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ABSTRACT

The most powerful deepfake detection methods developed so far are
based on deep learning, requiring that large amounts of training data
representative of the specific task are available to the trainer. In this
paper, we propose a feature-based method for video deepfake detection
that can work in data scarcity conditions, that is, when only very few
examples are available to the forensic analyst. The proposed method is
based on video coding analysis and relies on a simple footprint obtained
from the motion prediction modes in the video sequence. The footprint
is extracted from video sequences and used to train a simple linear
Support Vector Machine classifier. The effectiveness of the proposed
method is validated experimentally on three different datasets, namely, a
synthetic street video dataset and two datasets of Deepfake face videos.
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1 Introduction

Modern Artificial Intelligence (AI) techniques for synthetic media generation
allow us to generate images and videos from scratch and manipulate them
with an extremely high level of realism. Some techniques allow synthesizing
a new image from scratch [15] or transferring the style from an image to
another [32], while others implement object swapping, i.e., they swap objects
in an image while keeping the background unchanged [19]. In this category,
face-swapping is a common manipulation, where a person’s face is swapped
with the face of another person [21]. Due to the high realism of synthetic and
manipulated media, it is getting harder and harder to distinguish altered media
from pristine ones, even for humans. These contents, called deepfakes, can be
maliciously used as a source of misinformation. For this reason, detecting AI-
generated media is becoming a more and more pressing need, which attracted
the attention of researchers in the last years [26].

The goal of video deepfake detection is to distinguish AI-manipulated
videos from real ones. Powerful video deepfake detection methods developed
so far are based on Deep Learning (DL) [24], and require that a large amount
of training data representative of the task at hand are available. To facilitate
the progress of deepfake detection, many efforts have been made to collect
deepfakes, like for instance the FaceForensics++ [21], DeeperForensics-1.0 [14],
VideoForensicsHQ [10] datasets. However, DL techniques trained on large
datasets require that the data used for training matches the data analyzed when
the model is deployed in operative conditions. The generalization capabilities
of these techniques are in fact often poor, with the performance dropping
significantly on related – but unseen – manipulations or when different deep
learning architectures are used for the generation [8, 9]. In addition to the
burden of collecting such a large amount of data, in some scenarios, collecting
a large number of samples to train a DL model may simply be impossible.
This is the case, for instance, of privacy-sensitive applications, like in the
healthcare domain. In such situations, only very limited amounts of training
data, collected under strict conditions, may be available. In other cases, the
investigator may not have access to the model which has been used to generate
the synthetic media, thus making it impossible to build a sample dataset which
is large enough to train a DL architecture. Still, the investigator may rely on
a few synthetic samples collected during his/her investigations [28]. Therefore,
the availability of a tool that can be trained with limited available data would
be of great help.

With the above ideas in mind, in this paper, we propose a feature-based
method for video deepfake detection that can work in data scarcity conditions,
that is, when only very few examples of the same kind are available to the
forensic analyst. The proposed method relies on the analysis of motion-related
features, that have been already exploited in some works in order to detect
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deepfake videos by means of deep learning [2, 3, 12, 23]. However, instead of
relying on deep learning architectures and intensive training procedures to
extract discriminative features, we base the classification on a simple footprint
that relies on the frequency of motion prediction modes in the video sequence.
The footprint is inspired by the one used in [7] for the detection of re-encoded
(double encoded) videos. Based on our analysis of the behavior of this footprint
on real and synthetic videos, we argue that, for deepfake videos, the distribution
of motion prediction modes is different with respect to real videos. Moreover,
in many cases, deepfake videos tend to be less predictable than real videos,
thus requiring the use of a large number of Intra predicted frames. The
footprint extracted from video sequences is used to train a Support Vector
Machine (SVM) classifier in charge of discriminating between fake and real
videos. Due to the simplicity of the adopted features, a simple linear SVM
can reach high accuracy with very few video samples. The effectiveness of
the proposed method is experimentally demonstrated on three datasets: a
dataset of fake street views, DeepStreets [1], corresponding to the case of
fully synthetic videos generated by Generative Adversarial Models (GANs),
and two datasets of fake face videos, namely, DeeperForensics-1.0 [14] and
VideoForensicsHQ [10], where the video contents are locally manipulated by
means of Autoencoders.

