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We analyze thoroughly the mean-field dynamics of a lineaincbithree coupled Bose-Einstein con-
densates, where both the tunneling and the central-weliiveldepth are adjustable parameters. Owing
to its nonintegrability, entailing a complex dynamics witheos occurrence, this system is a paradigm for
longer arrays whose simplicity still allows a thorough atiahl study.We identify the set of dynamics
fixed points, along with the associated proper modes, ardblesi their stability character depending on
the significant parameters. As an example of the remarkgi#eational value of our analysis, we point
out some macroscopic effects that seem viable to experiment

PACS numbers: 03.75.Fi, 05.45.-a, 03.65.Sq

Since the first realizationsi[1] of Bose-Einstein conden-mental field — and especially the control promised by mi-
sation in atomic gases, great efforts have been aimed ato trapsi[4] — suggest the realization of the trimer to be at
improving the control of geometrical arrangements of thenand. For all these reasons we feel that the trimer deserves
condensate and, in particular, at realizing its fragmentaa systematic analysis, whose key results we discuss below.
tion in many interacting components. The design of in- We consider an asymmetric open trimer (AOT) made of
creasingly efficient trapping schemes [2, 3, 4] has showithree coupled BECs arranged into a row, where both the
this program to be a fairly realistic perspective. Indeed exinterwell tunnelingl” and the central-well relative depth
periments involving Bose-Einstein condensates (BEC) disare adjustable parameters. Compared with the symmetric
tributed within optical traps were successfully conductectase [16] (trimer on a closed chain of equal-depth wells),
that provided quite large 1DI[5] and 20 [6] periodic arraysthe interplay of such parameters both entails a deeper con-
interacting via tunneling. Based on magnetic trapping [7}rol on the dynamics and favours the approach to experi-
the simplest case, consisting of two coupled condensatesental situations. After recognizing the location of fixed
(dimer), was realized as well. In parallel, the rich scemari points in the phase space and the associated proper modes,
of phenomena observed in BECs arrays (nonlinear oscillaxye focus mostly on establishing via standard methods their
tions [8], self-trapping [9], supercurrents[10], and &ois  stability characteion varyingr=7/UN andv=w/UN,
[11,112]) raised a number of questions on their time evoluwhere U embodies the interatomic scattering aid is
tion. The possibility to detect and study, both experimenthe total boson number. Also, we show how macroscopic
tally and theoretically, new macroscopic dynamical phe<i.e. interesting experimentally) dynamical effects can b
nomena/effects in BEC arrays (thus getting a deeper insiglgrimed by selecting suitable critical valuesoindwv.
of stability properties and, operatively, an increased@n  The essential physics of the AOT is aptly descritied [13,
of systems) has prompted an intense ongoing work. 17] by the Bose-Hubbard Model, which represents a gas

In this perspective, the three-site array (trimer) deserveof identical bosons hopping across an ambient lattice. The
a special attention. According to the standard mean-fieldelevant Hamiltonian, ensuing from the boson field theory
treatment, which is fairly satisfactory when the averagehrough thespace-modapproximation of field operators
well populations are large [13], the dimer dynamics is in-[18], readsH =X3_, (Un3 — vny,) — wny — T'la3 (a3 +
tegrablel[14]. The latter is described by two macroscopiai;)+h.c.]/2, wherev is the depth of wellg = 1,3 (w, T,
complex variables; = |z;| exp(iv;), accounting for the U are defined above),; =a; a; counts the bosons at site
condensates’ state (phageand populatioriz;|?), and ex-  and the destruction (creation) operaterga;” ) obey com-
hibits two constants of motion, namely the total bosonmutatorsja;, a;’] = d;,. If the well populations are not so
number and the energy. The apparently harmless addémall that a purely quantum treatment is in order, the sys-
tion of a further coupled condensate is sufficient to makdem dynamics can be described by three variabl@gthin
the system nonintegrable thus causing, in the presence tife mean-field picture. This is recovered via the coherent-
nonlinear BEC self-interactions, strong instabilitieseix  state variational procedure of Rfl 17, where the semiclas-
tended regions of the phase space [15]. Thatis, while keegical Hamiltoniart{ = 33 _ (U |z |* — v|2x|?) —w|22|* —
ing simple enough to be viable to a thorough analyticall'/2[z; (21 + z3) + c.c.] is derived from the system effec-
study, the system displays a whole new class of behawive actionS(¢) ensuing in turn from the macroscopic trial
iors which, though often overlooked, are typical of longerstate| V) = exp (iS/h) 11, |z;), written in terms of the
arrays. Moreover, the recent achievements in the exper{slauber’s coherent states;|z;) = z; |z;). In this frame-
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work the symboh; is used to denote the expectation valueessential element in building treability diagramg[dis-

