
electronics

Article

Multi-Dependency and Time Based Resource Scheduling
Algorithm for Scientific Applications in Cloud Computing

Vijay Prakash 1,* , Seema Bawa 1 and Lalit Garg 2,3

����������
�������

Citation: Prakash, V.; Bawa, S.; Garg,

L. Multi-Dependency and Time Based

Resource Scheduling Algorithm for

Scientific Applications in Cloud

Computing. Electronics 2021, 10, 1320.

https://doi.org/10.3390/electronics

10111320

Academic Editors: Eva

Marín-Tordera, Vitor Barbosa Souza

and Jordi Garcia

Received: 22 April 2021

Accepted: 26 May 2021

Published: 31 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science & Engineering, Thapar Institute of Engineering & Technology,
Patiala 147001, India; seema@thapar.edu

2 Computer Information Systems, Faculty of Information & Communication Technology, University of Malta,
MSD 2080 Msida, Malta; lalit.garg@um.edu.mt or lalit.garg@online.liverpool.ac.uk

3 Computer Science Department, University of Liverpool, Liverpool 14 3PE, UK
* Correspondence: vijay.prakash@thapar.edu; Tel.: +356-917988402900

Abstract: Workflow scheduling is one of the significant issues for scientific applications among
virtual machine migration, database management, security, performance, fault tolerance, server con-
solidation, etc. In this paper, existing time-based scheduling algorithms, such as first come first serve
(FCFS), min–min, max–min, and minimum completion time (MCT), along with dependency-based
scheduling algorithm MaxChild have been considered. These time-based scheduling algorithms only
compare the burst time of tasks. Based on the burst time, these schedulers, schedule the sub-tasks
of the application on suitable virtual machines according to the scheduling criteria. During this
process, not much attention was given to the proper utilization of the resources. A novel dependency
and time-based scheduling algorithm is proposed that considers the parent to child (P2C) node
dependencies, child to parent node dependencies, and the time of different tasks in the workflows.
The proposed P2C algorithm emphasizes proper utilization of the resources and overcomes the
limitations of these time-based schedulers. The scientific applications, such as CyberShake, Montage,
Epigenomics, Inspiral, and SIPHT, are represented in terms of the workflow. The tasks can be rep-
resented as the nodes, and relationships between the tasks can be represented as the dependencies
in the workflows. All the results have been validated by using the simulation-based environment
created with the help of the WorkflowSim simulator for the cloud environment. It has been observed
that the proposed approach outperforms the mentioned time and dependency-based scheduling
algorithms in terms of the total execution time by efficiently utilizing the resources.

Keywords: workflow management; workflow scheduling; scientific applications; cloud computing;
workflowSim; MaxChild and Scheduling Algorithms

1. Introduction

Most of the business processes [1] can be represented in terms of a workflow. Workflow
can be defined as a non-directed acyclic graph (DAG) [2] based structure having a group of
connected tasks in a parent to child relationship. There is no parent to parent or child to
child relationship in a workflow. It means that the tasks on the same level are not connected
to each other, and the connectivity of tasks can be done from higher levels to lower levels
only. The task invocation, synchronization, and information flow between the different
tasks can be represented in a specific order described by the workflow management [3].
A scientific workflow management system (WMS) [4] is used to specify and execute the
processing of the complex data. The biggest problem for WMS is scheduling because it
is very difficult to identify the resource availability in the central pool of resources at the
time of execution. Workflow scheduling is a challenging job as a proper sequence of the
workflow tasks for execution needs to be created. The mapping and management of a
workflow’s tasks on shared resources is done with the help of scheduling [5,6].

Electronics 2021, 10, 1320. https://doi.org/10.3390/electronics10111320 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2317-4612
https://orcid.org/0000-0002-3868-0481
https://doi.org/10.3390/electronics10111320
https://doi.org/10.3390/electronics10111320
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10111320
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10111320?type=check_update&version=2


Electronics 2021, 10, 1320 2 of 29

Workflow management systems [3,7] are basically used for appropriate management
and execution of the workflow tasks. The WMS mainly consists of five major entities,
including workflow design, information retrieval techniques, scheduling of workflow
tasks, fault tolerance, and data movement as depicted in Figure 1.

Figure 1. Elements of workflow management system [7].

A workflow structure [8] mainly describes the connection between different tasks of
a workflow. It can be of two types such as DAG and Non-DAG based structures. DAG-
based workflow structure can further be classified into three main categories: sequence,
parallelism, and choice.

Non-DAG structures are superset of DAG and include the iteration pattern [9] in
which the tasks can be executed iteratively. The overall design of a workflow can be
explained with the help of workflow structure, its model and composition system as shown
in Figure 2. The workflow model [10] is used to define the workflow structure and is of
two types; abstract and concrete [11]. Workflow composition system helps user to add
different components to the workflow [2,12,13].



Electronics 2021, 10, 1320 3 of 29

Figure 2. Aspects of workflow design [7].