The rest of this paper is organized as follows. In Section 2, we briefly
review the state of the art in deepfake detection methods and the use of video
coding-based features in Multimedia Forensics. In Section 3, we present the
proposed method. Then, in Section 4, we describe the methodology we followed
in our experiments. The results of the experiments we carried out to validate
the proposed detector are described in Section 5. Finally, in Section 6, we
conclude the paper with some final remarks and hints for future research.

2 Related Work

In this section, we review the main state-of-the-art about video deepfake
detection. The use of video coding in multimedia forensics is also briefly
discussed.

2.1 Video Deepfake Detection

Plenty of methods to detect video deepfakes have been proposed in recent
years. Most of these methods rely on a frame-based analysis and resort to
Convolutional Neural Network (CNN) classification and automatically learned
features [24, 26]. Methods combining model-based with deep learning features
have also been proposed, e.g. in [16, 29].
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Recently, techniques have been proposed that also exploit the temporal
correlation and motion artefacts by resorting to Recurrent Neural Networks
(RNN) or Long Short-Term Memory (LSTM)-based CNN classifiers [12, 23].
A mixture of hand-crafted and deep-learning temporal features is used in [2,
3]. Specifically, features based on Inter-frame prediction errors have been
investigated in [2] jointly with a LSTM-based network cable to learn the
temporal correlation among consecutive frames. In [3], typical motion-related
features, that is, the optical flow fields have been extracted and used as input
of a CNN classifier. However, the performance of such approaches relying on
LSTM architectures are often not superior to those achieved by frame-based
methods [24]. To reduce the expensive cost of training in terms of time and
resources, non-DL-based methods have also been recently proposed, to devise
efficient detectors with small trained model sizes [4, 5, 33].

2.2 Video Coding-based Forensics

The process of editing a video sequence always ends with the re-encoding of
the edited video (possibly with a distinct codec or different coding parameters).
For this reason, footprints introduced by video codecs during recompression
have been extensively studied in the past years for the detection of traditional
manipulations and video editing [18]. In many cases, the traces left by the
double encoding process can be exposed by looking at the distribution of the
macroblock prediction types in the frames of the re-encoded videos [7, 25,
30, 31]. In [7] and [31], statistics of the prediction modes have been used to
detect fake high-quality videos. In particular, in [7], a very simple footprint
obtained by counting the number of macroblocks of type Intra, Inter and
Skip was successfully employed to distinguish low quality H.264 (AVC) videos,
re-encoded in H.265 (HEVC), from native HEVC videos, i.e., obtained from
an uncompressed video sequence.

3 DeepFake Detection based on Video Coding Features

Before presenting the proposed method, we introduce the main features of
the H.264 video coding standard [20], which is the standard more commonly
used for encoding deepfake videos, by confining the discussion to the notions
that are necessary to understand the footprint adopted. It is worth observing
that these features are general ones, common to all macroblock-based video
coding standards, e.g., MPEG-2, MPEG-4 or H.263, and also the modern
H.265 (HEVC) standard.
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3.1 Basic Notions of (H.264) Video Coding

During video encoding, each frame of a video stream is partitioned into
macroblocks. In the following, we refer to the processing unit as macroblock.
The typical size of the macroblocks is 16× 16 pixels. The prediction types are
selected on a macroblock basis rather than being the same for the entire frame.
Main types of macroblocks are: Intra-coded (I-type) macroblocks, and Inter -
coded macroblocks, that can be forward predicted (P-type), and bi-directional
predicted (B-type). I-type macroblocks are encoded by Intra prediction,
independently of other macroblocks, while P and B-type macroblocks are
predicted via Intra-prediction. In the P-type, the previous frame is used
for the prediction, while in the B-type case, the prediction is bi-directional,
then both the previous and future frame is used. Therefore, for Inter -coded
macroblocks, the motion vector pointing to the best matching macroblock in
the reference frame is encoded, along with the prediction error (residuals),
for motion compensation. A frame can belong to three different categories,
defining the prediction types available to that frame: P frames, that contain I-
or P-type macroblocks; B frames, that contain I-, P- or B-type macroblocks;
I frames, that contain I-type macroblocks only. In early standards, motion
compensation was performed with one motion vector per macroblock. In
H.264/AVC, like in other modern standards, a macroblock can be split into
multiple variable-sized prediction blocks (up to 4 × 4), called partition units,
based on the content of the frame. Then, a separate motion vector is specified
for each partition of the Inter -predicted macroblock.

