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A B S T R A C T   

Asthma affects more than 300 million people of all ages worldwide, including about 10–15% of school-aged 
children, and its prevalence is increasing. Severe asthma (SA) is a particular and rare phenotype requiring 
treatment with high-dose inhaled corticosteroids plus a second controller and/or systemic glucocorticoid courses 
to achieve symptom control or remaining “uncontrolled” despite this therapy. In SA, other diagnoses have been 
excluded, and potential exacerbating factors have been addressed. Notably, obese asthmatics are at higher risk of 
developing SA. Obesity is both a major risk factor and a disease modifier of asthma in children and adults: two 
main “obese asthma” phenotypes have been described in childhood with high or low levels of Type 2 inflam
mation biomarkers, respectively, the former characterized by early onset and eosinophilic inflammation and the 
latter by neutrophilic inflammation and late-onset. Nevertheless, the interplay between obesity and asthma is far 
more complex and includes obese tissue-driven inflammatory pathways, mechanical factors, comorbidities, and 
poor response to corticosteroids. This review outlines the most recent findings on SA in obese children, partic
ularly focusing on inflammatory pathways, which are becoming of pivotal importance in order to identify se
lective targets for specific treatments, such as biological agents.   

1. Introduction 

Asthma is a global health problem affecting more than 300 million 
people of all ages and ethnic groups worldwide [1] and approximately 
9% of children in the US and 15% of school-aged children in Europe [2, 
3]. Asthma prevalence has significantly increased in recent years [4,5] 
and factors such as dietary habits, exposure to environmental tobacco 
smoke, and pollution are likely to be involved in this changing epide
miology [6]. Severe asthma (SA) has been recently attracting interest. In 
this particular phenotype of asthma, other diagnoses have been 
excluded and potential exacerbating factors have been addressed. The 
definition requires treatment with high-dose inhaled corticosteroids 

(ICS) plus a second controller and/or systemic glucocorticoid courses 
needed to achieve symptom control, or that asthma remains “uncon
trolled” despite this therapy [7,8]. Obesity is both a major risk factor and 
a disease modifier of asthma in children and adults. While obesity is 
defined according to a body mass index (BMI) threshold, recent studies 
suggest that BMI z-scores may be unreliable, particularly in children and 
adolescents with severe obesity [9,10]. Worldwide, the prevalence of 
being overweight or obese between 1980 and 2013 has increased by 
47.1% for children [11] mostly due to dietary habits, increased seden
tary habits activities, and reduced time spent on physical activities. 
According to data from the CDC, in the US, 17% of children are obese, 
while 15% are overweight [12]. Similar data are available for almost all 

Abbreviations: AHR, Airway Hyperresponsiveness; AT, Adipose Tissue; BAL, BronchoAlveolar Lavage; BMI, Body Mass Index; FEV1, Forced Expiratory Volume in 
1 s; FVC, Forced Vital Capacity; FEF25–75%, Forced Expiratory Flow at 25–75% of FVC; ICS, Inhaled CorticoSteroids; IgE, Immunoglobulin E; ILC, Innate Lymphoid 
Cells; IL, Interleukin; LABA, Long-Acting Beta 2 Agonists; SA, Severe Asthma; TSLP, Thymic stromal lymphopoietin. 

* Correspondence to: Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy. 
E-mail address: enza.dauria@unimi.it (E. D’Auria).   

1 Co-authors contributed equally. 

Contents lists available at ScienceDirect 

Pharmacological Research 

journal homepage: www.elsevier.com/locate/yphrs 

https://doi.org/10.1016/j.phrs.2023.106658 
Received 5 November 2022; Received in revised form 4 January 2023; Accepted 10 January 2023   

mailto:enza.dauria@unimi.it
www.sciencedirect.com/science/journal/10436618
https://www.elsevier.com/locate/yphrs
https://doi.org/10.1016/j.phrs.2023.106658
https://doi.org/10.1016/j.phrs.2023.106658
https://doi.org/10.1016/j.phrs.2023.106658
http://crossmark.crossref.org/dialog/?doi=10.1016/j.phrs.2023.106658&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pharmacological Research 188 (2023) 106658

2

high-income countries worldwide. Several longitudinal epidemiological 
studies show that obesity often precedes incident asthma. Camargo et al. 
found an odds ratio of 2.6 of developing late-onset asthma with a BMI 
greater than 30 kg/m2 [13]. A meta-analysis of prospective studies 
showed a dose-response relationship between obesity and asthma, with 
an odds ratio of incident asthma 1.9 in the obese group [14]. Never
theless, the interaction between asthma and obesity begins as early as 
the fetal period: maternal obesity and weight gain during pregnancy 
have been independently associated with approximately 15–30% 
increased risk of asthma in the offspring [15,16]. Interestingly, asthma 
may lead to obesity too: in a recent study, asthmatic children showed an 
increased risk of becoming obese during a 10-year follow-up period 
[17]. However it is also important to note that asthma diagnosis in 
children is often wrong [18,19]; breathlessness on exercise, both in lean 
and obese children, is more often due to deconditioning rather than 
exercise induced bronchoconstriction or laryngeal dysfunction [20]. 
Hence when assessing manuscripts associating asthma and obesity, it is 
essential to critically assess how carefully the diagnosis of asthma has 
been made. However, there is increasing evidence supporting the defi
nition of an “obese asthma” phenotype [21,22]. Of note, two main 
sub-phenotypes of obese asthma have been proposed according to age 
by Holguin et al. [23]. The first refers to early onset asthma (under 12 
years of age), with obesity worsening pre-existing asthma, with more 
severe airway obstruction, lower quality of life, increased bronchial 
hyperresponsiveness, and greater use of health care resources compared 
with early non-obese asthma. These children are usually atopic with 
high IgE levels and have positive skin prick test (high Type 2 inflam
mation biomarkers – T2-high), with predominant eosinophilic inflam
mation with no gender difference [24,25]. The second phenotype refers 
to late-onset, often severe, asthma, developing in obese non-allergic 
children > 12 years of age or adults (often females, thought to be due 
to direct effects of estrogens and progesterone and higher fat percentage 
and subcutaneous deposition than boys), usually being more symp
tomatic but showing a predominant neutrophilic/paucygranulocitic 
inflammation (T2-low) and with a very poor response to ICS and 
long-acting beta 2 agonists (LABA) [26,27]. However, this classification 
may be oversimplified as different endotypes may underlie a single 
phenotype. Thus, the pathogenetic mechanisms need to be better 
defined. Mechanistically, obesity-associated asthma can be driven by 
non-T2 pathways, such as the nucleotide-binding oligomerization 
domain-like receptor family, pyrin domain containing 3 (NLRP3) 
inflammasome, interleukin (IL)− 1β, or type 3 innate lymphoid cells 
(ILC3) [28]. Furthermore, it remains poorly understood which clinical 
outcomes of asthma are specifically affected by obesity; and the effects 
of obesity may be different across age groups. Elderly patients are sus
ceptible to adverse health outcomes of asthma and treatments, and 
sarcopenia interacts with obesity and might worsen clinical outcomes 
[29]. As a whole, obese children generally show an increased asthma 
severity [30–32], with worse symptom control and quality of life [33, 
34]. Notably, both asthma and obesity are recognized as having he
reditary components, but a genetic link between the two conditions has 
not been described. One study showed that CHI3L1 gene expression 
could be induced by a high-fat diet and thereby contribute both to 
obesity and to asthma development [35]. Notably, Wang et al. found 
seven SNPs in 17q21 (a locus strongly associated with early onset 
asthma) associated with increased BMI only among subjects with asthma 
[36]. 