1.1. Existing Challenges

Scheduling workflow’s tasks to appropriate cloud resources is a challenging job as
it depends on the QoS requirements of the cloud applications. In cloud computing, due
to heterogeneity; uncertainty and resource mobilization; resource scheduling is a current
area of research in demand. Different criteria for scheduling various resources and the
parameters, requires different categories of resource scheduling techniques [14]. Further,
major challenges in the workflow scheduling are: (1) how to assign appropriate cloud
services to each workflow’s task; (2) how to deal with cloud infrastructure variability; (3)
how to consider the limits of concurrency in case of multiple tasks running in parallel;
(4) how to solve the problem of data transfer between different workflow’s task, etc. [15].
According to the authors [11] the challenges are: (5) resource management, economic
barriers, such as costs for migrating workflow’s task from one cloud service provider
(CSP) to another; (6) legal issues such as data location or destination can be defined in
advance; (7) security issues such as single sign-on authentication method in the inter-cloud
environments, monitoring cloud resources, portability to move them from one cloud to
another, and service-level agreement (SLA) having global SLAs between a federation and
its customers are common issues.

1.2. Research Contribution

The major contribution toward resource scheduling in cloud computing is the pro-
posed P2C algorithm. The proposed P2C algorithm is used to overcome the limitations
of the existing time and dependency-based schedulers for scientific applications. The
proposed algorithm considers the following parameters at a time:

1. Parent to child node dependencies (which parent has the maximum number of
child nodes);

2. Child to parent node dependencies (which child has the minimum number of par-
ent odes);

3. Time of different tasks (in case of a tie in the second condition, as mentioned above)
present at different levels in the workflow. The task having maximum time in the
ready queue will be scheduled in case of the same dependency ratio.

The key objectives of the proposed algorithm are: (1) to reduce the overall execution
time and (2) to utilize the resources efficiently. The proposed P2C algorithm has been



Electronics 2021, 10, 1320 4 of 29

validated by using the simulation-based environment created with the help of the Work-
flowSim simulator. It has been observed that the proposed P2C algorithm outperforms
the existing time and dependency based schedulers in terms of total execution time by
utilizing the resources efficiently for the existing scientific applications.

1.3. Paper Organization

The rest of the paper is divided into six sections. In Section 2,the existing literature
review and all the components of the workflow scheduling along with their execution
environment are discussed. Section 3 describes in detail various scientific applications
and their architectures. In Sections 4, the problem formulation is discussed. A detailed
description of the methodology used to solve the problem, along with the working of
proposed P2C algorithm is given in Section 5. Section 6 describes the experimental setup
and the workflows in detail with the statistical result analysis. Finally, Section 7 concludes
the overall work with the future scope of the paper.

2. Workflow Scheduling

One of the main issues of cloud computing is resource scheduling. Users can use
the cloud services anytime from anywhere with the help of a stable internet connection.
However, users will not have direct access to the cloud resources; instead, special appli-
cation programming interfaces (API) should assist the resources on-demand. Allocating
resources for cloud computing to a significantly changing request for the resources based
on end-user application’s usage pattern is a big challenge. The primary purpose is not only
to optimize the resource allocation applications but also to improve resource utilization.
There are numerous resource allocation algorithms, models, frameworks, and policies.
These assist in allocating or transferring the resources that have proven to be helpful for
both cloud service consumers (CSC) and cloud service providers (CSP). Although there are
some conditions for resource scheduling, which are not appropriate for resource allocation
to customers, these conditions can be highlighted in terms of factors such as: (1) if the cloud
has a limited number of resources, then resource shortage may occur; (2) if CSPs has fewer
resources for the end-user based on the policies and procedures; (3) allocation of additional
resources based on customer’s ongoing applications may violate processing strategies;
(4) if more than two end-users try to get the same resource simultaneously, then resource
congestion may occur; (5) if substantial resources are available within the cloud, but the
cloud applications does not assign them to the relevant CSCs request, then resources may
be lost [16].

Workflow scheduling [17] finds a correct sequence of task execution by following
the scheduling criteria. The components of workflow scheduling are shown in Figure 3.
Scheduling architecture is very important when it comes to the quality, efficiency, and
effectiveness of a project. The layout of scheduling architecture is organized into three
categories: centralized, decentralized, and hierarchical. In the centralized work environ-
ment, one central scheduler takes all scheduling decisions for all the workflow based
activities.Whereas in a decentralized approach, there are multiple schedulers but no central
controller for these different schedulers to help them to communicate with each other.
However, in the case of hierarchical scheduling, there is a central controller which is used
to control not only the workflow execution but also the sub-workflows assigned to the
lower-level schedulers [18,19].



Electronics 2021, 10, 1320 5 of 29

Figure 3. Components of workflow scheduling [20].

Scheduling decisions [21] are divided into two types, such as local and global. Deci-
sions made based on the work or sub-employment are known as local decisions, whereas
the decisions based on all employment are called global decisions. Global decision-making
processes provide better overall results because only one job or fewer tasks in the workflow
are considered in a local decision-making process [22].