To further improve the coding efficiency in P- and B-frames, the H.264
and H.265 standards resort to the Skip mode. A Skip macroblock consists of
a single prediction unit whose motion data is derived from the neighboring
macroblocks. No residuals are transmitted in Skip mode.

In H264 and H265 video coding standards, the quality of the compressed
video (or compression rate/level) is set by means of the Constant Rate Factor
(CRF). The Raw format refers to the case CFR = 0. In High Quality (HQ)
and Low Quality (LQ) video formats, the videos are compressed by the video
codec with a CFR respectively of 23, and 40 [22].

3.2 The Proposed Video Coding Feature

As we mentioned, the common procedure of generation of fake videos using
generative models, like Generative Adversarial Networks (GANs) or Autoen-
coders, introduce both spatial (pixel-level) as well as motion artefacts. By
inspecting fake and real videos with similar contents, we can observe that the
movements in fake videos tend to be less fluent and natural with respect to
the case of real (original) videos. Therefore, we hypothesize that, in many
cases, fake videos tend to be less predictable than real videos. We argue that
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such differences can be captured by video coding features. In particular, our
conjecture is that the different behavior can be reflected by looking at the
prediction modes of the macroblocks. More specifically, we focused on the
prediction modes in P- and B-frames and computed their frequency on a video
(sub)sequence or batch of frames. For each frame, we extract the following foot-
print: F = [fIntra, fInter, fSkip], where fx denote the frequency/percentage of
macroblocks of mode x in the frame. Frequency fInter counts for both the
P-type and the B-type macroblocks. Notice that a similar feature has been
used in [7] for the detection of low quality H.264 video contents re-encoded
H.265 with higher quality.

To verify our hypothesis, we computed F for real and fake H.264 encoded
video sequences. Comparison is carried out for the same video quality, e.g., for
the same rate of compression or CRF. We observed that, as argued, when the
fake videos are fully GAN synthesized, the frequencies of the prediction modes
are very different with respect to the case of real videos, and the distribution
of the three features is very different. Figure 1 reports the distribution of
fIntra, fInter, and fSkip averaged on all the frames of the raw videos for the
three sets of the DeepStreets dataset [1], respectively for real (left) and fake
(right) videos with similar content. In particular, by looking at the figure, we
see that, for fake videos, Intra-coded macroblocks represent the large majority
of the macroblocks, and their percentage is by far larger for fake (74.7%)
than for real (43.8%) videos. This confirms our conjecture that fake videos
are less predictable, requiring more Intra-coded macroblocks. Notably, the
same behavior is not observed when the fake videos are generated by object
swapping method, in which case we verified that the percentage of Intra-coded
macroblocks is similar for fake and real. Since those methods only modify a
limited part of the frames via autoencoders, e.g., the faces or only the facial
expressions, while the rest of the frame remains the same, deepfake videos
generated in this way are not fully synthetic videos.1 However, even in this
case, discrimination is still possible based on the proposed feature, by looking
at the joint behavior of the three features, and in particular at their distribution
over batches of N consecutive frames. Figure 2 shows the feature distribution
after dimensionality reduction via Principal Component Analysis (PCA) for
real and fake videos coming from the DeeperForensics-1.0 and VFHQ dataset.
In order to apply PCA, for each video, the (N × 3)-dimensional tensor with
the N 3D footprints computed on the N frames, is reshaped to a vector of
length 3N . In the plot, N is set to 30. The reduced dimension is equal to 3.

Motivated by the above analysis, we used the proposed feature to train an
SVM classifier to discriminate between real and deepfake videos under data
limited conditions. The details of the SVM training are provided in Section 4.2.

1Since the footprint relies on (spatially) global features, it is not surprising that the best
discrimination is achieved in the fully synthetic case.
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Figure 1: Frequency of Intra, Inter and Skip for raw videos in the DeepStreets dataset.

4 Methodology

In this section, we describe the methodology we followed in our experiments.

4.1 Datasets

To investigate the effectiveness of the proposed detector, we considered a
dataset of fake street views (fully synthetic) and two datasets of Deepfake face
videos, described in the following.
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Figure 2: Feature distribution for 1000 videos in the DeeperForensics-1.0 dataset and 394
videos in the VFHQ dataset.