This review outlines the most recent findings on SA in obese children, 
focusing on inflammatory pathways characterizing asthma, SA and the 
obese-asthma phenotype, some of which may represent targets for spe
cific treatment such as monoclonal agents. The knowledge gaps and 
future research directions are also addressed. 

2. Inflammatory endotypes in asthma 

2.1. Type 2 inflammation and related biomarkers 

Asthma is a complex multifactorial disease; it is a description, not a 
diagnosis, and there are many different “asthmas” [37]. Some but not all 
are characterized by chronic inflammation of the airways. Evidence 
shows that genetic predisposition, environmental factors, and uncon
trolled inflammatory processes can contribute to the development of 
epithelial barrier dysfunction both in the skin and the bronchial mucosa, 
a condition increasing the risk of allergic sensitization. On the bronchial 
mucosal surface, allergens, as well as respiratory viruses, affect the 
epithelial barrier’s permeability, creating a vicious circle between 
inflammation and barrier damage [38,39]. Recent studies have tried to 
elucidate the inflammatory patterns (endotypes) underlying different 
phenotypes of asthma [40]. The evidence so far suggests that asthma can 
be grouped into two main endotypes, T2-high and T2-low, with T2-high 
being the most common, especially in childhood. T2-high typically oc
curs in allergic patients with an early onset of the disease: in these pa
tients, the immune response involves Th2 cells, type 2 innate lymphoid 
cells (ILC2), immunoglobulin E (IgE)-producing B cells, natural killer T 
(NK-T) cells, mast cells, basophils, eosinophils and relates cytokines [41, 
42]. In T2-high asthma, non-allergic alarmins, such as Interleukin (IL)−
25, IL-33, and thymic stromal lymphopoietin (TSLP) are released mainly 
by airway epithelial cells when damaged by exposure to pollutants, 
environmental tobacco smoke, viruses or colonizing bacteria [43–45]. 
Such cytokines activate ILC2, which releases Th2 cytokines, such as IL-5, 
IL-13, and IL-4 [46,47] (Fig. 1). Among them, IL-4 polarizes Th2 cell 
differentiation and switches B-lymphocyte immunoglobulin synthesis to 
IgE production and expression of VCAM-1 in endothelial cells, that 
mediates eosinophil, basophil, and T cell-specific recruitment. IL-5 is the 
major cytokine involved in eosinophil production and survival, while 
IL-13 is a survival factor for basophils and eosinophils and is involved in 
mucus gland hyperplasia and remodeling [48–50]. 

2.2. T2-low inflammation and related biomarkers 

T2-low asthma has been described more frequently in adults than in 
children and comprises neutrophilic and paucigranulocytic asthma [51]. 
The specificity of neutrophilic inflammation is complicated by the many 
confounding factors that can contribute to sputum neutrophilia, 
including the use of ICS, air pollution, respiratory infections, sensitiza
tion to aspergillus, gastroesophageal diseases, and environmental to
bacco smoke exposure. In one study, sputum total neutrophil count was 
associated with lower pre- and post-bronchodilator FEV1, suggesting 
that neutrophilic airway inflammation may have a role in persistent 
airflow limitation in asthma [52]. Analysis of patients included in the 
Severe Asthma Research Program (SARP) study identified two sub
groups with moderate-to-severe asthma and frequent healthcare use 
despite treatment with high doses of inhaled or oral corticosteroids; one 
of these subgroups also showed reduced lung function [53,54]. The 
majority (>83%) of those with reduced lung function had sputum 
neutrophilia alone or in combination with sputum eosinophilia. Further, 
it has been observed that the early-onset/severe-lung function cluster 
had the best response to fluticasone/salmeterol, while the 
early-onset/comorbidity cluster, including children with obesity, had a 
poor clinical response to these controller treatments [55]. The combi
nation of neutrophilia and eosinophilia in sputum appears to identify a 
more severe phenotype [27]. In contrast, in a cohort of children with SA 
and multiple atopic sensitizations, a subgroup of patients showed neu
trophils within the epithelium [56]: these patients had better symptom 
control and better lung function, different to what has been observed in 
adults. In neutrophilic asthma, inflammation is characterized by the 
production of cytokines, such as IL-17, IL-21, and IL-22 by Th1 and Th17 
cells [57]. It should also be noted that IL-6, granulocyte 
colony-stimulating factor (G-CSF), granulocyte-macrophage 
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colony-stimulating factor (GM-CSF), IL-8, CXCL1, CXCL5, and CXCL8, 
produced by airway epithelial cells, have a role in the activation of the 
neutrophils [58,59], and increased levels of IL-6 have been found in 
asthmatic patients, especially in SA in adults [60], but not in children 
[61]. Also ILC3 (involved in IL-17 secretion) and pro-inflammatory 
macrophages have key roles in neutrophilic asthma [62] while both 
serum IL-17 and IL-17 + T cells have been associated with asthma 
severity in children [63]. Another important mechanism in the devel
opment of neutrophilic asthma is inflammasome activation, following 
microbial exposure: the NLRP3 inflammasome, an intracellular multi
protein complex, induce the autoactivation of pro-inflammatory cas
pase-1, and the consequent production of the mature form of pro-IL-1β 
and pro-IL-18. This process induces Th17 cell-dependent inflammation 
[64]. In fact, patients with neutrophilic airway inflammation show high 
levels of IL-1β and caspase-1 in the sputum [65]. Moreover, it has been 
shown that NLRP3 inflammasome activation in alveolar epithelial cells 
promotes myofibroblast differentiation of lung-resident mesenchymal 
stem cells, potentially playing a role in airway remodelling [66,67]. 
Lastly, it has been shown that human tumor necrosis factor-like weak 
inducer of apoptosis (TWEAK), a cell surface-associated type II trans
membrane cytokine expressed in several inflammatory cell types, such 
as monocytes and lymphocytes, may stimulate bronchial epithelial cells 
to produce pro-inflammatory IL-8: indeed, TWEAK sputum levels were 
increased in children with non-eosinophilic asthma characterized by 
greater asthma severity and poorer control of symptoms in a recent 
study by Kim et al. [68]. 