Abstract workflow models can be transformed into concrete models by using two
schemes: static and dynamic. In the static scheme, the dynamic changes in resources are
not considered. Whereas in the case of dynamic schemes, concrete models are generated
before execution of workflow with the help of static information, such as the execution en-
vironment [23]. Static schemes can further be categorized into two types: user-directed and
simulation-based [24]. The dynamic scheme can further be divided into prediction based
as well as just-in-time. This scheme considers both static and dynamic information about
resources used for making scheduling decisions at run-time. Prediction-based planning
scheme considers dynamic information along with some results based on prediction and
just-in-time scheme makes a decision at the execution time only [8,25,26].

Performance driven scheduling strategies [27] achieve the highest performance for
the user-defined QoS parameters as the workflow’s tasks mapped with the resources
that give the optimal performance [28]. Most operational scheduling strategies focus
on increasing the scope of the workflow. Market-driven scheduling strategies focus on
resource availability, cost allocation, quality budget, and time frames. The market model
used to organize the workflow has become an available resource that leads to lower costs.
The trustees’ strategy focuses on security and reputation for the resources [29,30].

Effective resource scheduling techniques are used to reduce the execution cost and the
execution time; power consumption and deal with other QoS requirements [31]. The QoS
requirements [32] may consist of quality attributes, such as reliability, security, availability,
and scalability, etc. Resources are seen to be more challenging because both the CSCs
and CSPs are not ready to share information. The first objective of resource scheduling
is to identify adequate resources requirements for appropriate and effective utilization
of resources. The second objective of resource scheduling is to identify the sufficient
and proper workload and resources to support scheduling multiple workloads to meet
many QoS requirements. Therefore, resource scheduling considers the execution time of
different workloads. The overall performance depends on the different types of workloads
(heterogeneous) and QoS requirements with similar workload (homogeneous) [14].

The authors [33] considered the task scheduling on clouds as a three queue (TQ)
process based on three queues and dynamic preferences. First of all, scheduling has been
decided on all the tasks in the available queue based on the priority of tasks. Secondly,
subsequent tasks are divided separately into different groups based on input data and
output data volume, the number of nodes currently running, tasks completion time, disk



Electronics 2021, 10, 1320 6 of 29

I/O rate, etc. Finally, the tasks are rearranged into the ready queue by considering all the
parameters defined in the second queue.

The authors [34] proposed a solution to maintain a random cloud computing network.
The goal is to satisfy QoS parameters by maximizing resource utilization. The proposed
scheme increases the resource utilization, as well as reduces the resource consumption and
execution time of the applications. However, there is a need for a mapping mechanism
between the already allocated resources and the minimum requirement of resources to
complete the execution process.

The authors [35] proposed a game-theoretical framework for real-time task scheduling
in the cloud computing. In the proposed model, the task acts as a player, and the VM acts
as a tactic, and the player’s payoff indicates the player’s completion time and waiting time.
The proposed model is very effective in reducing the total time and waiting time of all the
tasks in the workflow.

A new convenient and dynamic scheduling algorithm is required in the cloud envi-
ronment for efficient resource utilization. Some of the existing static algorithms include
first in first out (FIFO) [36], shortest job first (SJF) [37], round robin (RR) [38], etc. In
contrast, dynamic algorithms do not require any advanced information about VMs and
tasks; however, the VM requires constant monitoring. These algorithms are more accurate,
efficient, and appropriate in cloud environments. When any VM is overloaded, so the
work being done on this VM can be intentionally transferred to an under-loaded VM [39].
Dynamic RR [40], heterogeneous early finish time (HEFT) [41], etc., are a few examples of
dynamic scheduling algorithms widely applied in cloud environments.

A novel multi-objective workflow scheduling approach in IaaS clouds [42] is proposed
to optimize the cost and workflow’s makespan for real-world scientific applications. The
authors [43] proposed a multi-purpose workflow-scheduling algorithm based on decom-
position. The proposed model uses Pareto front solutions to achieve at least as good as
scheduling results instead of repeatedly implementing the single-objective scheduling
algorithm with multiple constraints. Furthermore, the authors [44] proposed a dynamic
fault-tolerant workflow scheduling (DFTWS) approach with hybrid spatial and temporary
re-implementation schemes. Firstly, DFTWS calculates the time characteristics of each task
and predicts the critical path of the workflows. Secondly, DFTWS identifies the appropriate
virtual machine (VM) for each task according to the task requirement and budget quota in
the initial resource allocation phase. Finally, DFTWS manages online scheduling, making
real-time-error-tolerant decisions based on the failure type and task critique during the
workflow execution.

The authors [45] proposed a new, budget deadline aware scheduling (BDAS) algorithm
that addresses the scheduling of workflows under the budget and deadline constraints for
scientific workflows in the IaaS cloud. The proposed heuristic satisfies the budget and time
constraints, while the cost–time trade-off is introduced over heterogeneous cases.

