
Citation: Scacco, U.; Fortibuoni, T.;

Baini, M.; Franceschini, G.; Giani, D.;

Concato, M.; Panti, C.; Izzi, A.;

Angiolillo, M. Gradients of Variation

in the At-Vessel Mortality Rate

between Twelve Species of Sharks

and Skates Sampled through a

Fishery-Independent Trawl Survey in

the Asinara Gulf (NW Mediterranean

Sea). Biology 2023, 12, 363. https://

doi.org/10.3390/biology12030363

Academic Editors: Cristina Porcu

and Andrea Bellodi

Received: 23 January 2023

Revised: 19 February 2023

Accepted: 20 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

Gradients of Variation in the At-Vessel Mortality Rate between
Twelve Species of Sharks and Skates Sampled through a
Fishery-Independent Trawl Survey in the Asinara Gulf (NW
Mediterranean Sea)
Umberto Scacco 1,2,* , Tomaso Fortibuoni 3 , Matteo Baini 4 , Gianluca Franceschini 3, Dario Giani 4 ,
Margherita Concato 4, Cristina Panti 4, Alessia Izzi 5 and Michela Angiolillo 5

1 National Centre of Laboratories-Biology, Italian Institute for Environmental Protection and Research (ISPRA),
Via di Castel Romano 100, 00128 Rome, Italy

2 Department of Bio Ecological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
3 Area for the Conservation, Management and Sustainable Use of Fish Stocks and National Marine

Aquatic Resources, Italian Institute for Environmental Protection and Research (ISPRA), 30015 Chioggia, Italy
4 Department of Physical Sciences, Earth and Environment, University of Siena, Via P.A. Mattioli, 4,

53100 Siena, Italy
5 Area for the Protection of Biodiversity, Habitats and Protected Marine Species, Italian Institute for

Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 60, 00144 Rome, Italy
* Correspondence: umberto.scacco@isprambiente.it

Simple Summary: The impact of human activities on marine environments is driving many elas-
mobranch species toward the brink of extinction. Fishing activities play the most important role in
causing the mortality of these animals and the substantial decrease observed in their populations.
In this context, we aimed to measure species resistance to catch of poorly selective fishing gear,
such as trawl, and investigate the patterns of variation found in the sample. Fishery-independent
standardized data indicated that small-sized deepwater sharks are the most affected by stress due to
trawl catch. On the contrary, large and coastal species, particularly skates, appeared more resistant to
trawl capture. Overall, the at-vessel mortality rate of the studied species results from the intermingled
effect of inhabited depth, species type, and fish size. The information provided can help refine best
practices to reduce direct and indirect fishing mortality of the studied species in trawling activities.

Abstract: Elasmobranchs are priority species for conservation due to their rapid decline determined
by the unbalanced struggle between a fragile bio-ecology and strong anthropogenic impacts, such as
bycatch from professional fishing. In this context, measuring species resistance to catch of poorly
selective gear is of paramount importance. During June–October 2022, five experimental fishing
campaigns were carried out in the Asinara Gulf (northern Sardinia) through 35 geographically and
bathymetrically representative hauls of an area between 30 and 600 m in depth. Skates prevailed
over sharks in the number of species, with seven and five species, respectively. We first evaluated the
status of each individual with respect to stress due to the trawl’s catch using a three-graded scale. We
also recorded individual biometrics (total and disk length, weight and sex, and maturity for males)
on board by implementing the best practices in manipulating individuals for physiological recovery
and release at sea. After capture, skates resulted in generally better conditions than sharks, although
deepwater species of both groups exhibited a worse state than coastal species. The estimated vitality
rates also depended on the size of the individuals. This work provides standardized data on the
intermingled effect of size, species type, and inhabited depth on the resistance response of some
elasmobranch species against capture by trawl fishery activities.

Keywords: elasmobranchs; at-vessel mortality; vitality rate; bycatch; trawl fishing; Mediterranean Sea
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1. Introduction

Elasmobranchs are priority species for conservation due to their rapid decline deter-
mined by the unbalanced struggle between fragile bio-ecology and heavy and increasing
anthropogenic impacts [1–7]. Among these anthropogenic stressors, targeted and untar-
geted fisheries represent the most relevant threat to cartilaginous fish populations [8,9],
as well as habitat degradation and climate change [10–12]. The decline of cartilaginous
fish populations is altering the marine food webs dramatically, as these animals are high-
trophic level, even top predator, species with a fundamental role in maintaining balanced
biodiversity in marine ecosystems [2].

Fishing mortality varies considerably among elasmobranch species as fishing gear
and métiers vary. For instance, pelagic longlines represent the main threat to pelagic sharks
and rays in the world’s oceans [13–17], including the Mediterranean areas [3,18,19]. Fixed
gill and trammel nets tend to catch a large number of sharks and rays [20–25], as well as
drift nets [26,27]. Small-scale fishery impacts cartilaginous coastal-dependent species, as it
usually uses passive fishing gears within coastal waters [28–31].