3. The “obese-asthma” phenotype in childhood: cross-talking of 
inflammatory processes 

3.1. Adipose tissue-driven inflammation 

With the excess adipose tissue (AT), hypoxic death of some adipo
cytes promotes the proliferation of M1 macrophages, which are known 
to favor a pro-inflammatory activity and induce insulin resistance. The 
number of macrophages in the adipose tissue of humans is usually low 
(4%) but can reach up to 12% in obesity [69]. Conversely, Treg cells, 
which are antagonists to M1, are abundant in lean adipose tissue; the 
imbalance between Treg and M1 macrophages contributes to 
obesity-related inflammation [70]. Moreover, several studies have 
demonstrated that chronic inflammatory conditions, such as obesity, are 
characterized by a rise in circulating Th17 lymphocytes, which secrete 
IL-17, which in turn stimulates, through GCS-F and IL-8 production, 

neutrophil recruitment to the sites of inflammation. Th17 also induces 
the release of pro-inflammatory cytokines, such as IL-6 [71], which has a 
role in the polarization of T cells into Th17 cells [72] and may reduce 
adiponectin secretion, further contributing to the inflammation process 
[73]. In fact, adiponectin has anti-inflammatory properties [74]: it has 
been shown that adiponectin suppresses macrophage differentiation 
into M1 [75,76], activates anti-inflammatory IL-10, and reduces 
pro-inflammatory cytokines (IFN-γ, IL-6, TNF-α) [77]. Interestingly, 
adiponectin has also been recognized as a pro-inflammatory actor in 
some autoimmune diseases: this may be due to the presence of different 
adiponectin isoforms with different effects on inflammation [78]. As a 
whole, obesity is characterized by reduced circulating serum levels of 
adiponectin and increased levels of IL-6 and TNF-α, similarly to what 
happens in type 2 diabetes, metabolic syndrome, or cardiovascular 
disease inflammation [79]. Adipocytes also produce leptin, an adipokine 
whose long isoform has anorexigenic effects and can be found in the 
hypothalamic centers, showing food intake regulation properties [80, 
81]. Obesity is characterized by increased leptin levels due to 
over-expression in AT [82,83], but also by resistance to its anorectic 
actions. Moreover, it should be noted that leptin induces secretion of 
pro-inflammatory mediators in obese patients, such as IL-6, TNF-α, and 
IFN-γ [84,85], and also promotes the activity of pro-inflammatory Th17 
cells [86]. Unsurprisingly, higher leptin levels in obese adolescents 
correlate inversely with FEV1, FVC, and FEV1/FVC, and both leptin and 
adiponectin levels correlate with abnormal exercise-induced broncho
constriction in children with asthma [87]. Resistin is another adipokine 
involved in the inflammatory process through the expression of IL-6 and 
TNF-α, as well as in the differentiation of macrophages into 
pro-inflammatory M1 [88]. In obese AT, NLRP3 inflammasome is also 
activated due to exposure to saturated fatty acids, such as palmitate and 
stearate, and oxidative stress [89]. This complex drives inflammation to 
many organs through the activation of M1-type macrophages [90]. 

3.2. The complex inflammatory interplay between asthma and obesity 

The interplay between asthma and obesity is complex and has not yet 
been completely elucidated. A growing amount of evidence shows that 
obesity is associated with low-grade systemic inflammation, the so- 
called “meta-inflammation” [91], which may interact with asthma 
inflammation, regardless its endotype or severity, both in terms of 
promoting or worsening the disease [92]. When considering the inter
play between asthma and obesity at a molecular level, interestingly, the 
four cytokines with a prominent pro-inflammatory role in T2-high 

Fig. 1. Targets for currently available biologics in severe asthma treatment. The figure shows the main pathways underlying bronchial mucosa inflammation in 
asthma and the six currently available biological agents with their specific targets. 
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asthma (IL-4, IL-5, IL-13, and IL-33) contribute to maintaining the lean 
state. Moreover, IL-4 and IL-13 induce the expression of two 
anti-inflammatory cytokines (TGF-β and IL-10) by M2 macrophages [93] 
and reduced IL-33 levels represent a risk factor for metabolic syndrome 
[94] and are associated with increased body mass index [95]. In studies 
evaluating the endotype in obese adult asthmatics, a neutrophil domi
nant inflammatory pattern was found in the airway lumen and was 
associated with higher levels of IL-17A [96,97]. Notably, in the lungs of 
obese mice, which typically exhibit airway hyperresponsiveness (AHR) 
with the exception of IL-17A deficient animals, increased IL-17A was 
found in association with AHR and neutrophilic inflammation [28]. The 
obesity-related asthma phenotype is also associated with the presence of 
increased interleukin levels, such as TNF-α, which increase in parallel 
with BMI in subjects with asthma [23,98] (Table 1). Data are contra
dictory about the role of IL-6 in obesity and asthma. Some studies 
showed increased serum IL-6 levels significantly associated with BMI 
percentile in children and adults [99], but not with asthma severity 
[61]. Innate immune responses involving both Th17 pathways and 
macrophage activation by ILCs could also have a role in both obesity and 
asthma: Zheng et al. reported increased sputum neutrophils in “non-
atopic obese asthmatics” but found higher sputum macrophage counts in 
those with “atopy-obesity overlap” [100]. These results confirm the 
findings in obese mice: a significant elevation of inflammatory cyto
kines, such as IFN-γ, IL-4, IL-17A, TNF-α, IL-1β, and IL-6, was found after 
48 h of ovalbumin sensitization. Furthermore, bronchoalveolar lavage 
(BAL) analysis in obese mice showed a greater influx of macrophages 
and lower eosinophil numbers [101]. A recent meta-analysis found that 
low concentration of serum adiponectin is associated with higher 
asthma incidence while higher leptin levels were associated with asthma 
both in adults and children [102]. Several studies have reported a role 
for leptin in promoting airway inflammation in asthma, since leptin may 
alter airway epithelium, stimulating the upregulation of ICAM-1 and 
increasing the secretion of different cytokines, including IL-6, CCL11, 
G-CSF and vascular endothelial growth factor (VEGF). Leptin-deficient 
mice showed reduced lymphocyte and eosinophil numbers in BAL, 
demonstrating that leptin plays an essential role in inducing allergic 
airway inflammation [103]. In addition, an in vitro study showed that 
exogenous leptin exposure promotes the expression of IL-4, IL-5, and 
IL-13 in Th2 cells [104], and Sideleva et al. found that increased leptin 
levels are associated with AHR [105]. Other studies showed that leptin 
treatment augmented allergen-induced AHR but did not affect eosino
phil influx or Th2 cytokine expression, suggesting that leptin is also 
capable of augmenting AHR through a mechanism independent of Th2 
inflammation [106]. A few cross-sectional studies have reported positive 
associations of serum leptin levels with asthma severity, asthma control, 
lung function, and asthma severity in children and in adults [107,108]. 
One study found an association between serum leptin levels and asthma 

