identified with the ID number written in Fig. 1. The onset
temperature for thermal degradation of DESs and the precursor HBDs are taken from Fig. 1, choosing the data acquired by dynamical TGA at 5 °C/min.
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network (when stronger than that of like-like interactions HBD-HBD),
could induce an increase in DES thermal stability.

3. Studies of evolved gas by TGA-FTIR or TGA-MS

The analysis of gases evolved during the DES thermal degradation is
important both from a structural point of view, as it furnishes indirect
details on DES structure, and from an applicative point of view, to
evaluate the emission of harmful substances. Despite the importance of
the topic, nowadays only a few studies with this focus have been pub-
lished. The techniques commonly used to analyze the gases evolved
during a thermal scan are FTIR spectroscopy and mass spectrometry
(MS), coupled with the TGA unit through a heated transfer line to avoid
condensation of gases outside the FTIR or MS device. In this chapter, we
briefly summarize the results obtained by TGA-FTIR and TGA-MS anal-
ysis on some ChCl-based DESs.

Abbass et al. [6] and Pontillo et al. [13] demonstrated by TGA-MS
(i.e. by the identification of the thermal degradation products) that the
first part of the thermograms could be attributed to the HBD degradation,
while the second part to ChCl degradation. Gonzalez et al. [8] published
in 2020 a study on the thermal degradation of some DESs, consisting of
choline as HBA and organic acids or polyols as HBD, performed by
TGA-FTIR, including the analysis of evolved gases. Firstly, they studied
the thermal degradation of pure ChCl, proposing two possible degrada-
tion pathways (Fig. 2b), with the first one preferred. They also compared
the thermal degradation of the other pure components with that of the
corresponding DES. They found out that, generally, pure polyols exhibit
evaporation of the entire molecule during the degradation, while they
decompose into smaller molecules in DES. This behaviour could indicate
a strong bond between ChCl and the polyols in DESs.

4. DES thermal stability studied by isothermal thermogravimetry

Some recent studies [9] showed that dynamical TGA, even at a low
heating rate (as 5 °C/min), often leads to an overestimation of the
thermal stability, thus isothermal TGA is preferred to obtain more reli-
able information on the DES maximum operating temperature, useful for
industrial applications [5,21,22]. More in detail, isothermal TGA allows
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to monitor the percentage of mass loss over time at a chosen temperature,
as shown in some examples reported in Fig. 4. This kind of study should
be always performed before the use of the DES in new processes, testing
its stability at the desired temperature and for the time required. Despite
the importance of the topic, only a few studies on the mass loss in
isothermal conditions of various DES at different temperatures have been
reported to date [4,5,21,23,24].

Isothermal TGA was also applied to obtain additional information on
the DES structure and physical-chemical properties. Shahbaz et al. used
isothermal TGA to calculate the vapour pressure of five selected DESs,
made by three different quaternary salts with either glycerol or urea [25].
They observed the mass loss over time at a fixed temperature and
calculated the corresponding vapour pressure through the Langmuir
equation. They demonstrated by this method that the DES vapour pres-
sure was effectively lower than those of pure components but higher than
the values reported for some common ionic liquids (ILs). Isothermal TGA
was also used by Rodriguez et al. as a key technique to demonstrate the
occurrence of a partial esterification reaction during the preparation of
DES consisting of ChCl and organic acids [9]. This assumption, which
explains some incongruences previously found in dynamical TGA mea-
surements on these samples, is nowadays commonly accepted by the
scientific community. Overall, we summarize in Fig. 4 the differences
between dynamical and isothermal TGA to study the DES thermal
degradation and stability, highlighting their potentialities.

5. Conclusions

This short review aims to bring clarity on the correct usage of ther-
mogravimetric techniques in the determination of DES thermal stability.
As proof of concepts, we collected the data reported to date on ChCl-
based DESs thermal stability, discussing their operative temperature
range. The consideration reported could be intended, more in general, as
universal guidelines for a correct evaluation of the thermal stability of all
the DESs. In particular, we reported that for correct usage of dynamical
TGA in evaluating DESs thermal stability is important to: i) describe
precisely the purity of the precursors, the sample preparation procedures
and their water content; ii) define the TGA experimental conditions and
the procedure to calculate the parameter of interest (Topger OF Tpeax); 111
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choose the best heating rate to ensure the best quality of the data ob-
tained in a reasonable experimental time. We also demonstrated that iv)
some misinterpretation of dynamical TGA can be avoided by the addition
of complementary analysis, such as isothermal TGA, TGA-FTIR or TGA-
MS. Overall, we highlight the importance of correct studies on DES
thermal stability, which could give information on their range of oper-
ating temperature, essential to define their possible applications, and
offer insight on their structure from a molecular point of view.
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