DeepStreets [1] is a GAN-synthesized street video dataset. The fake videos
are generated from a sequence of semantic segmentation masks. The dataset
consists of 3 subsets; Cityvid, Citywcvid and Kittyvid. The fake videos are
generated using the Vid2vid [27] model (for Cityvid and Kittyvid) and the
Wc-vid2vid [17] models (for Citywcvid), both trained on the Cityscapes dataset.
For the real videos, in the Kittyvid case, they are taken from Kitti dataset [11],
while in the other cases they are taken from the Cityscapes [6] dataset.

Each subset contains 200 real videos and 200 fake videos and the average
length of the videos is 3 s. The subsets are made available for three different
qualities or compression levels of the videos, namely Raw, HQ and LQ.

DeeperForensics-1.0 (DeepFor) [14] is a new large scale face swapping
dataset consisting of 60,000 manipulated videos in total. For our tests, we
considered 1000 raw manipulated videos and 1000 corresponding real videos,
that are taken from YouTube. The minimum video length is 6 s.

VideoForensicsHQ (VFHQ) [10] is a high quality face reenactment dataset,
where only the face is manipulated. Specifically, the facial expression of the
source video is transferred to the target video. The dataset is comprised of
1737 videos in total (1141 real videos and 596 fake videos) representative for 8
different emotions. The video duration varies from 3 s to more than 5 min. To
get balanced data, we considered 596 real and fake videos from this dataset.

Some examples of videos from each of the three datasets are reported in
Figure 3.

4.2 SVM Detection, Training and Setting

From our discussion in Section 3.2 we argue that, in some cases (e.g., with
fully GAN-synthesized videos), a simple feature could be extracted from F and
directly used for the detection, e.g. the difference (fIntra − fInter). However,
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Figure 3: Examples of real and fake videos from the three datasets. From top to bottom
row: 3 real and 3 fake from DeepStreets, 3 real and 3 fake from DeepFor, and 3 real and 3
fake from VFHQ.

this approach would not work with non fully-synthetic fakes, e.g., in the
swapping case. Since the information on the synthetic nature of the fake is
unknown a priori, we resort to a more general approach and train an SVM
classifier.

Given a video vi, the footprint Fi is extracted from the first N frames
of the video, skipping the first frame that is always Intra-coded.2 Let fij =
[fIntraij , fInterij , fSkipij ] be the footprint extracted from frame j. We denote

2For all videos, the N frames following the first one are always P- or B-type, for the
values of N considered in our experiments.
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with Fi = [fi1, fi2, . . . , fiN ] the concatenation of the N footprints. Then, Fi

is the resulting feature vector extracted from video vi, having dimensionality
N×3. This vector is extracted from each video of the dataset C, consisting of c
videos, and used to train a linear SVM classifier. The regularization parameter
C defining the separation margin adopted for the classification is set to 0.1.
The procedure is reported in Algorithm 1. Notation Y is used to indicate the
label vector associated to the videos in C, that is, Y = (y1, · · · , yc). We denote
the trained SVM model with F -SVM.

Algorithm 1: F -SVM
Input: {(vi, yi)ci=1}, vi ∈ C, yi ∈ {’real’,’fake’}
Output: F -SVM model

1 F ← 0
2 for i← 0 to C do
3 for j ← 1 to N do
4 extract fIntraij

, fInterij , fSkipij
// Using Elecard StreamEye

software
5 fij ← [fIntraij , fInterij , fSkipij ]

6 Fi ← [fi1, fi2, . . . , fiN ]

7 F -SVM ← train LinearSVM( C = 0.1, F , Y ) // Using LibSVM
8 return F -SVM

An SVM model was trained and tested for all the 3 datasets described
above. For DeepStreets, 50 out of 200 per class videos are used for testing,
while the remaining 150 are used for training. Actually, only 128 are made
available for training, while the remaining ones are left out for validation, that
is performed for the DL model used for comparison. For DeepFor, the number
of videos reserved for testing is 201 out of 1000 per class, while 703 are made
available for training (the remaining 96 for validation). For VFHQ, testing
is performed with 89 out of 596 videos per class, with 394 made available for
training (113 for validation). In each case, the SVM is trained using different
numbers of videos from the training set.