The authors [46] proposed a novel resource prediction-based scheduling technique
that automates the allocation of resources for scientific application in a virtualized cloud
environment. Firstly, the proposed predictive model is trained on datasets that simultane-
ously generate the functions of a scientific application in the cloud. Secondly, resources are
determined based on the production of the proposed estimation model. The main goal of
the resource prediction-based scheduling technique is to efficiently manage resources for
virtual machines, reduce execution time, and improve error rates and accuracy. Addition-
ally, to manage fluctuating demand for resources, resources need to be managed efficiently.
Furthermore, the authors [47] focuses on the design of a prediction-based scheduling
approach that maps the function of a scientific application with appropriate VMs by com-
bining the features of swarm intelligence and a multi-objective decision-making process.
The proposed approach is used to improve accuracy rate, execution time, cost, and SLA
breach rate.

The initial idea of Spring scheduling in terms of computer architecture has been
proposed by the authors [48,49]. According to the authors, Spring scheduling co-processor



Electronics 2021, 10, 1320 7 of 29

or multiprocessor have been considered as very large-scale integration (VLSI) accelerator for
real-time system. Co-processors can be used for both static and dynamic scheduling. Many
different approaches and their combinations can be used with the help of Spring scheduling,
such as highest value first, earliest deadline first, and earliest available time first, etc. The
Spring scheduler works on parallel structure for standard scheduling of several tasks,
number of resources, and the internal criteria of scheduling. Trakadas et al. [50] defined
the basic building parts and levels of a decentralized hybrid cloud MEC architecture that
results in a platform-as-a-service (PaaS). The stakeholder ecosystem is also examined in
order to provide a wide view on the business prospects of the platform.

3. Scientific Applications

Scientific applications are used to simulate real-world activities using mathematics.
Real-world objects are turned into mathematical models, and their actions are simulated
by executing the formulas. In this section, the various scientific applications used for the
evaluation purpose are described in detail. These scientific applications are represented in
terms of the workflows.

3.1. CyberShake

CyberShake workflow [51] is used to identify earthquake hazards by identifying
the earthquake ruptures having a moment magnitude value greater than 6. CyberShake
workflow is parallel and can be represented in 5 levels as shown in Figure 4.

Figure 4. CyberShake workflow.

3.2. Montage

The montage application [52,53] combines together many input images to create sky
mosaics using input images in the flexible image transport system (FITS) format. The
montage application has pipeline structure and comprising of nine levels, as shown in
Figure 5.



Electronics 2021, 10, 1320 8 of 29

Figure 5. Montage workflow.

3.3. Epigenomics

The epigenomics [52,53] workflow is used to automate various operations in genome
sequence processing. Epigenomics workflow also has a pipeline structure and has eight
levels, as shown in Figure 6. The overall input to the workflow are sequential data obtained
for multiple “lanes” from the genetic analysis process.

Figure 6. Epigenomics workflow.

3.4. Inspiral

Inspiral workflow [52] is used to generate and analyze dynamic gravitational wave-
formats from data collected during the integration of integrated binary systems. Inspiral
workflow has a parallel and pipeline structure and has six levels, as shown in Figure 7.



Electronics 2021, 10, 1320 9 of 29

Figure 7. Inspiral workflow.

3.5. SIPHT

The SIPHT workflow [52,53] is used to automatically perform searches for uninter-
rupted RNA (sRNA) viruses in the National Center for Biotechnology Information (NCBI)
database. All SIPHT workflows have almost identical structures, and larger workflows
can be made by combining smaller independent workflows. The only difference is in the
structure of any two events in the number of Patser’s works. The SIPHT workflow has a
pipeline structure, as shown in Figure 8.

Figure 8. SIPHT workflow.

4. Problem Formulation

In this section, the research problem has been formulated using the following notations:
Let us consider that W denotes the list of workflows where individual ith workflow

is denoted by wi. Each workflow consists of a group of jobs where ith job at kth level is
denoted by jk

i .
Let us consider that the list of virtual machines (resources) be denoted by VM where

individual ith virtual machine is denoted by vmi.



Electronics 2021, 10, 1320 10 of 29

Let ‘C’ be the category list of workflows and jobs, where ci denotes the
individual category.

Definition 1. Let us consider that f1 denotes one to one mapping function between a job and its
burst time.

f1 : {jk
i → ∆tb jk

i ∈ wk} (1)

where ∆tb is the burst time of job ji. There exists dependencies between different jobs present in
a workflow.

Definition 2. Let us consider that f2 be a one to many mapped function between jobs at
different levels.

f2 : {jk1
i → jk2

l jk1
i , jk2

l ∈ wm ∧ k1 < k2} (2)

Definition 3. Let us consider that f3 be a one to one mapped function between workflow and its
execution time.

f3 : {wi → ∆twi
e wi ∈W} (3)

where ∆tw
e is the total execution time of the workflow wi.

Definition 4. Let us consider that f4 be a one to one mapped function between job and its
execution time.

f4 : {ji → ∆tji
e ji ∈ wk} (4)

where ∆tj
e is the total execution time of the job ji.