control assessed by the Asthma Control Questionnaire (ACQ) [109]. 
Another recent longitudinal study applied a causal approach to media
tion analysis showing that leptin partly (> 60%) mediated the associa
tion between high body adiposity and persistent asthma over time 
[110]. Taken together, these results support that leptin may be a 
mediator that contributes to explaining the association between obesity 
and both asthma persistence and control. Regarding other cytokines and 
mediators underlying obesity and asthma, cysteinyl leukotrienes, a 
group of inflammatory lipid mediators, have also been found to be 
elevated in obese asthmatic children [111] and may be considered a 
trigger for airway remodeling, by altering the phenotype of small-airway 
epithelial cells in vitro [112]. Leukotriene D4 (LTD4) treatment in
creases the expression of inflammatory cytokines [IL-1α, IL-1β, IL-6, 
epidermal growth factor (EGF), TNF-α, GM-CSF, eotaxin] in 
small-airway epithelial cells (SAECs) in a time- and dose-dependent 
manner and induces NLRP3 inflammasome activation, which activity 
is involved in both obesity and asthma. Increased sputum concentrations 
of IL-1β and increased NLRP3 and TLR4 expression in sputum cells have 
been reported in obese as compared with non-obese asthmatic patients 
[113,114]. Furthermore, LTD4 treatment increases goblet cell hyper
plasia, with structural alterations in SAECs, such as the loss of cilia and 
excessive accumulation of mucin. Airway smooth muscle cells show 
hypertrophy, hyperplasia, and lead to increased thickness of the airway 
in asthma even early in the disease progression [115]. Airway smooth 
muscle cells can also have a pro-inflammatory role [116,117], while 
obesity – by modulating the mechanism of cell contraction in airway 
smooth muscle cells – is a risk factor for increased AHR in asthmatic 
individuals [118]. Moreover, obesity-related complications, such as 
hyperglycemia and hyperinsulinemia, as well as exposure to increased 
levels of free fatty acids, may contribute to AHR and remodeling via 
epithelial damage and airway smooth muscle proliferation [119–122]. 
Insulin resistance has been found to negatively affect asthma control 
independent of body weight, promoting AHR [123–127]. Notably, 
metabolic syndrome is characterized by mitochondrial dysfunction, 
which is also present in airway epithelial cells in asthma [128] and 
beneficial effects of mitochondrial-targeted antioxidants have been 
observed in metabolic syndrome and asthma [129–132]. Finally, upre
gulation of small GTPases in Th-cells has been described in children with 
non-allergic obese asthma phenotype [133]. These novel biological 
mechanisms, if confirmed in future studies, may offer more therapeutic 
targets in pediatric obese asthma. 

3.3. Lung function, symptoms, and poor response to ICS in obese 
asthmatics 

Many studies have shown that obese adults have worse control of 
asthma, with more emergency room evaluations and hospital admis
sions, lower lung function and quality of life, and greater use of systemic 
corticosteroid courses than normal-weight adults. Studies on children 
are less numerous but similarly show worse asthma symptoms and 
control [34], increased risk of exacerbations [30,134] and hospitaliza
tion, reduced response to corticosteroids [135–137], and lower quality 
of life [138] than normal-weighted peers. Interestingly, some recent 
studies suggest that obesity may not represent a factor increasing at least 
the risk of severe exacerbations [139,140]. 

When considering lung function, obese patients may show restrictive 
or obstructive patterns at spirometry. Recent studies have deepened our 
understanding of the effect of obesity on lung function, showing that, 
while in adult asthmatics, the main detrimental effect of obesity seems 
to be related to mechanical factors, with restrictive pattern spirometry 
(small reduction of both FEV1 and FVC and normal or mildy increased 
FEV1/FVC ratio as well as reduced total lung capacity and residual 
volume when considering static lung volumes) [141–143], in children 
with obesity, an obstructive pattern is usually observed, with slightly 
higher levels of FEV1 and FVC and lower FEV1/FVC ratio due to a 
disproportionate increase in FVC compared to FEV1, when compared 

Table 1 
Main factors involved in the interplay between Asthma and Obesity.  

Environmental factors Diet 
Vitamin D levels 
Pollutants, including tobacco smoke exposure 

Genetic Factors Nucleotide polymorphisms (SNPs) in 17q21 
CHI3L1 gene expression (induced by hyperlipidic diet) 
Other genes involved in asthma or obesity pathogenesis 
Epigenetic modifications 

Lung Growth Dysanapsis 
Mechanical factors influencing respiratory physiology 

Inflammatory cytokines IFN-γ 
IL-17A 
TNF-α 
IL-1β 
IL-6 
Cysteinyl Leukotrienes 

Adipokines Adiponectin 
Leptin 
Resistin  
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with normal-weight peers [144–147]. Forno et al. confirmed such data, 
regardless of asthma status, in a recent metanalysis, including both 
adults and children from 62 studies, also showing a significant decrease 
in FEF25–75% among overweight and obese children, further confirming 
the reduction in peripheral airway caliber [148]. In previous studies, 
Forno et al. reported that obstructive patterns in obese children might be 
caused by dysanapsis [149], a term coined by Green et al. to describe a 
disproportionate growth between lung parenchyma volume relative to 
airway caliber, leading to increased FEV1 and FVC, with more marked 
effect on FVC [150], and later defined by the European Respiratory 
Society as an airflow obstruction with a reduction of FEV1/FVC associ
ated to normal FEV1 levels [151]. 

Further studies demonstrated that both asthma and obesity are 
independently associated with dysanaptic growth of airways but with 
stronger effects from overweight [152,153]. Data from the ISAAC study 
confirmed a linear decline in FEV1/FVC with increasing BMI, but no 
association was found with bronchial hyperreactivity, skin prick test, or 
total IgE [154]. In other words, available evidence suggests that obesity 
influences lung growth determining incongruences between the growth 
of the parenchyma and reduced growth in diameter of the airway, which 
seems to play an important role in airflow reduction in obese children. 
Mechanisms underlying dysanapsis in the overweight have not been 
well elucidated, but some authors have suggested that adipokines could 
regulate the growth and development of the lugs and airways [155,156]. 

Unsurprisingly, both dysanapsis and suffering from current asthma 
have been found to be significantly related to the visceral fat index 
independently of the total fat mass [157]. The degree of airway 
obstruction caused by dysanapsis has clinical consequences: available 
evidence shows that there is poorer control of symptoms in asthmatic 
patients with obesity-related dysanapsis, with more emergency depart
ment evaluations, hospitalizations, severe exacerbations, systemic 
corticosteroid courses, and increased use of medications and rescue 
medications [149]. 