Poorly selective and active and semi-active gear [32,33], such as trawl (demersal and
pelagic) and purse seine, are the fisheries that most threaten the populations of elasmo-
branch species. These fisheries exhibit high fishing mortality for the mixture of demersal
and bathy pelagic bycatch species in the world’s oceans and the Mediterranean Sea [34–41].
Finally, the demersal trawl is the most dangerous fishing gear for cartilaginous fish com-
pared to other fishing gear [42]. The multi-specific nature of elasmobranch bycatch in trawl
fishery is due to the use of poorly selective gear that can vary in direct interaction with the
seabed [33,43,44].

The biological responsiveness of a species to fishing pressure depends on two species-
specific properties, resilience and resistance [45], given the fishing gear used.

On the one hand, resilience acts at the population level, and it represents the ability of
a species to re-establish a condition of demographic balance when steady fishing mortality
has significantly altered it within the population [45]. Elasmobranchs are low-resilience
species, given their slow growth, delayed maturity, and low fecundity rates, making them
particularly vulnerable and slow to recover from overfishing [46,47].

On the other hand, resistance is the average individual response of a species to stress
caused by a disturbance, such as capture by a given fishing gear [45,48]. It can be measured
by at-vessel mortality (AVM) [49], i.e., the average probability that an individual is alive or
dead following an intense pulse disturbance such as capture and haul up to the vessel deck.
In contrast to low resilience, cartilaginous fish show high resistance [50] instead, as higher
resistance is a common trait of k-selected compared to r-selected species [51]. Synoptically,
pulse and more intense disturbances trigger more rapid impacts on species resistance than
steady disturbances that tend to trigger resilience dynamics [48].

AVM depends on a variety of factors in elasmobranchs [52]. It is influenced by both
biological attributes (species, size, sex, and mode of gill ventilation) and other factors
associated with capture (gear type, soak time, catch mass and composition, handling
practices, and the degree of variation in the abiotic parameters) [52]. Physiological stress
induced by the capture is demonstrated by the alteration of typical blood markers, as
shown by several field studies [53,54]. AVM can be particularly high in poorly selective
and active fishing gear due to the severe conditions the animals experience during capture
in these fisheries [42,52].

In this context, it is of priority to measure and compare the resistance to capture
by poorly selective fishing gear of different elasmobranch species, particularly in the
Mediterranean Sea, where these studies are scarce [52]. Knowing this information helps
refine best practices to reduce direct and indirect fishing mortality of elasmobranch species
through the release in good condition of individuals caught back to the sea. The release
of healthy individuals after capture can improve the resilience capacity of populations of
different bycatch species by reducing the impact fishing has on them [35,45].
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This is particularly significant in areas that still exhibit a high level of biodiversity and
have the potential to be a refuge for elasmobranch species. Located in northern Sardinia
(Italy), the Asinara Gulf is a marine area of relevant environmental value [55–58], repre-
senting a hot spot for marine species’ biodiversity [59]. It shows a high heterogeneity of the
seabed, with strong variations in bathymetry (the presence of shoals and canyons) [60] and
important habitats, such as Posidonia oceanica meadows [61], coralligenous [62,63], sandy,
muddy, and rocky grounds [64] favoring general species richness [65,66]. The presence
of three protected areas surrounding the study area is emblematic of these peculiarities:
the Asinara National Park and the Marine Protected Area of S. Teresa on the west and
east ends of the Gulf, respectively, and the Scandola marine reserve [67] far north in
neighboring Corsica.

Excluding the numerous fishery-interdicted areas [66], the Gulf represents a fishing
ground for trawl and, in particular, for small-scale fisheries. The distribution of fishing
efforts between the two fishing segments is in line with the data available for Sardinian
waters [68]. Demersal trawl represents a small fraction (9%) compared to passive poly-
valent gear (91%) based on the number of fishing vessels. However, percentages reverse
if the gross tonnage is considered (61% trawls and 38% polyvalent passive gear) [68].
The Mediterranean cod Merluccius merluccius, the red mullets Mullus sp., and the musky
octopuses Eledone sp. are the target species in the coastal demersal trawl fishery.

In contrast, the Norway lobster Nephrops norvegicus, the rose shrimp Parapenaeus longirostris,
and the red shrimps Aristeus antennatus and Aristaeomorfa foliacea represent the species
targeted in deepwater demersal trawlers of the area [68]. The local small-scale fishery
includes a large array of fishing gear targeting high commercial value species, such as the
spiny and European lobsters Palinurus elephas and Homarus gammarus (trammel nets and
pots, respectively), fish species belonging to Sparidae and Sciaenidae families (trammel
and gill nets, respectively), the common octopus Octopus vulgaris (pots), and the swordfish
Xiphias gladius and the red scorpionfish Scorpaena sp. (pelagic and bottom longlines, re-
spectively) [66]. Catalano et al. [69,70] provided a focused description of the elasmobranch
species present in the surrounding area of Asinara National Park, and a list of elasmo-
branchs is updated yearly by the Mediterranean International Trawl Survey (MEDITS)
program for the Sardinian waters (geographical sampling area (GSA) 11) [71].