(U|n;|¥) = |z|*. Equipped with the Poisson brackets played in the lower panel of Figl 1 (Fid] 2) for the DR

{2}, 20} = i/hé;,, H yields the dynamical equations, (NR)] which are the central result of this letter. Opera-
tionally, such diagrams, depicted in the plane (where

{ Zﬁ?j = (2U|Zj|z —v)z — T2 . (1) 0 = arctan(a) € [~7/2,7/2]), allow to determine both
iz = U]z —v—w) 2 — 3 (21 + 23) the location and the stability character of the fixed points.
with j = 1, 3 in the first equation. Eqs[](1) incorporate the For a given parameter paff, ), the latter are obtained
conservation of total boson numh&t = 3_, |z;|?, since by intersecting the straight line = 7 and the curve

{N,H} = 0, and provide, by conjugation, the equations” = 7»(¢), wherer = 7,(0) is implicitly defined Py
for {z}. Further, they propagate in time the initial condi- €quation?.,(a) = 0. The fixed-point components;’s
tion z, = z3, thus revealing an integrable subregime char2re obtained from the relevaéitvia Egs. [5). The lower
acterized by the first integrald andN = 2|z, |2 + |z,|2:  Panel of Fig L [R) displays the graph of = ,,(6) for
We refer to such a regime as tHeneric regime (DR), as five (four) ch0|ces_ ofy, which we discuss beIov_v. We re-
opposed to theondimericregime (NR) where; # z. mark that such Q|agrams embody the v_vhole mforme_lt_lon
The distinctive features characterizing a given Hamilto-On trimer dynamics. There, the fixed points are identified
nian dynamics are deduced by exploring its phase-spa@ Maxima, minima and (stable/unstgb_le) saddles based on
structure. This is attained in the first place by working outthe shade of gray of the region they lie in.
the location and the local character of its fixed points. For Fixed-points local character. This is identified ana-
Egs. [1), the latter are issued from Iytically through a standard study of the signature of the
0= (20|22 — p) 2, — Lz =13 quadratic form associated to a given Hamiltonian, along
{ O_(zU‘;’Q B _ﬂw) 22 _22 (21425) "7 (2) the lines of Refl 16. Locally, to the second order in the
- 2T AR ~ displacements; = VN (¢; +ip;) = z; —(; around the
wherey = v 4 x andy is a Lagrange multlpller selecting fixed point¢; = \/ij, one get§{(z;) — x N=H((;) +
the conserved value oV. Every _solgtlon(m', n2,m3) OF 7 N27 h(q. p)/2, with o' = (q1, g, G3), P' = (1, P2, P3)
Egs. [2) naturally provides a periodic solution of Ed3. (1)andh(q, p) = q'Qq+ p' Pp. Remarkably, the six-by-six
of the form z;(¢) = 7, explix¢/h]. The global phase matrix relevant to the quadratic forf(q, p) in the vicin-
symmetryz; — z; exp[i @] (® € [0,2n]) allows one to iy of a fixed point,separatesnto two three-by-three sym-

replacez; with z; € R thus reducing systerfil(2) to metric submatrice®, Q depending on the;’s, 7 andv.
0=(222 —m)x; — Iy j=1,3 Also, when the displacements’ constraiity = 0 (issued
0=(2 x% —m—v) :,322 — I (21 + x3) () from ,|z,]> = N) is accounted for, the rank @ fur-