However, typical adult mechanical factors may also influence lung 
function in the pediatric age, since a more restrictive “adult” ventilatory 
pattern usually appears in adolescence, when thoracic and abdominal 
fat deposition reduces diaphragm excursion and tidal volume breaths 
[158,159], which cause alveolar hypoventilation and reduction of lung 
volumes, with increased airways resistance, ventilation inhomogeneity, 
reduced compliance of the respiratory system with a reduction in 
Functional Residual Capacity (FRC) and increased respiratory rate and 
work of breathing favoring AHR [160–163]. Moreover, obese subjects 
may suffer from atelectasis of peripheral lung regions, hypoxia-induced 
pulmonary vasoconstriction and increased pulmonary pressures, inter
stitial oedema, and pulmonary hypertension [164]. This itself might 
cause or worsen symptoms such as breathlessness and wheezing. The 
multiple effects of obesity on respiratory function and physiology may 
interfere with the delivery of inhaled medications to the small airways 
and contribute to the resistance to ICS often observed in obese patients 
with asthma [165,166]. Regarding corticosteroid response, Sutherland 
et al. reported that obese asthmatics show a reduced ability of dexa
methasone to induce MKP-1 (a glucocorticoid responsive gene) in pe
ripheral blood mononuclear cells and in bronchoalveolar lavage cells, 
causing resistance to corticosteroids [167]. Moreover, genetic poly
morphisms could reduce the efficacy of ICS in obese asthmatics by 
conferring higher resistance, lower receptor binding, and/or lower 
retention of medication in the lung. However, it should be noted that 
poor response to ICS may be attributed to the underlying pattern of 
inflammation, especially when it is characterized by predominant 
neutrophilic / paucigranulocitic inflammation [168]. Obese asthmatics 
are more symptomatic but less inflammatory, compared with non-obese 
patients [26]. This raises a question about obesity-related mechanisms 
underlying the symptomatology. Cough is one of the key symptoms of 
asthma and was significantly associated with poor asthma control or 
disease severity [169–172]. Chronic cough is associated with obesity 
and gastroesophageal reflux disesases (GERD) [173]. Given the 

similarity in the demographic features (middle-aged female predomi
nance) of patients with chronic cough and those with obesity-associated 
asthma [26,174], it is tempting to speculate that cough is one of major 
symptoms affecting clinical outcomes in obese patients with SA. How
ever, cough has not been properly measured in most clinical trials of SA. 
Further studies are warranted to investigate obesity-related symptoms 
and underlying mechanisms affecting clinical outcomes in patients with 
SA. Interestingly, Orries et al. reported that poor adherence to ICS may 
be a characteristic of the pediatric obese asthma phenotype [175]. In 
this study, they analyzed data from 566 asthmatic children aged 4–13 
years, who used ICS as maintenance therapy, showing that excess weight 
was associated with a trend towards increased odds of parent-reported 
nonadherent behavior and objectively measured general non
adherence, but only in moderate-to-severe asthma, and nonadherent 
behavior seemed to be mostly intentional. However, it is possible that 
poor adherence relates to the fact that ICS treatment is not working, 
either because the diagnosis is wrong, or because the inflammatory 
phenotype is non-eosinophilic (above). Lastly, obese children are also at 
higher risk for developing obstructive sleep apnea syndrome (OSAS, 
which should be as a pro-inflammatory condition per se), obesity 
hypoventilation syndrome, GERD (although the relevance in asthma is 
questionable) [176], dysfunctional breathing, and a sedentary lifestyle, 
with consequent deconditioning that could all contribute to worsening 
respiratory symptoms [177]. 

4. Pharmacological treatment of severe asthma in childhood: 
the role of monoclonal antibodies in targeting inflammatory 
pathways and potential application in the obese phenotype 

4.1. Cellular and molecular pathophysiology of SA in childhood 

About 5% of all asthmatic children aged > 6 years show poor control 
of the disease, with frequent exacerbations and/or persistent airflow 
obstruction despite maximal prescribed therapy. Such patients have 
been defined as having “problematic severe asthma”, including both 
those affected by “difficult-to-treat asthma”, with modifiable underlying 
factors (poor adherence, poor control of comorbidities, environmental 
or social factors), and those affected by “severe, therapy-resistant 
asthma” (SA) who have persistent symptoms despite optimization of 
the basics of asthma management [178,179]. 

SA is defined by the ERS/ATS guidelines as asthma requiring treat
ment with high dose ICS plus a second controller (and/or systemic 
corticosteroids) to prevent it from becoming ‘uncontrolled’ or which 
remains ‘uncontrolled’ despite this therapy [7,8]. SA affects about 
0.23–0.5% of children and adolescents [180]. SA is a complex and 
heterogeneous disease for which clinical classification does not predict 
response to treatment and to novel therapies, such as monoclonal agents 
in particular. So, in the last 10 years, research has been focused on 
identifying SA endotypes (cellular and molecular mechanisms) and 
related biomarkers in order to tailor the treatment to each patient [181]. 

T2-high triggered by airborne allergens is the most common SA 
endotype in childhood, with blood eosinophilia, eosinophilic inflam
mation driven by IgE and cytokines, such as IL-4, IL-5, IL-13 [182,183]. 
In allergic asthma, inhaled aeroallergens are captured by conventional 
dendritic cells, processed and exposed to T cell receptors of naïve 
CD4 + T lymphocyte, which are induced to polarize towards Th2 
pattern, in a specific cytokine milieu [184]. In non-allergic eosinophilic 
asthma, ILC2 are the main drivers of inflammation and are activated by 
alarmins (TSLP, IL-25, and IL-33), which are secreted by epithelial cells 
after being triggered by infections, irritants, and epithelial damage. This 
cascade leads to eosinophils recruiting [185]. 

The T2-low asthma endotype is usually more common in adolescents 
and adults and is characterized by neutrophilia: here, inflammation is 
driven by Th1 and Th17 (IL-8, IL-17, and IL-22), which are activated 
after interacting with environmental factors, including infections and 
pollutants, through toll-like receptors (TLRs) and pattern recognition 
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receptors (PRRs). Three main inflammatory patterns have been 
described in T2-low asthma on the basis of the prevalence of immune 
cells found in the airways: neutrophilic, mixed, and pauci-granulocytic 
[186]. 