In the present work, we measured the species-specific resistance to demersal trawl
capture in twelve shark and skate species typical of the bycatch of coastal and deep
Mediterranean trawling activities through a fishery-independent scientific survey. This
work investigates the effect of fish size, species type, and capture depth on the gradients of
variation observed in the AVM rate among the species studied.

2. Materials and Methods
2.1. Sampling Design and On-Board Activities

A fishery-independent trawl survey was carried out in the Asinara Gulf (Sardinia,
north-western Mediterranean Sea) in a preselected area of 650 km2 as bathymetrically
and geographically representative as possible of the Asinara Gulf (Figure 1). Thirty-five
sampling stations were equally distributed across a 5 × 5 km square grid covering the area
selected for sampling operations. Therefore, 35 hauls (plus two haul repetitions for invalid
sampling due to technical problems that occurred) were carried out as close as possible to
the selected sampling stations through five fishing campaigns between June and October
2022 (Figure 1). The sampling stations and haul routes lightly differed from the fishing
stations selected, as the hauls were carried out where trawl fishing was practicable, based
on the information provided to us by the captain (presence of objects harmful to the net or
bottom morphology not correct for trawling).
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Figure 1. The sampling area (Asinara Gulf, NW Sardinia, Italy) was explored during a fishery-
independent trawl survey during June–October 2022. Dark lines represent the 35 hauls, plus
2 repeated (due to technical problems: overlapping dark lines) hauls, performed and distributed
within the grid of 5 km × 5 km squares (red dotted lines) selected for fishing operations.

Fishing operations involved the Saturno trawl fishing boat (gross tonnage 50 tons,
engine power 500 KW, and overall boat length 21 m) using a diamond (coded mesh size
40 mm) commercial trawl net (23 × 2.5 × 40 m). Thirty minutes was the standardized haul
duration, and the hauls were carried out between 7:00 am and 5:00 pm. Fishing data were
recorded for each haul, including start and end geographical coordinates, wind speed, sea
state, and global positioning system (GPS) tracks. All of the elasmobranch specimens caught
were photo-recorded and identified at the lowest possible taxonomic level considering the
morphological diagnostic characters reported in the available literature and taxonomical
guides [72,73].

The vitality rate was assessed through a three-graded scale and classified as (i) dead,
(ii) inactive, and (iii) active (Table 1), adapted from the scale of [74]. Biometrics, such as sex,
total, and disk length, with 1 cm precision, and approximate weight, were also collected.
Length and weight measurements were taken by a 1 cm graduated tape meter and a
dynamometer (0.1–50 kg), respectively. These operations were conducted as promptly and
gently as possible to speed up the immersion of captured elasmobranch specimens into
tanks (1 m × 1 m × 0.5 m) flushed with seawater [75,76], following the best manipulating
practices [42,77]. This was carried out to provide specimens with oxygenated water to
favor their recovery from stress due to the catch as best as possible before releasing them
at sea. Once the overall assessment had finished, we released each specimen at sea after
about 30 min of immersion in the recovery tanks.
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Table 1. The scale of the vitality rates used to assess the resistance to capture of twelve elasmobranch
species through a fishery-independent trawl survey in the Asinara Gulf during June–October 2022.

Level of Vitality after Trawl Capture Description

Dead No body movement nor any contraction of
spiracles, gills, and the mouth

Inactive Weak body movements with some inconstant
contractions of spiracles, gills, and the mouth

Active Strong and active body movements with constant
contractions of spiracles, gills, and the mouth

2.2. Data Analysis

The species were coded using the initial letter and the two first letters of the genus
and the species name, respectively (Table 2). The full name of the species with authority
and corresponding codes is reported at the beginning of the Results section.

Table 2. Species code (letters denote the initial letter and the first two letters of the genus and species
name, respectively) arranged in alphabetical order and the length range of the size groups (small,
medium, and large) used in the analysis of the vitality rates variation with size in twelve species of
elasmobranchs after capture through a fishery-independent trawl survey in the Asinara Gulf during
June–October 2022. The underlined species were excluded from quantitative analyses. Species codes
are based on the initial letter and the first two letters of the genus and the species name, respectively.

Species Species Code Length Range of Size Groups (cm)

Small Medium Large

Dipturus oxyrinchus DOX na 24–43 44–62
Etmopterus spinax ESP 12–22 23–32 33–42
Galeus melastomus GME 10–23 24–36 37–49
Leucoraja circularis LCI na Na na
Leucoraja fullonica LFU na Na na
Mustelus mustelus MMU na Na na
Raja brachyura RBR na 24–40 41–57
Raja miraletus RMI 13–22 23–32 33–41
Raja montagui RMO na 9–28 29–47
Raja polystigma RPO na 15–35 36–55
Scyliorhinus canicula SCA 10–23 24–37 38–50
Squalus acanthias SAC na 45–58 59–72

Because the data were counts, we used contingency tables and associated chi-square
tests to investigate the size effect on the vitality rate within each species. The data were
expressed as the number of individuals grouped into size intervals by the vitality rate. For
this purpose, we divided the species length ranges into three (small, medium, and large) or
two (medium and large) equal intervals based on the length distribution of each species
(Table 2). Therefore, we organized the contingency tables with the columns as vitality rates
(active, inactive, and dead or active and inactive) and the rows as size groups to obtain
3 × 3, 3 × 2, and 2 × 2 tables according to the species.