ther reduces to two. Likewise only two eigenvaluesiof
wherem = p/UN, andx’ = (z1, 75, 73) is such that  affect the fixed-point character, the third one being iden-
z;=+/Nz; expli ®] and%;2? =¥;n;/N = 1. Notice that  tically zero. Indeed it is easy to check that the relevant
the structure of systenfll(3) entails that the solution whereigenvector i, < x. The non-zero eigenvalues Bfhave
either one or both of the peripheral sites are depleted ispposite signs in the CDW configuration (which is there-
trivial: z; 3 = 0 = x=0. The situation where the central fore a saddle), and the signsiof/x, andz; /z, otherwise.
well is depleted, henceforth referred toantral-depleted Hence the character of a fixed point depends on the signs
well (CDW) yieldsz; = —z3 = ++/m/2 = +1/4/2.  of the two pairs of significant eigenvalues Bfand().
Note that this represents the trimeric counterpart of dimer | jnear stability analysis. The linear stability[[21] of
w-states|[8]. In general, except for the simple CDW casethe fixed point can be determined by studying the evo-
solving system[{3) for- 7 0 is found to be equivalent to |ution of the displacementg and p. This is governed
finding the real roots of the quartic polynomialan[20] by the differential equation§ = {q,#} = o Pp and

Pro(@) = a* +b,,0° + crpa+d =0, @4 Pp= {p,?—[} = —0Qq (with o0 = UNT/2h), through
o _ . the Poisson bracketsg;,p,.} = 0;,/(2 Nh) stemming
Onc.e a splutlon is found in terms of the relevant config-  fom the original one§ 27, z;.} = id, . /h. Suchgp equa-
urationx is recovered as, = aR(a)/v1+a?, tions provide the dynamical six-by-six matdiMg with di-

_ _ agonal (three-by-three) blocks vanishing, and off-diagon
713 = (XitXs)/V2 (NR), @15= X5 (DR) (5) blocks that coincide with matrice® and—Q [22].

where X; = (1 — X7 — 23)2, X; = R(e)/V1+o? Based on the standard criteria, a fixed point is (linearly)

and R(a) = (1 — 7a/V8)? in the NR, whileX; = stable when none of the six complex eigenval{is}®_,
R(a)/+/2(1+ a?), R(ar) = 1in the DR. inherent inM ¢ features a positive real part. Otherwise the

The study of Eq.[{4) allows one to construct the upper{ixed point isunstableand a chaotic behavior may arise.
panel diagrams of Figél 1 amdl 2, where the same shadéhe \;'s are conveniently obtained as the square roots of
of gray characterizes regions of thes plane featuring the eigenvaluei@Aj};’?:1 of —PQ. Indeed, due to the block
the same number of fixed points. Also, it represents awff-diagonal form ofMg and to the symmetry oP and
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FIG. 1: Stability diagram for the DR. Upper panel: number of FIG. 2: Stability diagram for the NR. Upper panel: number of

fixed points. Lower panel: character of the fixed points. Thefixed points. The darker is a region, the larger is the relevan

color keys of both panels, sharing the samexis, are the same number of solutions, also displayed. The lines at a fixedevalu

as in the GR case (see caption of [Eig. 2). of v correspond to the curves (9) appearing in the lower panel
with the same dashing style. Lower panel: character of theal fix
points. Dark gray: maxima; Medium gray: unstable saddles;
Light Gray: stable saddles (only in the NR); White: minimalgo

Q, det(A—Ms) = det()\2+PQ). As expected, this im- in the DR); Diagonal lines: fqrbidden regions (only in the NR

! - . . Both panels share the samexis.
plies that maxima and minima are stable points. Indeed for
such configurations the eigenvaluesffand @) have the

same signs (non-positive for the maxima and non-negative
for the minima), yielding therefore non-positve’s and 1 < ,, < 2, a third bell-shaped branch [seg(6) for