In childhood, SA is almost exclusively associated with persistent 
eosinophilic airway inflammation and T2-high endotype. Notably, there 
is some evidence of persisting airway eosinophilia even without 
increased levels of Th2 cytokines in BAL fluid (Il-5, IL-4, and IL-13). 
Thus, some authors have suggested that in pediatric SA, innate media
tors such as IL-33 may have a more important role than Th2 cytokines 
[187,188]. However, such lack of increased levels of Th2 cytokines 
could be related to the steroid sensitiveness of Th2 cytokines themselves 
in treated patients more than actually reduced levels in untreated dis
ease (which for obvious ethical reasons cannot be determined). 
Regarding T2-low asthma in pediatric SA, such an endotype seems un
common in school-age asthma and more common in preschoolers, but 
findings from BAL fluid analysis have demonstrated neutrophilia with a 
mixed pattern of type 2, type 1, and Th17 inflammation, which may 
actually represent concomitant bacterial infection or suppression of type 
2 inflammation by corticosteroids [189]. Moreover, ILC2 are more 
numerous in the airways of children with SA and show higher activation 
by IL-33 [179,190,191]. 

4.2. Overview of currently available biologicals 

In 2003, the marketing of the monoclonal agent omalizumab gave 
start to the era of personalized treatment in asthma [192]. In September 

2022, six monoclonals are available on the market, five of which have 
been authorized under 18 years of age, with differences by country 
(Table 2). Such treatments, targeting a single molecule, receptor, or 
antibody, have selected activity when compared to corticosteroids, 
limiting side effects and showing efficacy in terms of improved control of 
asthma, both in children and adults [193]. Considering that mono
clonals interfere with selected components of the inflammatory cascade, 
patients should be carefully evaluated in order to select the most 
appropriate drug on the basis of their endotype (Fig. 1). However, there 
is an ongoing debate about which biomarkers should be used and related 
cut-offs [194,195]. 

Omalizumab is a humanized monoclonal IgG1 antibody directed 
against IgE: this molecule is capable of neutralizing the circulating IgE, 
thus preventing their binding with high-affinity receptors on immune 
cells and related activation of allergic inflammation, as well as reducing 
the expression of the high-affinity receptor of IgE (FcR) on the surface of 
mast cells, basophils, eosinophils, and neutrophils, thereby inhibiting 
their release of inflammatory mediators [196]. Omalizumab is indicated 
in patients with severe allergic asthma older than 6 years of age, but in 
some countries, in those older than 12 the presence of FEV1 < 80% may 
be required. Omalizumab is administered subcutaneously every 2 or 4 
weeks, and the dosage depends on the patient’s weight and the total IgE 
level (patients should have IgE values between 30 and 1500 IU/mL and 
be allergic to at least one perennial allergen). The efficacy and safety of 
omalizumab have been demonstrated in several randomized controlled 
trials and “real-life” studies, showing mainly local reactions in the in
jection site (redness, pain and itch) and headache [197]. Omalizumab 

Table 2 
Currently available monoclonal agents for the treatment of severe asthma (with different authorization by country).  

Biological agent Mechanism 
of action 

Patients Indication Dosage Biomarkers predicting 
response 

Most common side effects 

Omalizumab 
(Xolair®) 

Anti – IgE 
(binds 
circulating 
IgE) 

≥ 6 
years 

Severe allergic asthma with 
sensitization to at least one 
perennial aeroallergens (+
FEV1 <80% in patients ≥ 12 
years) and IgE 30–1500 IU/ 
mL  

• SC injection every 2–4 weeks 
(75–600 mg depending on 
weight and IgE levels)  

• IgE levels  
• Blood eosinophils ≥ 260 

cells/uL  
• FeNO ≥ 19,5 

Reaction at the site of 
injection, arthralgia, 
fatigue, headache, 
abdominal pain, dizziness. 

Mepolizumab 
(Nucala®) 

Anti - IL-5 
(binds 
circulating 
IL-5) 

≥ 6 
years 

Severe eosinophilic asthma  • 100 mg SC every 4 weeks in 
patients ≥ 12 years (> 40 Kg)  

• 40 mg SC every 4 weeks in 
patients 6–11 years (< 40 Kg)  

• Blood eosinophils ≥ 300 
cells/uL  

• Blood eosinophils ≥ 150 
cells/uL in patients with 
well characterized 
eosinophilic asthma or 
requiring regular OCS 

Reaction at the site of 
injection, infections, back 
pain, headache, eczema, 
abdominal pain, nasal 
obstruction 

Reslizumab 
(Cinqaero®) 

Anti – IL-5 
(binds 
circulating 
IL-5) 

≥ 18 
years 

Severe eosinophilic asthma  • Intravenous infusion every 4 
weeks, 3 mg/Kg  

• Blood eosinophils ≥ 400 
/uL 

Reaction at the site of 
injection, increase of CPK, 
myalgia 

Benralizumab 
(Fasenra®) 

Anti - IL-5 
(binds to 
receptor) 

≥ 12 
years 
(USA) 
≥ 18 
years 
(UE) 

Severe eosinophilic asthma  • 30 mg SC, first 3 doses 4 
weekly, then every 8 weeks  

• Blood eosinophils ≥ 300 
/uL 

Reaction at the site of 
injection, nasopharyngitis, 
headache 

Dupilumab 
(Dupixent®) 

Anti - IL-4/ 
13 
(binds to 
receptor) 

≥ 6 
years 

Severe asthma with type2 
inflammation (peripheral 
eosinophilia and/or, high 
values of FeNO)  

• Patients taking OCS or with 
severe AD or CRSwNP: first 
dose 600 mg SC, then 300 mg 
every 2 weeks.  

• Other cases: first SC dose 
400 mg, than 200 mg every 2 
weeks.  

• In children 6–11 years: 15–30 
Kg: 100 mg every 2 weeks (or 
300 mg every 4 weeks); 30–60 
Kg: 200 mg every 2 weeks (or 
300 mg every 4 weeks); ≥ 60 
Kg: 200 mg every 2 weeks.  

• Blood eosinophil ≥ 150/ 
uL  

• FeNO ≥ 25 ppb 

Reaction at the site of 
injection, conjunctivitis, eye 
pruritus, bleparitis, oral 
herpes, transient increase in 
eosinophils 

Tezepelumab 
(Tezspire®) 

Anti – TLSP 
(binds 
circulating 
TLSP) 

≥ 12 
years 

Severe asthma, regardless of 
endotype  

• 210 mg SC every 4 weeks  • Blood eosinophils 
≥ 150/uL  

• FeNO ≥ 25 

Reaction at the site of 
injection, pharyngitis, 
arthralgia, back pain.  
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has proven effective in reducing the number of asthma exacerbations, 
hospitalizations, as well as viral-induced exacerbations through 
enhancement of the antiviral response mediated by IFNα [193,198,199]. 
However, it is still unclear how long the treatment should be continued 
in each patient nor what happens after its suspension in childhood. 
Real-world studies on this subjects are becoming available, showing the 
long-term effectiveness and safety of omalizumab after 24 months from 
its suspension [200]. Omalizumab is particularly effective in patients 
with comorbidities, such as atopic dermatitis, food allergy, and poly
sensitization, and eosinophil count ≥ 300 cells/µL and high levels of IgE 
and FeNO [201]. With regard to long-term safety, analysis of clinical 
studies published in the last 10 years has not shown an increased inci
dence of neoplasia in subjects treated with omalizumab [202]. The 
ongoing PARK (Preventing Asthma in High Risk Kids) study is evalu
ating omalizumab efficacy and safety in children aged 2–3 years at high 
risk of asthma development [203]. 