Since videos have different lengths and some of them are very short, for
simplicity, for every video only the first N = 30 frames of the stream are con-
sidered (with the exclusion of the first frame which is Intra-coded), discarding
the rest of the video. In the scenario addressed in this paper, we assume that
the quality of the videos is matched in testing and training. In practice, this
corresponds to reading the video quality from the encoded stream and using a
tool trained for the same quality. To consider always the same codec format,
all the videos have been re-encoded H.264 with maximum quality (CRF =
0) before performing our video coding analysis. Other information about the
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framework considered in our experiments is in order: the FFmpeg software is
adopted to encode a video to H.264 codec format, while for the analysis of the
video, we used the Elecard StreamEye software.3

Being a feature-based method, that is, a method based on handcrafted
features, the proposed method should (expectedly) require less training data
with respect to data-driven methods, that have also to learn suitable features for
the classification during the training process. Moreover, due to the simplicity
of the footprint and its low dimensionality, a simple linear SVM can be used for
the classification (with the two parameters defining the separating hyperplane
being the only parameters to be trained). Hence, we expect that very few
videos are enough to train our model, with a significant gain in terms of the
required amount of training videos.

4.3 Comparison with the State-of-the-art

To prove that the proposed detector achieves better results than deep learning-
based methods in data scarcity conditions, the comparison is carried out with
a frame-based XceptionNet detector, that is the state-of-the-art for DeepStreet
detection [1], a ResNetLSTM network [10] [13] and a very recent non DL-based
method named DeFakeHop [5], proposed for face manipulation detection. For
a proper comparison, the same splitting of the three datasets has been used to
define the training, validation and test data.

• XceptionNet is a network with Depthwise Separable Convolutions and
it represents the state-of-the-art for DeepStreets video detection [1]. The
network consists of three modules: entry flow, middle flow and exit
flow. In our work for comparison, we trained the model from scratch,
considering the first N frames from each video. The input face image is
resized to 299 × 299. The network was trained using Adam optimizer
with learning rate α = 0.0002 and the default values for the first and
second-order moments, that is, (β1 = 0.9, β2 = 0.999). The batch size
was set to 24 frames and the model was trained for 50 epochs. During
testing, the decision on each video is taken by means of soft majority
voting, i.e., considering the average of the detection scores of all the
frames.

• DeFakeHop is a light-weight deepfake detection method that can achieve
high deepfake video detection accuracies with a small model size and a
fast training procedure. The detection is conducted based on features
extracted from patches (e.g., the left eye, right eye and mouth) by
PixelHop++ module and further processed by a feature distillation
module with the output of the probability for the patches. Finally, the

3https://www.elecard.com/products/video-analysis/streameye.

https://www.elecard.com/products/video-analysis/streameye
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probabilities for all patches are integrated to get the final description
of whether the face is fake. For the comparison, we trained the model
by taking N frames per video. The detection results are reported in
video-level.

• ResNetLSTM is a network that combines ResNet and LSTM thus
enabling the learning of temporal clues for deepfake detection. More
specifically, the ResNet50 network is used to extract spatial features
from face images. Afterwards, the extracted features from the last
convolution layer are further passed through one convolutional layer
(C = 128, kernel = (1, 1)), adaptive pooling layer, and LSTM module
with 512 hidden units to learn temporal discrepancy between frames.
Finally, a fully connected layer is used for fake prediction. Similarly, for
each video, we take N sequences with the length of 7 from N frames per
video to train the model, and the input face is resized to 224× 224. The
loss is calculated for all the frames during the training. And only the
features of the last frame are used for prediction during the test. For
the other parameters, We used the same settings as for XceptionNet
training.

5 Experimental Results

We first demonstrate the effectiveness of the proposed method on the Deep-
Streets dataset of fully-synthetic videos. Then, we also test the effectiveness
of the proposed method on the DeepFor and VFHQ datasets, where only a
limited area of the video frames is manipulated and then has synthetic nature.

5.1 Comparison Results

Table 1 reports the accuracy values achieved by the state-of-the-art Xception-
Net [1] and the proposed method for different numbers of videos c used to train
the classifier (the number reported refers to each class). Results are reported
for different compression levels (Raw, HQ, LQ). We see that, for the Cityvid
and Citywcvid subsets, in all the cases, the proposed detector can achieve an
accuracy of around 98% by training on just 4 videos, while XceptionNet needs
64 videos (32, in very few cases). For Kittyvid subset, the proposed method can
not achieve the same level of accuracy as the state-of-the-art for a large number
of training videos, which means that the features are not that discriminative to
detect the fake videos from the reals. The lower discrimination capability, in
this case, can also be argued by looking at the feature distribution of Kittyvid
dataset in Figure 1. A reason can be that in the case of Kittyvid sub-dataset,
the pristine videos come from a completely different dataset with different
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background and scene (temporal) variability with respect to the fake images.
The different temporal variability might affect our video coding features. On
the contrary, the significantly different content and background in real and fake
videos in the Kittyvid case is beneficial for XceptionNet which can look at the
diversity of the background to discriminate between real and fake videos. This
explains why better performance can be achieved by XceptionNet on Kittivid
with respect to the other cases. Nevertheless, the superior performance of the
method under limited training data is confirmed also in this case, with the
proposed detector reaching an accuracy of around 80% with 2 videos, for high
quality videos.