We used Friedman’s nonparametric ANOVA to investigate the differences in the
importance of vitality rates (expressed as relative percentages of individuals grouped
into vitality rates within each species) across species (with species as rows and vitality
rates as columns). The associated Kendall’s concordance coefficient was used to check for
similarity/dissimilarity in ranking the importance of vitality rates across species. As a
post-hoc analysis, we used a 9 × 3 contingency table and an associated chi-square test to
identify groups (expressed as the number of individuals by species and vitality rate) that
contributed the most variance to the total variation between the observed and expected
values of the abundance in each group.
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Finally, we used principal component analysis (PCA) to study the effect of the mean
depth of capture, fish size, and species type, used as supplementary variables, on the vitality
rates of individuals of each species, used as active variables. To perform the analysis, we
transformed the categorical variables (both active and supplementary) into discrete and
ordinal variables by associating numerical values with the categories. Specifically, we
associated 1, 2, and 3 with active, inactive, and dead specimens, respectively, and 1 or 2 in
the case where the individuals were sharks or rays, respectively. Size and capture mean
depth were used as continuous descriptors. The capture mean depth was calculated as a
weighted average (multiplied) over the number of individuals per haul.

Species with unique and/or sparse observations (Table 2) were excluded from all
analyses, except for PCA, as a descriptive value multivariate statistical technique. The
relative and absolute catch per unit effort (CPUE) of each species was calculated as the
number of individuals caught by fishing hour upon the total number of hauls performed
and upon positive hauls alone, respectively. The mean absolute CPUE by haul was also
provided for each species. All statistical analyses were performed with STATISTICA
software version 7.0 [78].

3. Results
3.1. General Data

The bathymetric interval explored during the scientific trawl survey spanned between
the shallow coastal shelf and the bathyal grounds (Table 3). Overall, we sampled twelve
species of elasmobranchs (Table 3), in particular:

1. Five species of sharks, such as the picked dogfish Squalus acanthias Linnaeus, 1758
(SAC), the smooth-hound shark Mustelus mustelus (Linnaeus, 1758) (MMU), the
velvet belly Etmopterus spinax (Linnaeus, 1758) (ESP), the small-spotted catshark
Scyliorhinus canicula (Linnaeus, 1758) (SCA), and the black-mouth catshark Galeus
melastomus Rafinesque, 1810 (GME) (Figure S1);

2. Seven species of skates, such as the shagreen ray Leucoraja fullonica (Linnaeus, 1758)
(LFU), the sandy ray L. circularis (Couch, 1838) (LCI), the spotted ray Raja montagui
Fowler, 1910 (RMO), the blonde ray R. brachyura Lafont, 1873 (RBR), the speckled ray
R. polystigma Regan, 1923 (RPO), the brown ray R. miraletus Linnaeus, 1758 (RMI),
and the long-nosed skate Dipturus oxyrinchus (Linnaeus, 1758) (DOX) (Figure 2).

Table 3. Sample size (n.), size range, and mean size as total length (TL in sharks) and disk width
(DW in skates), haul depth range and haul mean depth (weighed on the number of individuals by
haul), and mean catch per unit effort (CPUE) (as the number of individuals caught per fishing hour)
by twelve species of elasmobranchs arranged in alphabetical order and sampled through a fishery-
independent trawl survey in the Asinara Gulf during June–October 2022. Means are provided with
their standard deviation (SD.) Species codes DOX, ESP, GME, LCI, LFU, MMU, RBR, RMI, RMO, RPO,
SAC, and SCA refer to Dipturus oxyrinchus, Etmopterus spinax, Galeus melastomus, Leucoraja circularis, L.
fullonica, Mustelus mustelus, Raja brachyura, R. miraletus, R. montagui, R. polystigma, Scyliorhinus canicula,
and Squalus acanthias, respectively.

Species n. Size Range
(cm)

Mean Size
(TL or DW) ± SD

Haul Depth
Range (m)

Haul Mean Depth
(m) ± SD

Mean Absolute CPUE
(ind/h) ± SD

Relative
CPUE (ind/h)

DOX 20 24–62 43.25 ± 11.73 270–360 324.2 ± 18.7 13.3 ± 7.7 1.14
ESP 42 12–42 24.92 ± 7.08 550–600 583.9 ± 12.1 42.0 ± 12.0 2.40
GME 721 10–49 21.81 ± 6.86 133–600 407.6 ± 62.1 206 ± 281.1 41.2
LCI 2 42–47 44.5 ± 2.50 200–210 205.0 4.0 0.11
LFU 2 30–45 37.5 ± 7.50 70–200 135.0 4.0 0.11