Definition 5. Let us consider that f5 be a one to one mapped function between a job and its
execution status at time ‘t’

f5 : {jti → b1jt
i ∈ wk ∧ b1 ∈ {0, 1, 2}} (5)

Definition 6. Similarly, f6 is a one to one mapped function between workflow and its execution
status at time ‘t’

f6 : {wt
i → b2wt

i ∈W ∧ b2 ∈ {0, 1, 2}} (6)

where ‘0’ indicates not started yet, ‘1’ indicates pending and ‘2’ indicates executed successfully.

Definition 7. Let us consider that f7 be a one to one mapped function between ith virtual machine
and its computational power

f7 : {vmi → ckvmi ∈ VM} (7)

Definition 8. Let us consider that f8 be a one to one mapped function between workflow and its
category ‘C’

f8 : {wi → cjwi ∈W ∧ cj ∈ C} (8)

Definition 9. Similarly, let f9 be a one to one mapped function between job and its category ‘C’

f9 : {ji → ck ji ∈ w ∧ ck ∈ C} (9)

Definition 10. Let us consider that f10 be a one to one mapped function between virtual machine
and its occupancy status

f10 : {vmi → b3vmi ∈ VM ∧ b3 ∈ {0, 1}} (10)

where ‘0’ indicates not occupied, ‘1’ indicates occupied.



Electronics 2021, 10, 1320 11 of 29

Definition 11. Let us consider that f11 be a one to many mapped function between workflow and
its jobs

f11 : {wi → jkwi ∈W ∧ jk ∈ wi ∧ num(jk) ≥ 1} (11)

Definition 12. Similarly, f12 is a one to one mapped function between workflow and its job, where
job is the starting job

f12 : {wi → jkwi ∈W ∧ jk ∈ wi} (12)

Definition 13. Similarly, f13 is a one to one mapped function between a job and a virtual machine,
where the job is assigned to a virtual machine for its execution

f13 : {jk → vmi jk ∈ wl ∧ vmi ∈ VM} (13)

Definition 14. Similarly, f14 is a one to many mapped function between workflow jobs

f14 : {jk1
i → jk2

l jk1
i , jk2

l ∈ wm ∧ k1 > k2} (14)

The objective function of the research work is given in Equation (15)

∀k min
num(wk)

∑
i=1

∆tji
e (15)

subject to constraints
c1 : ∀i, j f7(vmi) = f7(vmj) (16)

c2 : ∀i, m ∃ f9(jk
i ) = f9(jk

l ) (17)

c3 : ( f5(jti ) == 2)⇒ f5( f2(jt
i )) = 2 (18)

c4 : ( f5(jti ) == 1)⇒ f5( f2(jt
i )) = 2 (19)

c5 : ji ∈ w, wi ∈W, ci ∈ C, vmi ∈ VM (20)

In this section, the problem formulation has been described with the main objectives
of the paper, i.e., (1) to reduce the overall execution time of any scientific application, (2) to
utilize the resources efficiently, with some constraints such as computational power of each
virtual machine is considered to be the same as represented in Equation (16). Furthermore,
any job represented as a node in the workflow can only be scheduled for the execution
whenever all the predecessors of that node have been executed successfully represented
with the help of Equations (18) and (19).

5. Proposed Solution

In this paper, mainly time based scheduling algorithms, such as FCFS, min–min, max–
min [54], and (MCT) [55], along with dependency-based scheduler, such as MaxChild [56],
have been considered. The MaxChild [56] algorithm is another one-way dependency-based
scheduling algorithm that considers the dependency between the parent to child node only.
However, there was no consideration given to the dependency between a child to a parent
node. To overcome the limitation of these time-based schedulers, multi-dependency, and
time-based scheduling algorithm is proposed and compared with the existing approaches.
The proposed P2C approach considers the parent to child node relationship (dependencies),
child to parent node relationship (dependencies), and the burst time of different tasks
present at different levels in the workflow. The main objective of the proposed approach
is to reduce the overall execution time of scientific applications, such as CyberShake [51],
montage, epigenomics, inspiral, and SIPHT [52], etc., by efficiently utilizing the resources.

The proposed P2C algorithm is used to overcome the limitations of the existing time
and dependency-based schedulers for scientific applications. The proposed approach
considers the following parameters at a time:



Electronics 2021, 10, 1320 12 of 29

1. Parent to child node dependencies (which parent has the maximum number of
child nodes);

2. Child to parent node dependencies (which child has the minimum number of
parent nodes);

3. Time of different tasks (in case of a tie in the second condition, as mentioned above)
present at different levels in the workflow. The task having maximum time will be
scheduled in case of the same dependency ratio.

The proposed P2C algorithm initially checks whether the tasks in the ready queue
are less than available resources, or are very much greater than available resources. In
cases such as this, the proposed approach will execute the task in the decreasing order
of time. Then the P2C algorithm will schedule those child nodes whose parents have
already been successfully completed. Maximum dependencies are considered from parent
to child nodes, whereas the minimum number of dependencies are considered from child
to parent nodes.

Working of the Proposed P2C Algorithm

The step by step working of the proposed P2C algorithm is explained with the help of
Figure 9 and according to the steps given in Algorithm 1. Further, to check the status of the
ready queue, the procedure READYQUEUESTATUS is described in Algorithm 2.