We also performed a cross-data analysis for the three subsets in DeepStreets,
whose results are reported in Table 2 for raw videos. The results refer to the
case of training with 120 videos when both our and XceptionNet methods can
achieve good performance. From the table we see that the proposed method
generalizes extremely well, improving the poor generalization capability of
the state-of-the-art method, with the exception of the Kittyvid case where,
however, the results of our methods are low also in the matched case, see
Table 1.

Table 2: Cross dataset results for DeepStreets on raw videos (120 videos are used for
training).

Train set

Test set Method Cityvid Citywcvid Kittyvid

Cityvid Xcept – 73.0 50.0
F -SVM – 99.3 80.0

Citywcvid Xcept 49.0 – 50.0
F -SVM 99.0 – 53.8

Kittyvid Xcept 99.0 75.0 –
F -SVM 85.5 69.0 –

The performance achieved on the DeepFor and VFHQ dataset is reported
in Table 3. In the case of DeepFor, we see that accuracy of 91.4% can be
achieved with our method by training with only 8 videos, while XceptionNet,
ResNetLSTM and DeFakeHop need respectively 128, 16 and more than 256
videos to reach a similar value of accuracy (92%). Notably, the performance of
our method is already close to the maximum around c = 32, and the accuracy
does not increase further using many more videos, while the performance
of other methods increases while increasing c. On the VFHQ dataset, the
difference is lower, however, the good performance of the proposed method with
few videos is confirmed. The proposed F-SVM has much better performance
than XceptionNet and DeFakeHop, reaching an accuracy of 90.1% with 16
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Table 3: Detection accuracy for DeepFor and VFHQ datasets for our method and the
compared methods.

No. train DeepFor VFHQ

videos (c) F -SVM Xcept DeFakeHop ResNetLSTM F -SVM Xcept DeFakeHop ResNetLSTM

2 67.5 50.0 61.3 65.9 61.7 50.0 60.6 58.4
4 74.8 50.0 62.8 70.6 75.5 50.0 63.8 77.5
8 91.4 50.0 62.0 85.9 84.8 50.0 69.9 93.3
16 95.5 53.0 72.8 91.7 90.1 73.6 72.6 90.8
32 96.5 56.0 79.8 97.1 92.3 91.0 77.8 88.6
64 96.8 83.0 85.6 99.0 93.5 94.9 80.9 88.3
128 96.8 92.3 88.5 98.0 94.4 95.5 79.8 93.2
256 97.0 98.5 89.7 99.9 96.2 94.4 82.7 94.3

videos. However, in this case, ResNetLSTM can get an accuracy larger than
90% with just 8 videos. Since in the case of VFHQ dataset only the facial
expressions are manipulated, with the head poses remaining the same, it is not
surprising that the detection based on the proposed footprint is more difficult.
Moreover, in the VFHQ dataset, there is significant motion in the background.
However, since the background is not manipulated, the prediction modes from
the macroblocks in the background negatively affect the footprint estimation
for fake videos.

A noticeable advantage of the proposed methods over the state-of-the-art
methods is also in terms of running (training) time and size of the trained
model. Table 4 reports the training time for the various methods computed
for the case of 16 videos for the DeepFor and VFHQ datasets. For our method,
the time needed for the feature extraction is also considered.4 By relying on a
simple linear SVM classifier trained on the extracted low dimensional footprints,
the training of our method is extremely fast (with only two parameters to be
learnt from the data), much faster than the other methods. The size of the

Table 4: Comparison in terms of training time, no. of parameters and model size on DeepFor
and VFHQ datasets for the case of 16 training videos.