MMU 1 41 na 33–35 34.0 2.0 0.06
RBR 16 24–57 38.31 ± 9.31 33–360 209.4 ± 107.7 5.3 ± 2.9 0.91
RMI 35 13–41 26.57 ± 7.56 33–136 68.0 ± 12.0 7.0 ± 4.2 2.00
RMO 12 9–47 23.50 ± 14.77 42–210 159.7 ± 60.6 6.0 ± 4.7 0.68
RPO 36 15–55 21.32 ± 10.36 43–350 140.8 ± 61.0 7.2 ± 9.26 2.06
SCA 714 10–50 23.53 ± 9.75 33–480 147.9 ± 89.7 54.8 ± 59.4 40.8
SAC 7 45–72 58.14 ± 10.51 270–360 300.0 ± 13.2 7.0 ± 5.0 0.40
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Figure 2. Images of the skate species sampled during a fishery-independent trawl survey in the
Asinara Gulf during June–October 2022. (a) Raja brachyura, (b) Leucoraja circularis, (c) Raja polystigma,
(d) Raja montagui, (e) Leucoraja fullonica, (f) Raja miraletus, and (g) Dipturus oxyrinchus.
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The number of individuals largely varied between species (Table 3). A shark (MMU)
and two skate species (LFU and LCI) were represented by only one and two specimens,
respectively, while two species (SCA and GME) showed a very large number of individuals
sampled (Table 3).

The size range of the species sampled showed different length intervals, haul mean
depths, and CPUEs (Table 3). The CPUE calculated for GME was the highest among the
studied species, and higher values were also observed for ESP and SCA compared to the
other species (Table 3).

3.2. Intraspecific Variation of the Vitality Rate with Size

SCA, GME, SAC, RMI, DOX, and RPO showed significant intraspecific differences
(Table 4) between the observed (Figure 3a,c,e and Figure 4a,c,e respectively) and expected
values of the abundance of individuals by vitality rate across size groups. In particu-
lar, inactive status was well represented in small specimens of SCA (Figure 3b) and in
large individuals of GME (Figure 3d) relative to the other size vitality rate groups within
each species.

Table 4. Chi-square (X2) values and related statistics (d.f.: degrees of freedom of the corresponding
contingency tables, p: statistical significance, * p < 0.1, ** p < 0.05, *** p < 0.001) of the within-
species comparison of the individuals’ abundance by size group (small, intermediate, and large or
intermediate and large) and by vitality rate (active, inactive, and dead or active and inactive) for
each of the nine elasmobranch species collected through a fishery-independent trawl survey in the
Asinara Gulf during June–October 2022. Species codes DOX, ESP, GME, LCI, LFU, MMU, RBR,
RMI, RMO, RPO, SAC, and SCA refer to Dipturus oxyrinchus, Etmopterus spinax, Galeus melastomus,
Leucoraja circularis, L. fullonica, Mustelus mustelus, Raja brachyura, R. miraletus, R. montagui, R. polystigma,
Scyliorhinus canicular, and Squalus acanthias, respectively.

Species X2 d. f. p

DOX 2.89 1 **
ESP 4.43 4 ns
GME 150.29 4 ***
RBR 0.00 1 ns
RMI 5.32 2 **
RMO 1.71 1 ns
RPO 26.19 2 ***
SCA 22.46 4 ***
SAC 2.10 1 *
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Figure 3. The observed percentage of the number of individuals by the vitality rate across size intervals (upper graph) and the increasing order of the percent
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(GME, (c,d)), and Squalus acanthias (SAC, (e,f)) after trawl catch during a fishery-independent trawl survey in the Asinara Gulf during June–October 2022. Plus and
minus labels on the data indicate observed values higher and lower than expected, respectively.
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The large specimens of SAC were in a better vitality condition than those of medium
size (Figure 3f). A similar pattern was observed in RMI (Figure 4b), DOX (Figure 4d), and
RPO (Figure 4f). In these species, the number of large inactive specimens was significantly
lower than that of large active skates, and vice versa, in as far as the number of inactive
small and/or medium specimens compared to active ones.

RPO was the only skate species where we observed dead individuals (Figure 4e).
The general size-related pattern described above was also observed in the other species
(ESP, RMO, and RBR). However, the differences in the relative abundance of individ-
uals by vitality rate between the size groups (Table 4, Figure S2a–e, respectively) were
not significant.

Within the species excluded from the analysis, we observed only active individuals in
LCI and MMU and one active and one inactive specimen in LFU.

3.3. Interspecific Variation of the Vitality Rate

The relative abundance of individuals by the vitality rate was significantly different
across the species (Friedman ANOVA: X2 = 6.23, N = 9, d. f. = 2; p < 0.05) and differently
ranked within each species (mean rank = 0.26; Kendall Tau = 0.35). We distinguished three
groups of species based on those with higher values for active (SCA, RMI, SAC, RMO,
and RBR), inactive (RPO and DOX) and dead specimens (ESP and GME), respectively,
compared to the occurrence of the other vitality rates (Figure 5).
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Figure 5. Vitality rates (active, inactive, and dead) after trawl catch in nine species of elasmobranchs
sampled during a fishery-independent trawl survey in the Asinara Gulf during June–October 2022.