Figure 9. Montage Workflow for Dataset File Montage_25.

Montage workflow has been considered to have 25 nodes from the dataset file Mon-
tage_25. Further, an execution overhead of 0.21 ms has been added to execute the root node
represented by R. The tasks numbered from 22 to 25 have been combined into a single task
due to the montage workflow pipeline structure in Figure 5. The step by step description
of the P2C algorithm for the execution process is given as follows:



Electronics 2021, 10, 1320 13 of 29

Execution 1:

Step 1: Creation of the parent–child table to find the child nodes of each task in the
workflow at level 1.

First of all, the proposed P2C algorithm will check the parent to child dependencies
from the first level. In level 1, there are five tasks numbered from 1 to 5. Therefore, the
parent–child table, Table 1 has been created to represent the parent–child dependencies.

Table 1. Creation of the parent-child table at level 1.

Parent 1 2 3 4 5
Child 6 7 9 7 8 10 12 13 9 10 11 9 12 14 13 14

Step 2: Sorting the ready queue based on child to parent dependencies.

For Montage_25 Dataset file, there are 5 VMs available at a time to execute the tasks
of a workflow. In level 1, there are only five tasks to be scheduled on 5 VMs. Further, there
is a need to sort the tasks according to child–parent node dependencies. Whereas, in the
case of more than one task, there is the need to sort the tasks based on the burst time in
decreasing order, as depicted in Table 2.

Table 2. Sorting of parent in decreasing order of children at level 1.

Parent 2 4 1 3 5
Child 7 8 10 12 13 9 12 14 6 7 9 9 10 11 13 14

Correct sequence of tasks in the ready queue will become in the order {2, 4, 1, 3, 5}
after sorting the tasks based on the number of parents, as well as decreasing order of time.

Step 3: Scheduling of tasks to appropriate VM.

With the help of Step 1 and Step 2, the ready queue of tasks have been found for the
scheduling. At the same time the final list of VMs have also been finalized. The next step is
to schedule task 2→ VM1, task 4→ VM2, task 1→ VM3, task 3→ VM4, task 5→ VM5.
After the first run, tasks numbered from 1 to 5 have been executed and tasks 6–14 are in
the available queue. Now, execute all the steps of the algorithm until all the tasks have
finished their execution successfully.

Execution 2:

Step 1–2: Creation of the parent–child table to find the child nodes of each task in the
workflow at level 2

Each task has only one child, i.e., task 15. Therefore, there is a need to sort the tasks
numbered from 6 to 14 in decreasing order of time. Hence, the correct sequence of the tasks
in the ready queue will become in the order {8, 9, 13, 6, 7, 12, 10, 14, 11}.

Step 3: Scheduling of tasks to appropriate VM

Schedule task 8 → VM5, task 9 → VM4, task 13 → VM3, task 6 → VM2, task
7→ VM1. In this step, we have reversed the VM allocation sequence due to the availability
of both free VM and un-allocated tasks in the same order. After the second run, tasks
numbered from 1 to 9 and task 13 have been executed successfully and tasks numbered
from 10 to 12 and 14 are in the available queue. Hence, the correct sequence for the task in
the ready queue will appear in the order {12, 10, 14, 11}.

Execution 3:

Step 1–3: Schedule task 12 → V M1, task 10 → V M2, task 14 → V M3 and task
11 → V M2



Electronics 2021, 10, 1320 14 of 29

After the third execution, tasks numbered from 1 to 14 have been completed suc-
cessfully, and tasks 15 is available in available as well as ready queue. There is a need to
schedule task 15 on VM1.

Execution 4:

Step 1: Creation of the parent-child table to find the child nodes of each task in the
workflow at level 4

After the fourth execution, tasks numbered from 1–15 have been executed, and tasks
16 is available in available and ready queue. The initial level parent–child table for level 4
can be shown in Table 3.

Table 3. Creation of the parent-child table at level 4.

Parent 16

Child 17 18 19 20 21

Step 2: Sorting the ready queue based on child to parent dependencies
After sorting the tasks based on the number of parents and decreasing order of time,

updated table can be represented in Table 4.

Table 4. Sorting of parent in decreasing order of children at level 4.

Parent 16

Child 20 19 21 17 18

Execution 5:

After the fifth execution, tasks numbered from 1–16 have been executed, and tasks
numbered from 17–21 are available to execution. Hence, the correct sequence of the tasks
in the ready queue will become in the order {20, 19, 21, 17, 18}.

Step 1–3: Scheduling of tasks to appropriate VM.

Schedule task 20 → VM1, task 19 → VM2, task 21 → VM3, task 17 → VM4, task
18→ VM5. After the sixth execution, tasks numbered 1–21 have been executed, and task
22 is available in available queue and ready queue. Further, there is need to schedule the
task 22 on any of the free VM.

After seventh execution, tasks numbered from 1–22 have been executed and the P2C
algorithm has also been stopped due to execution of all the tasks. Hence, overall execution
time will be the sum of execution time consumed at each step of the algorithm.