pgrely imaginary)\j’s. F_urth_er, the fact that one of the ,, :_0_270_4] crops up. Hence the DR always has two
eigenvalues of is zero implies that one of th&;’s, and  fixed points, of which one is always a minimum, whereas
hence two of the\;’s, are zero as well. The four remaining {he other is a maximum (unstable saddle) for large (small)
A;'s are the roots of a biquadratic polynomial of the form -»s  For,, = 1/2 the unbounded branches actually col-
/\4—3/\2+p. A fixed point is therefore stable if the condi- |apse on their asymptotes, thus providingndependent
tionss* —4p < 0, p>0 ands <0 are simultaneously met. gg|utions [2B]. In the NR, Figd2r,(6) features one or
two bell-shaped branches, depending on whejther> 2
Discussion. The character/stability of fixed points are or |v| < 2, respectively. Notice that in some cases entire
fully described by the lower panel of Fifl 1 (Figl 2) — portions of such branches, namely the ones lying within
referred to the DR (NR)- through the graphs of functionthe patterned regions, must be discarded since, despjte the
7,,(9) for five (four) significant choices of, distinguished are real, the relevant roots of polynom[dl (4) yield complex
by different dashing patterns. In the figure upper panels golutions of system13). The dotted curves appearing in
straight horizontal line featuring the same dashing stgle athe upper panel of Fidl 2 are actually the counterparts of
the corresponding,, (#) curve allows one to read the rel- the dotted curves delimiting such forbidden regions, and
evant value of.. As noted above, each pdiw, 7) selects significantly modify the simpler picture ensuing from the
the set{f, : 7 = 7,(0,), r < 4} giving the fixed-point mere study of the real roots of polynomial (4) (solid black
components. Depending on the shade of gray filling the relines). Forr < 2[2/3'/2 — 1]'/2 andv ranging around
gion it lies in, a fixed point is either a minimum (white), a v = 2(3!/2 —2) a four-solution lobe is found. As observed
stable/unstable saddle point (light/medium gray) or a maxabove, maxima and minima are predicted to be stable fixed
imum (dark gray). In the DR (Fidd1) each curvg(f)  points. Noticeably, the stability analysis evidences that
has two branches featuring asymptoteg8 at +7/4. For  the NR a significant fraction of the saddle points is dynam-
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FIG. 3: Sets S and M of Poincaré sections of trajectoriegdas
close toC) for two choices of significant parameters’ (see the
text for further detail). Sections are cut@t= —3/4 within the
reduced phase spa@g, &2, ¢1, ¢2), [with & = (ng—n1+n2)/N,

£ = (n3 —ny —ny)/N] ensuing fromN = 0 (see also Ref._16).

ically stable (light gray), while in the DR the saddle points
are always unstable (medium gray). Also, while Hih. 1

shows how the minimum always belongs to the DR, thé

absolute maximum is found either in the DR or in the NR
depending on the values of 7. As to the CDW saddle, it
is unstable in the regiofy < —1,7</—1 — v} U{Jy| <
1,7 > [(1+v)?/(2 — 2v)]?} and stable elsewhere.

As already mentioned, the versatility of micro traps [4]

ing that a fixed point is characterized by the same coordi-
natesr;’s independent of the parametelrs|[25]. This allows
one to evaluate with little effort different sets of paraarst
(,v) for which the same fixed point belongs to regions
having a different stability character. Then, a relatively
simple tuning ofr andv leads to change the fixed-point
character from stable to unstable, thus inducing chaos on-
set. Such an effect is manifest in Fig. 3, where two sets
(labeled byM and S) of Poincaré sections, both issued
from initial conditions quite close to the configuratioh

(n1 = N3 :N/S,TLQ :3/4N,¢1 :192—191 :7T,¢2 =
93—, = —) are plotted fo r, vy ) = (7/[4V/6],2/3)

and (75,v5) = (13/[8v/6],17/24), so that the corre-
sponding point§ny s, = —n/3) lie just in the max-
ima and the saddle regions, respectively. Notice indedd tha
the former parameter choice yields the regular section ex-
pected for a stable point. Conversely, when the fixed point
is a saddle, trajectories based very close to it invade a larg
phase-space region, as testified by Elg. 3 where the rele-
vant Poincaré sections are undistinguishably mergediinto
fuzzy cloud of points. The analytical study exposed in the
present letter is widely confirmed by numerical simulations
where the chaoticity of the unstable fixed points is mani-
fest. A thorough discussion of the AOT phenomenology
and of further macroscopic effects disclosed by the stabil-
ty diagrams will be presented in a later paper [24].
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