In the post-hoc comparison of the groups (9 × 3 contingency table, X2 = 1530.09,
d. f. = 16; p < 0.001), most of the contribution to the total variation was due to dead
individuals of GME, which were much more numerous than expected (Figure S3). Dead
and active SCA were less and more abundant than expected, with them being second in
the contribution to the total variation (Figure S3). The third, fourth, and fifth contributions
came from active individuals of GME (less than expected) and inactive individuals of
RPO and DOX (more than expected) (Figure S3), respectively. After the sixth contribution
(inactive ESP, more than expected), the contribution of species by the vitality rate to the
total variation levelled at negligible decreasing values (Figure S3).
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3.4. Factors Influencing the Vitality Rate

PCA extracted two principal components accounting for about 99.9% of the total vari-
ance. The four supplementary variables showed different correlations with the abundance
of individuals by the vitality rate (active variables) in the species sampled (Figure 6A;
Table 5). Catch mean depth was the most important factor, with it having the highest
correlation with dead (direct) and active (inverse) individuals compared to the other supple-
mentary variables (Table 5). The correlation between the morpho-taxonomical groups and
the vitality rates of ‘dead’ and ‘inactive’ indicated sharks are directly related to ‘dead’ and
inversely to ‘inactive’ rates and skates vice versa. Finally, fish size was inversely related to
‘dead’ and directly to ‘active’ vitality rates. However, the correlation between fish size and
the vitality rate was the lowest observed between the active and supplementary variables.

Table 5. Correlation matrix of active and supplementary (asterisked) variables used in the principal
component analysis aimed at detecting factors determining differences in the at-vessel vitality rate
between nine species of demersal elasmobranchs sampled during a fishery-independent trawl survey
in the Asinara Gulf during June–October 2022. Active and supplementary variables are rates of
vitality after trawl catch (active, inactive, and dead) and catch mean depth, fish size (TL: total length),
and two taxonomical groups (skates and sharks), respectively.

Variables Dead Inactive Active * TL * Mean Depth * Sharks * Skates

Dead 1.00 −0.30 −0.77 −0.14 0.68 0.22 −0.22
Inactive −0.30 1.00 −0.37 0.03 0.07 −0.36 0.36
Active −0.77 −0.37 1.00 0.11 −0.70 0.03 −0.03
* TL −0.14 0.03 0.11 1.00 −0.09 −0.18 0.18
* Mean depth 0.68 0.07 −0.70 −0.09 1.00 0.21 −0.21
* Sharks 0.22 −0.36 0.03 −0.18 0.21 1.00 −1.00
* Skates −0.22 0.36 −0.03 0.18 −0.21 −1.00 1.00

Regarding the pairwise correlation between supplementary variables, fish size was
inversely and directly correlated with sharks and skates, respectively, whereas the catch
mean depth showed the opposite pattern (Table 5).

The species associated with an ‘active’ vitality rate, a low catch mean depth, and
a large size were SCA, MMU, SAC, RMO, RBR, RMI, and LCI (Figure 6B). The species
associated with an ‘inactive’ rate and an intermediate haul mean depth and size were RPO
and DOX, with LFU representing a borderline species between the present and the former
species group (Figure 6B). The last group of species (ESP and GME) was associated with a
‘dead’ vitality rate, a high mean depth, and a small size (Figure 6B).

Of the two main components extracted, the most important primarily represented the
effect of variation in capture depth and, secondarily, the effect of fish size on the vitality rate
of the sampled species (horizontal factor 1, Figure 6A,B, Table S1). The second component
primarily explained the effect of species type and very weakly accounted for the effect of
fish size (vertical factor 2, Figure 6A,B, Table S1).
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4. Discussion

The present study demonstrates that the vitality rate of the species sampled varied
as a function of inhabited depth, species type, and fish size, after demersal trawl catch
in a fishery-independent experiment. On the one hand, the standardized and short tow
duration adopted does not allow for comparison with other laboratory studies to mimic
trawl capture. They demonstrated that fish stress associated with such capture is, of
course, related to tow duration, but also to crowding and exposure to air [80–82]. However,
the patterns of variation in the vitality rates that resulted in the present work have been
described similarly in several discard species, including elasmobranchs, in response to
capture by trawl or different gear [83–85].

Since the assemblage of the species sampled is well representative of the shark and rays’
diversity along with their bathymetrical distribution in the Mediterranean, the present stan-
dardized experiment allows for the comparison of the AVM between such different species.

The deepwater species sampled appeared as the species most affected by stress due
to capture of trawling activities. The black-mouth catshark, the velvet belly, and the long-
nosed skate were caught with CPUEs that are in line with the fishing yield known for these
species within their expected bathymetrical range [86–88]. The high number of dead and
inactive specimens observed in deepwater species may result from the interaction between
factors related to species’ biological traits and variation in parameters connected to the
capture of the sampled species [49].