Mepolizumab is a murine humanized immunoglobulin IgG1 mono
clonal antibody directed against circulating IL-5, which is pivotal for the 
differentiation and recruitment of eosinophils. As a consequence, 
mepolizumab acts by inhibiting the activation of eosinophils [204]. 
Mepolizumab is approved for the treatment of patients older than 6 
years of age with SA characterized by frequent exacerbations and 
eosinophilic inflammation with eosinophil count ≥ 150 cells/µL. 
Mepolizumab is administered subcutaneously every 4 weeks at a dose of 
100 mg for adults and children > 12 years of age (or >40 Kg) and 40 mg 
for children > 6 years (or < 40 Kg). Efficacy and safety have been 
evaluated in subjects older than 12 years in the DREAM and MENSA 
study, while the SIRIUS study included patients older than 16 years, 
showing a reduction in the number of asthma exacerbations and in the 
administration of oral corticosteroids, and consequent improvement of 
quality of life [205–207]. The more recently published results from the 
MUPPITS-2 study, including subjects aged 6–17 years living in disad
vantaged urban communities (predominantly Black and Hispanic chil
dren) showed that adjunctive therapy with mepolizumab reduced 
asthma exacerbations, but did not affect other asthma outcomes [208]. 
Regarding side effects, in the COSMEX study, adults with SA underwent 
treatment with mepolizumab for 172 weeks showing mainly local re
actions at the injection site, back pain, asthenia, and respiratory in
fections. Similarly to omalizumab, there is no clear indication of the 
optimal duration of the treatment [209]. The few studies have been 
conducted or including children aged 6–11 years, confirming mepoli
zumab’s efficacy and safety both in the short and long term [208,210, 
211]. 

Reslizumab is an IgG4 kappa monoclonal antibody capable of binding 
circulating IL-5, which is approved for use in SA with eosinophilic 
inflammation in adults and is administered intravenously at a dosage of 
3 mg/kg every 4 weeks [212]. Reslizumab showed significant 
improvement in lung function, exacerbations, asthma symptoms, and 
asthma-related QoL in the phase III BREATH clinical program, including 
four placebo-controlled efficacy and safety studies in patients with SA 
aged ≥ 12 years, with better response in those with eosinophils 
> 400/µL [213,214]. Nevertheless, this drug is currently not licensed in 
subjects under the age of 18 years. 

Benralizumab is a monoclonal antibody of murine origin that binds to 
both the subunit of the IL-5 receptor and the FcγRIIIa receptor expressed 
on natural killer cells, inducing rapid and marked depletion of eosino
phils via apoptosis. Benralizumab is administered subcutaneously at a 
dosage of 30 mg every 4 weeks for the first three doses, then every 8 
weeks [215], and is approved for the use in SA with eosinophilic 
inflammation in patients > 12 years in the USA (while it currently 
cannot be prescribed in those younger than 18 years in Europe). Its ef
ficacy in terms of decrease in the annual asthma exacerbation rate and 
improvement in FEV1 as well as in asthma symptoms has been reported 
in the CALIMA and SIROCCO studies, including patients aged 12–75 
years, with better response in those with eosinophils > 300/µL [216, 
217]. It should be noted that Benralizumab significantly and rapidly 

reduce eosinophil levels as demonstrated also in the sputum, and some 
Auhtors suggest that this effect could favour or worsen respiratory in
fections [218]. 

Dupilumab is a fully human IgG4 monoclonal antibody directed 
against the alpha subunit of the IL-4 receptor, capable of blocking both 
IL-4 and mediated signal transduction from IL-13. Two types of IL-4 
receptors have been described: type 1 is expressed in blood cells, 
while type 2 is expressed in the airways and skin. In the latter, the alfa 
subunit is coupled to the low-affinity receptor for IL-13, forming a het
erodimer capable of binding both IL-4 and 13. When IL-4 or IL-13 bind to 
their receptors, a cascade is activated involving the production of spe
cific transcription and translation factors determining the activation of 
Th2 responses [219]. Dupilumab was firstly approved for subcutaneous 
administration in patients more than 12 years old with 
moderate-to-severe asthma and eosinophilia (≥ 300 cells/µL) at a 
dosage of 400 mg followed by a dosage of 200 mg every 2 weeks or 
600 mg followed by a dosage of 300 mg every weeks (Table 2). 

Two large RCTs evaluated the efficacy and safety of dupilumab: The 
QUEST study enrolled more than 1500 patients aged > 12 years with 
moderate-severe asthma despite daily ICS therapy, showing a significant 
reduction in the number of exacerbations, with better response in pa
tients with eosinophils ≥ 300 cell/µL and FeN0 > 25 ppb [220]. The 
VENTURE study evaluated the efficacy of dupilumab in severe 
steroid-dependent asthma independently of the value of eosinophils in 
the peripheral blood, showing that dupilumab reduced the number of 
exacerbations and the use of oral steroids as well as determined an 
improvement in FEV1 values [221]. The recently concluded VOYAGE 
study confirmed the efficacy and safety of dupilumab in patients be
tween 6 and 12 years with type 2 asthma phenotype (eosinophils ≥
150/µL) [222]. Dupilumab is generally well tolerated, and among the 
most common side effects are reactions at the injection site (edema, 
pain, itching), conjunctivitis, blepharitis, ocular itching, and oral 
herpes. 

Tezepelumab is a fully human anti-TSLP monoclonal IgG2 antibody, 
recently approved for add-on maintenance therapy of SA without 
phenotype or biomarker limitations in patients aged > 12 years. TSLP is 
produced mainly by lung epithelial cells activated in response to envi
ronmental triggers such as viruses, bacteria, fungi, allergens, irritants or 
physical injury [223]. Tezepelumab binds to TSLP, preventing its 
interaction with its receptor complex, predominantly on dendritic cells, 
and inhibiting the consequent activation of a signaling network 
including JAK1/2-STAT3/5 system, phosphoinositide 3 kinase (PI3K), 
mitogen-activated protein kinases (MAPK) and nuclear factor-KB 
(NF-kB). Such pathways induce Th cell polarization towards the Th2 
immunophenotype, but also favor the polarization towards Th17, so that 
it could represent an option in T2 low asthma [224]. Moreover, TSLP 
activates ILC2 [225]. The efficacy and safety of Tezepelumab were 
evaluated in several RCTs, such as the NAVIGATOR and PATHWAY 
studies, showing a reduction in annualized rate of asthma exacerbations 
and increased pre-bronchodilator FEV1, independently of baseline blood 
eosinophil counts and reduces the levels of FeNO, blood eosinophils and 
serum IgE [226,227]. The most commonly reported side effects are sore 
throat, arthralgia, and back pain. 