Methods F-SVM Xcept DeFakeHop ResNetLSTM

Number of parameters 2 22.8M 42.8K 25.1M
Training time (DeepFor) 0.7281s 18m34s 23.7251s 1h15m24s
Training time (VFHQ) 0.8584s 17m45s 27.9549s 1h17m45s
Model size (DeepFor&VFHQ) 10KB 79.7MB 76KB 96.0MB

4For the other methods, only the training time is considered since the data pre-processing
time (that is, the time for face detection and extraction - for XceptionNet and ResNetLSTM -
and the time for landmark detection and patch - eyes and mouth - extraction for DeFakeHop)
is negligible compared to the training time.
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trained models, which is the same for the two datasets, is also reported in the
table, showing that our SVM trained model has a very small size compared to
the other models.

6 Conclusions

We proposed a feature-based method for video deepfake detection that can
work in data scarcity conditions, that is, when only very few examples are
available to the forensic analyst. The method is based on a simple video
coding feature, counting the frequency of motion prediction modes in the video
sequence. Results carried out on three different datasets show the effectiveness
of the proposed method, that only needs very few video samples to train the
detector. Future works will focus on further improving the performance in the
case of manipulated videos (non fully synthetic), where only a region of the
frames is modified, e.g., the face swapping case, by confining the extraction of
the footprint to the foreground region. A more comprehensive assessment of
the generalization capability of the proposed detector based on video coding
analysis will also be performed. Finally, the robustness of the detector against
video re-compression and more in general intentional attacks, e.g., adversarial
attacks, is also worth investigation.

Acknowledgement

This work has been partially supported by the China Scholarship Council
(CSC), file No. 202008370186, by the PREMIER project under contract
PRIN 2017 2017Z595XS-001, funded by the Italian Ministry of University and
Research, and by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL) under agreement number
FA8750-20-2-1004. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.

References

[1] O. Alamayreh and M. Barni, “Detection of GAN-Synthesized Street
Videos,” in 2021 29th European Signal Processing Conference (EU-
SIPCO), 2021, 811–5, doi: 10.23919/EUSIPCO54536.2021.9616262.

https://doi.org/10.23919/EUSIPCO54536.2021.9616262


Detecting Deepfake Videos in Data Scarcity Conditions 17

[2] I. Amerini and R. Caldelli, “Exploiting Prediction Error Inconsistencies
through LSTM-based Classifiers to Detect Deepfake Videos,” in Proceed-
ings of the 2020 ACM Workshop on Information Hiding and Multimedia
Security, 2020, 97–102.

[3] I. Amerini, L. Galteri, R. Caldelli, and A. Del Bimbo, “Deepfake Video
Detection through Optical Flow based CNN,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops,
2019, 0–0.

[4] H.-S. Chen, S. Hu, S. You, and C.-C. J. Kuo, “DefakeHop++: An En-
hanced Lightweight Deepfake Detector,” arXiv preprint arXiv:2205.00211,
2022.

[5] H.-S. Chen, M. Rouhsedaghat, H. Ghani, S. Hu, S. You, and C.-C. J. Kuo,
“Defakehop: A Light-Weight High-Performance Deepfake Detector,” in
2021 IEEE International Conference on Multimedia and Expo (ICME),
IEEE, 2021, 1–6.

[6] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for Semantic
Urban Scene Understanding,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, 3213–23.

[7] A. Costanzo and M. Barni, “Detection of Double AVC/HEVC Encoding,”
in 2016 24th European Signal Processing Conference (EUSIPCO), IEEE,
2016, 2245–9.

[8] D. Cozzolino, J. Thies, A. Rössler, C. Riess, M. Nießner, and L. Verdoliva,
“Forensictransfer: Weakly-Supervised Domain Adaptation for Forgery
Detection,” arXiv preprint arXiv:1812.02510, 2018.

[9] M. Du, S. Pentyala, Y. Li, and X. Hu, “Towards Generalizable Deep-
fake Detection with Locality-Aware Autoencoder,” in Proceedings of
the 29th ACM International Conference on Information & Knowledge
Management, 2020, 325–34.

[10] G. Fox, W. Liu, H. Kim, H.-P. Seidel, M. Elgharib, and C. Theobalt,
“Videoforensicshq: Detecting High-quality Manipulated Face Videos,” in
2021 IEEE International Conference on Multimedia and Expo (ICME),
IEEE, 2021, 1–6.

[11] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision Meets Robotics:
The KITTI Dataset,” International Journal of Robotics Research (IJRR),
2013.

[12] D. Güera and E. J. Delp, “Deepfake Video Detection using Recurrent
Neural Networks,” in 2018 15th IEEE International Conference on Ad-
vanced Video and Signal based Surveillance (AVSS), IEEE, 2018, 1–
6.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, 770–8.