Within the bathymetrical range explored in the area, seawater pressure, temperature,
and light intensity are strongly different related to the vessel deck at the sea surface,
spanning between 1 and 60 atm, between 14 ◦C and 40 ◦C (during the sampling period),
and between 15 × 104 and 150 lux, respectively [89]. The oceanographic parameters of
the Mediterranean deepwater masses are rather constant. The basin is homoeothermic
below 200 m depth due to the pump–heat effect between the basin and the Atlantic
Ocean waters [90]. Additionally, the variation in seawater pressure and illumination with
increasing depth is easily predictable at a given depth with a negligible error interval [91].

The abrupt change in the environmental light intensity could cause irreversible retinal
damage in deepwater species, such as partial or total blindness of the caught individuals
due to the potential burning of the retinal cellular epithelium [92]. Further studies are
needed to study the poorly investigated effect of abrupt variation in light intensity on the
vitality rate of elasmobranchs, both on the vessel and, mostly, upon release into the sea
when the retinal damage might compromise survivorship in the natural environment.

Differently, large variations in water pressure [77,83–85] and temperature [93–95] are
already known to induce dramatic physiological stress in elasmobranchs and bony fish.
These two factors can even interact to favor embolic phenomenon that can resolve with
the death of individuals during capture [96]. This serious problem is due to the animal’s
inability to compensate for internal body pressure versus external water pressure when a
change occurs too quickly for the former to adapt efficiently [97].

In addition, in the present experiment, the high number of dead and inactive specimens
observed in deepwater species can result from an embolic phenomenon due to the too
rapid and combined effect of increasing temperature and decreasing water pressure with
decreasing depth during hauling operations [96]. This applies to the net hauling time
observed (45 min on average) compared to variations in seawater pressure (1 to 30, max 60
atm) and temperature (14 ◦C to 35–40 ◦C on the hottest sampling days) between the sea
floor and the vessel deck during the sampling operations at deep water stations. A clue to
the embolic phenomenon was the presence of edema along the body of deepwater skate D.
oxyrinchus and black-mouth catshark G. melastomus. These injuries were more evident in
these species as they are lighter in color pattern compared to the other deepwater species
caught. Therefore, we cannot exclude embolic signs in the darker velvet belly.

The skin thickness and composition of the catch mass also have to be considered
among factors influencing the vitality rate [75,98–101], particularly in the velvet belly
and the long-nosed skate. The thin skins of these species [101] might expose them to



Biology 2023, 12, 363 15 of 21

potential injuries due to the compresence in the catch mass of harmful species, as presently
observed for decapod crustaceans, such as the Norway lobster N. norvegicus, the rose
shrimp P. longirostris, and the red and violet shrimps A. antennatus and A. foliacea. Although
no particular external damage was found on the bodies of the sampled specimens, we
cannot rule out the possibility of injuries to the internal organs. Thin skin associated with
potentially harmful species in the catch mass can reduce the vitality rate in elasmobranch
species [98–100].

The case of the blackmouth catshark suggested that thermic shock and embolic phe-
nomenon is the more likely cause of death in this species, as it showed the largest number
of dead specimens and signs of edema, despite its more robust skin compared to the other
deepwater species.

On the other hand, coastal species exhibited a higher and lower number of active and
inactive individuals, respectively (i.e., a better vitality condition with respect to deepwater
species). In fact, the probability of embolic phenomenon and the temperature variation is
strongly reduced with decreasing fishing depth [77,83–85,93–95]. Furthermore, the effect of
potentially harmful species in the catch mass (sea urchins, octopuses, and crabs) is buffered
by the more robust skin of coastal species compared to deep water species [100,101], as
a robust skin lowers AVM in elasmobranchs [98–100]. In addition, for coastal species,
the mean depth of the catch and CPUEs were in line with the existing information for
Mediterranean waters [73].

The relationship between species type and vitality rate indicated that skates are more
resistant to catch than sharks. This result can be explained by observing the difference in the
relative abundance of inactive individuals between the two species groups. Skates appeared
to have more individuals in an inactive state after the catch than sharks, particularly
the deep- and shelf-water skates D. oxyrinchus and R. polystigma, respectively. Given
the fewer dead specimens observed in skates, this could be linked to a higher recovery
buffer skates may have and take advantage of compared to sharks. The better respiratory
efficiency of the spiracles in skates compared to sharks may represent one of the variables to
consider [102]. Developed spiracles of skates are adaptive to benthic habit in elasmobranch
species, facilitating respiration, in particular when the animal stands in a non-swimming
mode on the seafloor [102]. Spiracles could similarly function during the catch, which
dramatically limits the body movements of the animal. Indeed, species with assisted gill
ventilation, such as buccal pump ventilation, appear more resistant to catch than species
needing ram ventilation to breathe efficiently [103].

Size played an important role in influencing the vitality rate, as larger individuals
were generally more resistant to capture than medium ones and, in particular, they were
more resistant than smaller specimens. It is well known that species resistance to a dis-
turbance, fishing catch included, increases with size, especially in k-selected species such
as elasmobranchs [76,83,84,93,103–105]. Confirming this, such a general trend appeared
more pronounced in skates, due to their larger size, than in sharks, as evidenced by the
intraspecific variation of vitality rate with size.