4.3. The present and future of monoclonal antibodies in obese asthmatics 

A patient-tailored nutritional approach, together with weight loss 
strategies, is needed in order to improve disease control in obese asth
matics. As expected, a systematic review by Juel et al. showed that 
weight loss was associated with a 48–100% reduction in asthma symp
toms and medication use, with increased asthma control [228]. Some 
studies on children found similar benefits in terms of improvements in 
asthma-related quality of life and asthma control [229–231]. In these 
patients inhaled treatment and inhalation technique should be opti
mized and periodically reviewed, while adherence should be warranted. 
However, since obese and overweight asthmatics usually show a poor 
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corticosteroid response and higher airway hyperreactivity with a 
persistent obstructive pattern at spirometry, these patients are likely to 
require different approaches besides daily ICS-only therapy. Adjusting 
medical treatment is of great importance, including the introduction of 
add-on therapies such as LABA, but the response to treatment should be 
carefully monitored. In SA, biologics could represent a useful strategy, 
but most of them target Type 2 mediated inflammatory pathways, so 
they could be less effective in those patients who show persistent T2-low 
inflammation, with elevated levels of interleukins such as IFN-γ and IL-6 
[232]. The recent marketing of Tezepelumab could represent a new 
option in obese asthmatics, considering its effects on the first steps of the 
bronchial inflammation cascade. Nevertheless, several specific in
hibitors of non-T2 immune responses have been evaluated or are 
currently under investigation for asthma treatment. Anti-TNF agents 
have been tried but with severe side-effects, including secondary in
fections leading to reduced interest in further research [233]. Some 
studies evaluated IL-33 and IL-25, two alarmins which together with 
TSLP induce ILC2 activation and Th2 cell polarization [234], as poten
tial targets for asthma therapy. Itepekimab, a human monoclonal anti
body against IL-33 administered subcutaneously to patients with 
moderate-to-severe asthma at the dosage of 300 mg every 2 weeks, 
recently showed efficacy in improving asthma control, quality of life and 
lung function in patients with moderate-to-severe asthma [235]. 
Regarding the IL-23/IL-17 pathogenic axis, Risankizumab, an anti-IL-23 
monoclonal antibody, was found not effective in reducing sputum 
neutrophil count and the rate of asthma exacerbations [236]. Brodalu
mab, a fully human monoclonal antibody targeting the IL-17 receptor, 
improved asthma symptoms and lung function only in a subset of pa
tients with marked bronchodilator reversibility [237]. Several other 
molecules interfering with various upstream targets of T2 inflammation, 
as well as with some downstream kinases (such as those involved in the 
JAK pathways), are being developed, but none of these therapies is 
currently being investigated in childhood [238]. Some trials are ongoing 
on phosphodiesterase (PDE)3 inhibitors (acting as bronchodilators) and 
PDE4 inhibitors (having anti-inflammatory effects) [239] as add-on 
therapies in uncontrolled asthma. Moreover, some mitogen-activated 
protein kinases (MAPK) inhibitors have been shown to restore cortico
steroid sensitivity in peripheral blood mononuclear cells from patients 
with severe asthma [240]. Moreover, as obese inflammation may be 
related to neutrophilic inflammation and Th17 activation [241] other 
medications may be useful. Regarding children who are both obese and 
allergic, it has been hypothesized that mast cells may be involved in the 
pathogenesis; thus, mast cell stabilizers may have the potential as an 
additional therapy for this phenotype [242]. Further studies on specific 
treatments for different asthma pheno/endotypes will contribute to 
identifying and improving strategies for increasingly personalized 
asthma management. Lastly, considering the role of IL-6 in contributing 
to the obese-asthma phenotype, specific monoclonals could represent 
another option for obese asthmatics. Tocilizumab, a humanized anti-IL-6 
receptor antibody, has been used for more than 10 years in the treatment 
of rheumatoid arthritis and other rheumatological conditions, and has 
been widely used during the COVID-19 pandemic in order to reduce the 
onset and progression of the cytokines storm. Nevertheless, there are 
only some case reports available in the literature on its potential role in 
treating SA [243]. 

5. Conclusions 

The link and interplay between asthma and obesity are complex and 
not completely elucidated, especially in children (Table 3). Considering 
the many factors that affect (in multiple ways) responses to inhaled 
treatments and, therefore, involved in SA pathogenesis in these patients, 
international guidelines should include specific strategies to manage 
asthma in obese patients, especially in children and adolescents. In the 
near future, research should attempt to identify specific biologic agents 
directed toward T2-low phenotypes cytokines. 
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J. Lötvall, Frequent cough in unsatisfactory controlled asthma–results from the 
population-based West Sweden Asthma study, Respir. Res. 15 (1) (2014) 79, 
https://doi.org/10.1186/1465-9921-15-79. 

[171] W.J. Song, H.K. Won, S.Y. Lee, H.K. Park, Y.S. Cho, K.F. Chung, L.G. Heaney, W. 
J. Joung, Patients’ experiences of asthma exacerbation and management: a 
qualitative study of severe asthma, ERJ Open Res 7 (2) (2021) 00528–02020, 
https://doi.org/10.1183/23120541.00528-2020. 

[172] S.J. Deng, J. Wang, L. Liu, X. Zhang, P.G. Gibson, Z.H. Chen, S.S. Birring, M. Xie, 
K.F. Lai, L. Qin, D. Liu, A.E. Vertigan, W.J. Song, L. McGarvey, F.M. Luo, K. 
F. Chung, W.M. Li, G. Wang, Chronic cough in asthma is associated with increased 
airway inflammation, more comorbidities, and worse clinical outcomes, Allergy 
Asthma Proc. 43 (3) (2022) 209–219, https://doi.org/10.2500/ 
aap.2022.43.220022. 

[173] L. Guilleminault, Chronic cough and obesity, Pulm. Pharmacol. Ther. 55 (2019) 
84–88, https://doi.org/10.1016/j.pupt.2019.01.009. 

[174] A.H. Morice, E. Millqvist, K. Bieksiene, S.S. Birring, P. Dicpinigaitis, C. Domingo 
Ribas, M. Hilton Boon, A. Kantar, K. Lai, L. McGarvey, D. Rigau, I. Satia, J. Smith, 
W.J. Song, T. Tonia, J.W.K. van den Berg, M.J.G. van Manen, A. Zacharasiewicz, 
ERS guidelines on the diagnosis and treatment of chronic cough in adults and 
children, Eur. Respir. J. 55 (1) (2020), 1901136, https://doi.org/10.1183/ 
13993003.01136-2019. 
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