18 Wang et al.

[14] L. Jiang, R. Li, W. Wu, C. Qian, and C. C. Loy, “Deeperforensics-
1.0: A Large-scale Dataset for Real-world Face Forgery Detection,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, 2889–98.

[15] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and Improving the Image Quality of Stylegan,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, 8110–9.

[16] Y. Li, M.-C. Chang, and S. Lyu, “In Ictu Oculi: Exposing AI Created
Fake Videos by Detecting Eye Blinking,” in 2018 IEEE International
Workshop on Information Forensics and Security (WIFS), IEEE, 2018,
1–7.

[17] A. Mallya, T.-C. Wang, K. Sapra, and M.-Y. Liu, “World-Consistent
Video-to-Video Synthesis,” arXiv preprint arXiv:2007.08509, 2020.

[18] S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Tagliasacchi,
and S. Tubaro, “An Overview on Video Forensics,” APSIPA Transactions
on Signal and Information Processing, 1, 2012.

[19] S. Mo, M. Cho, and J. Shin, “Instance-aware Image-to-Image Transla-
tion,” in International Conference on Learning Representations, 2019,
https://openreview.net/forum?id=ryxwJhC9YX.

[20] I. E. Richardson, The H. 264 Advanced Video Compression Standard,
John Wiley & Sons, 2011.

[21] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner,
“Faceforensics++: Learning to Detect Manipulated Facial Images,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019, 1–11.

[22] V. Sze, M. Budagavi, and G. J. Sullivan, “High Efficiency Video Coding
(HEVC),” in Integrated Circuit and Systems, Algorithms and Architec-
tures, Vol. 39, Springer, 2014.

[23] S. Tariq, S. Lee, and S. S. Woo, “A Convolutional LSTM based Residual
Network for Deepfake Video Detection,” arXiv preprint arXiv:2009.07480,
2020.

[24] R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales, and J. Ortega-
Garcia, “Deepfakes and Beyond: A Survey of Face Manipulation and
Fake Detection,” Information Fusion, 64, 2020, 131–48.

[25] D. Vazquez-Padin, M. Fontani, T. Bianchi, P. Comesaña, A. Piva, and M.
Barni, “Detection of Video Double Encoding with GOP Size Estimation,”
in 2012 IEEE International Workshop on Information Forensics and
Security (WIFS), IEEE, 2012, 151–6.

[26] L. Verdoliva, “Media Forensics and Deepfakes: An Overview,” IEEE
Journal of Selected Topics in Signal Processing, 14(5), 2020, 910–32.

https://openreview.net/forum?id=ryxwJhC9YX


Detecting Deepfake Videos in Data Scarcity Conditions 19

[27] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz, and B.
Catanzaro, “Video-to-Video Synthesis,” arXiv preprint arXiv:1808.06601,
2018.

[28] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a Few
Examples: A Survey on Few-shot Learning,” ACM Computing Surveys
(CSUR), 53(3), 2020, 1–34.

[29] X. Yang, Y. Li, and S. Lyu, “Exposing Deep Fakes using Inconsistent
Head Poses,” in ICASSP 2019–2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019, 8261–5.

[30] H. Yao, S. Song, C. Qin, Z. Tang, and X. Liu, “Detection of Doublecom-
pressed H. 264/AVC Video Incorporating the Features of the String of
Data Bits and Skip Macroblocks,” Symmetry, 9(12), 2017, 313.

[31] Y. Yu, H. Yao, R. Ni, and Y. Zhao, “Detection of Fake High Definition
for HEVC Videos based on Prediction Mode Feature,” Signal Processing,
166, 2020.

[32] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-image
Translation using Cycle-consistent Adversarial Networks,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, 2223–
32.

[33] Y. Zhu, X. Wang, H.-S. Chen, R. Salloum, and C.-C. J. Kuo, “A-PixelHop:
A Green, Robust and Explainable Fake-Image Detector,” in ICASSP
2022-2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), IEEE, 2022, 8947–51.


	Introduction
	Related Work
	Video Deepfake Detection
	Video Coding-based Forensics

	DeepFake Detection based on Video Coding Features
	Basic Notions of (H.264) Video Coding
	The Proposed Video Coding Feature

	Methodology
	Datasets
	SVM Detection, Training and Setting
	Comparison with the State-of-the-art

	Experimental Results
	Comparison Results

	Conclusions