As corollary data, the present scientific survey found a slightly different faunal list
for the elasmobranchs present in the waters of the Northern Sardinia, as compared with
information available for the north-western Mediterranean [106]. It is worth noting the
presence of two species of the genus Leucoraja sp., such as L. fullonica and L. circularis,
which are considered as rare species in the Mediterranean Sea [72,107]. Despite the careful
species identification carried out at the meristic level, caution is required in validating
species identity, as coupled genetic assessments were not implemented on the sampled
species. Species misidentification is frequent in elasmobranchs, such as in the genus Squalus
sp. [108,109] and in the Rajidae family due to the general high variability of their morpho-
logical characteristics, changes in color patterns, shapes, and relative body proportions
during ontogeny [110], and hybridization with sibling species [111]. For instance, the pres-
ence of S. acanthias and R. montagui is novel in the northern Mediterranean Sea [106]. On
the other hand, the distributions of an increasing number of marine species, elasmobranchs
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included, are rapidly changing worldwide in response to the variation of oceanographic
parameters inducing those caused by climate change [112]. Therefore, faunal lists are far
to be static nowadays, especially at the local level where new species can be present yet
are not expected. However, future meristic analyses coupled with genetic studies will be
necessary to confirm the identity of the species found in the investigated area.

The information provided by this work can help refine best practices to reduce direct
and indirect fishing mortality of the studied species in trawling activities. For instance, the
data suggest that sharks, and small specimens in general, are priority items in after-capture
treatment for physiological recovery and release at sea operations, as they are less resistant
than skates to trawl catch. In addition, deepwater species could benefit from a reduced
trawl hauling speed to limit thermic and barometric shocks, which are probably responsible
for the significant number of dead specimens observed in these species.

Future research will focus on refining the estimate of vitality rates of the sampled
specimens before releasing them at sea. For instance, it will be necessary to assess the
individual vitality rate both after capture, as carried out in the present study, and before the
specimens are released at sea after a period of physiological recovery in oxygenated tanks.
The duration of the recovery period will also need to be standardized by species and/or
size, as size and species affect the vitality rate after capture, as demonstrated by the present
work. This will optimize the great logistic effort needed for the most abundant/large-sized
species, i.e., to organize many different sized tanks to allow individual observations and
the coupled assessments of vitality rates of each caught and released specimen.

Release at sea will also be improved to counteract the depredation activity observed
on released sharks and skates carried out by seagulls. Simultaneous and safe underwater
release of samples at sea might abate depredation by sea birds, contrasting their ability to
catch their prey up to several meters underwater.

Additionally, different tagging methods are available to monitor post release mortality
in elasmobranchs [49,85], and several bycatch mitigation options can be implemented in
trawl fishery, such as exclusion grids or other techniques and devices [113–116].

5. Conclusions

Overall, the present work has provided evidence that the vitality rate of the studied
species results from the intermingled effect of the inhabited depth, species type, and fish
size, with deepwater small-sized sharks being the most affected by stress due to trawling
capture. On the contrary, large and coastal species, particularly skates, appeared to be more
resistant to trawl activities.

Due to their high resistance to capture, elasmobranchs can benefit from being released
back into the sea after capture, especially if they are healthy. Their survival after release
can complement bycatch avoidance techniques in trawl fisheries. A multilevel approach
to mitigate the problem of elasmobranch bycatch in trawling activities can increase the
resilience capacity of the elasmobranch populations suffering from the impact of this
fishery activity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12030363/s1. Figure S1: Images of the shark species
sampled during a fishery independent trawl survey in the Asinara Gulf during June-October 2022.
(a) Etmopterus spinax, (b) Squalus acanthias, (c) Galeus melastomus, (d) close-up of a specimen of
G. melastomus with an oedema over the skin of the lower jaw, (e) Mustelus mustelus, and (f) Scyliorhinus
canicula (ROV footage); Figure S2: Observed percentage of the number of individuals by vitality’s rate
across size intervals (upper graph) and increasing order of the percent contribution of groups to total
within-species variation with respect to expected values (lower graph) observed in Etmopterus spinax
(ESP, a, b), Raja montagui (RMO, c, d) and Raja brachyura (RBR, e) after trawl catch during a fishery
independent trawl survey in the Asinara Gulf during June–October 2022. Plus and minus labels on
data indicate observed values higher or lower than expected, respectively; Figure S3: Increasing order
of the percent contribution of groups (species by vitality rate) to the total interspecific variation in the
comparison between the observed and expected values of the individuals’ abundance by group in
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nine species of elasmobranchs sampled during a fishery independent trawl survey in the Asinara
Gulf during June–October 2022. Plus and minus labels on data indicate observed values higher or
lower than expected, respectively. Table S1: Factor loadings of active and supplementary (asterisked)
variables as resulted from the Principal Component Analysis applied to detect differences in the
vitality rate of twelve species of elasmobranchs sampled during a fishery independent trawl survey
in the Asinara Gulf during June–October 2022.
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