ET_Total = ET1 + ET2 + ET3 + ET4 ++ET5 + ET6 + ET7 + Root node overhead (21)

ET_Total = 13.83 + 10.88 + 10.51 + 1.42 + 10.39 + 10.93 + 8.73 + 0.21

ET_Total = 63.9 ms

The simplified step by step description of the algorithm is represented with the help
of flowchart as shown in Figure 10.



Electronics 2021, 10, 1320 15 of 29

Figure 10. Flowchart of proposed parent to child (P2C) Algorithm.

6. Experimental Setup and Results

Cloud applications have different requirements for configuration and deployment [57].
All the experiments have been conducted on a workstation having a 64 bit Windows 10 op-
erating system, 6 GB memory, and Intel (R) Core (TM) i5-3367U @ 1.8GHz CPU. This section
describes the details related to the cloud resources, simulation environment, workflows
dataset, and results analysis.



Electronics 2021, 10, 1320 16 of 29

Algorithm 1 Proposed P2C Algorithm.
Input: Workflow (wi) and Virtual Machines (VMs)
Output: Execution Time (∆te)

1: for i1← 1 to num(W) do
2: for i2← 1 to num(wi) do
3: f5(ji2 = 0)
4: end for
5: end for
6: for i1← 1 to num(VM) do
7: f10(vmi1 = 0)
8: end for
9: TL={}

10: RQ={}
11: AQ={}
12: for i1← 1 to num(W) do
13: RQ = RQ + f12(wi)
14: vm1 ← rq1
15: f5(rq1) = 1
16: AQ = AQ+ {rq1}
17: f10(vm1) = 1
18: RQ = RQ-{rq1}
19: while f5( f11(wi))! = 2 do
20: if (num(RQ) - ∑∀k( f10(vmk)) ≤ 0 ) (num(RQ) ≥ 2×∑∀k( f10(vmk))) then
21: RQ = READYQUEUESTATUS()
22: if num(RQ) 6= 0 then
23: RQ = Sort(RQ, num( f1(rq)), 1)
24: for i1← 1 to num(VM) do
25: if f10(vmi1) == 0 then
26: vmi1 ← rq1
27: f5(rq1) = 1
28: RQ = RQ− {rq1}
29: f10(vmi1) = 1
30: AQ = AQ + {rq1}
31: end if
32: end for
33: end if
34: else
35: RQ = READYQUEUESTATUS()
36: if num(RQ) 6= 0 then
37: RQ = Sort(RQ, num( f2(rq)), 1)
38: for i1← 1 to num(VM) do
39: if f10(vmi1) == 0 then
40: vmi1 ← rq1
41: f5(rq1) = 1
42: RQ = RQ− {rq1}
43: f10(vmi1) = 1
44: AQ = AQ + {rq1}
45: end if
46: end for
47: end if
48: end if
49: end while
50: end for



Electronics 2021, 10, 1320 17 of 29

Algorithm 2 Ready queue check condition.

1: procedure READYQUEUESTATUS
2: for i1← 1 to num(AQ) do
3: if aqi1 = job’s execution completed then
4: f5(aqi1) = 2
5: f10( f13(aqi1)) = 0
6: AQ = AQ− aqi1
7: TQ = TQ + f2(aqi1)
8: end if
9: end for

10: for i1← 1 to TQ do
11: RQ = RQ + [ f5( f14(tqi1)) == 2 ? tqi1 : {}]
12: end for
13: end procedure

6.1. Cloud Resources

A resource can be defined as a physical or logical component that is connected to
a computer system. Cloud resources are mainly classified as fast computing, storage,
communication, power, and security, etc. Every device which is connected to a computer
system is considered to be a resource. Figure 11 represents the detailed view of various
cloud resources which are provided on the user’s request through internet.

Figure 11. Classification of cloud resources [58].

These resources are mainly classified in two categories: physical resources and logical
resources. Physical resources consist of the system’s hardware such as processor, memory,
and other peripheral devices connected to the system. Logical resources control the physical
resources on a temporary basis and mainly consist of an operating system, power sources,
APIs, databases, networking bandwidth, and protocols, etc., [58,59]. Cloud framework
can be heterogeneous for the proper utilization of homogeneous, as well as heterogeneous
resources. Further, quality of service (QoS), specific runtime and virtual technology, can be
utilized to provide application’s objectivity and the virtualization.



Electronics 2021, 10, 1320 18 of 29

6.1.1. Fast Computing Utility

These resources provide the computational power to the users for the execution of
their applications. Cloud computing provides computation as a service (CaaS) as a utility
to cloud users. These resources can be treated as the collection of physical machines, mainly
processing power, memory, algorithms, operating system, and APIs. To provide these
resources to users, the physical machines are deployed on the virtual environment, which
is considered as a virtual machine [58,59].

6.1.2. Storage Utility

One of the main issues of end-users is to store their data into any of the convenient
storage media, such as hard disk, floppy disk, and flash drive, etc. However, instead of
purchasing their own storage space, it is better to take the storage space from CSPs on
rent. Therefore, the cloud users store the data and information into an external remote
database servers. Data can be accessed and transferred from the database servers to the
user’s system through internet connectivity [58,59].

6.1.3. Communication Utility

It is also known as network utility or network as a service (NaaS). Communication
utility consists of physical resources, such as intermediate devices, sensors, workstations,
and logical resources, such as bandwidth, delay, protocols, and communication links. From
the networking perspective, intermediate devices and communicating devices consist of
modems, hubs, routers, and switches, etc. Further, the networking resources installed on
physical machines within a data center are mainly organized in clusters [58,59].

6.1.4. Power Utility

Cloud computing consists of thousands of data servers and various types of other
interconnecting devices. Energy efficiency is one of the main issues due to a lot of power
consumption for the overall functioning of these service utilities. The power is consumed
by the data servers and by cooling and supporting infrastructure, power distribution
equipment, and networking equipment. Data centers usually take power from power
utility providers, such as local power storage, especially from renewable energy sources
including wind and solar energy [58,59].

6.1.5. Security

Cloud users demand various service utilities like IaaS, PaaS, and SaaS from the cloud
provider. Therefore, these services must be highly secure, reliable, and available. Trust,
integrity, privacy, authentication, and availability must be considered for the perspective of
issues in security [58,59].

6.2. Workflows Dataset

There is no cost of infrastructure and services needed to test these applications in
a repeatable and controlled environment. Initially, less number of virtual machines are
created for the execution of smaller workflows. Later on, the number of virtual machines
can be increased dynamically according to the execution of larger workflows. The different
test cases are created by using the smaller as well as larger workflows as listed in Table 5.



Electronics 2021, 10, 1320 19 of 29

Table 5. Creation of Test Cases for different size of different workflows.

Workflow Number of Task Number of VM Dataset File

CyberShake

30 5 CyberShake_30

50 10 CyberShake_50

100 20 CyberShake_100

1000 50 CyberShake_1000

Montage

25 5 Montage_25

50 10 Montage_50

100 20 Montage_100

1000 50 Montage_1000

Epigenomics

24 5 Epigenomics_24

46 10 Epigenomics_46

100 20 Epigenomics_100

997 50 Epigenomics_997

Inspiral

30 5 Inspiral_30

50 10 Inspiral_50

100 20 Inspiral_100

1000 50 Inspiral_1000

SIPHT

30 5 SIPHT_30

60 10 SIPHT_60

100 20 SIPHT_100

1000 50 SIPHT_1000

6.3. Simulation Environment

The simulation environment evaluates a different kind of resource leasing on the
provider’s side under different conditions with different load distribution. Implementa-
tion of the existing and proposed scheduling algorithms have been done on the Work-
flowSim [60] simulator by setting it up on Net Beans IDE. The homogeneous virtual
machines used in the simulation process have 512 MB memory, a CPU with 1000 MIPS,
a bandwidth of 1000 BPS and 10 GB of image size. WorkflowSim extends the existing
CloudSim [61] simulator that allows modeling and matching the cloud environment, data
centers, virtual machines, and cloudlets, tackling only one load but is not suitable for
scheduling workflows as many tasks need to be integrated. WorkflowSim, therefore,
provides a higher level of workflow management over the CloudSim layer.

6.4. Statistical Analysis

Statistical analysis is the collection and interpretation of data to uncover patterns
and trends. It is a part of data analytics. Statistical analysis can be used in collecting
research descriptions, statistical modeling or designing surveys and studies. There are
two main types of statistical analysis, i.e., descriptive and inference. After collecting the
data, there is a need to analyze it by extracting the data, such as creating a pie chart, line
graph, bar graph, and histogram, etc. All of these come down to using the right methods
for statistical analysis, i.e., processing and collecting data samples to uncover patterns
and trends. For this analysis, there are five different heuristics, such as average, standard
deviation, regression, hypothesis test, and sample size determination [62]. The following
terms are used in the descriptive analysis for this research:



Electronics 2021, 10, 1320 20 of 29

Definition 15. Mean, Standard Deviation, and Variance The mean (average) of a dataset is
obtained by adding all the numbers in the dataset divided by the number of values in the dataset.
A standard deviation is a measure of the distribution of a dataset from its mean. It measures the
absolute diversity of a distribution; the higher the distribution or variance, the higher will be the
standard deviation and the greater will be the magnitude of deviation of the value from its mean.
The variance measures how well the dataset is distributed. A variance of zero indicates that all data
values are the same. However, a high variance indicates that data points are still widely distributed
from the mean and each other. The variance can be defined as the average of the squared distances
from each point to the mean.

Definition 16. Confidence Interval and Margin of Error The confidence interval indicates that the
parameter is likely to fall between a pair of values near the mean. Confidence interval measures the
level of uncertainty or certainty of samples They are usually built using 95% or 99% confidence
levels. The margin of error tells about the percentage of points in results that differ from the actual
population. For example, a 95% confidence interval with a 5% margin of error indicates that the
actual statistics will be between 5% of the substantial population by 95% of the time. The following
null hypothesis is considered for this research:

H0 = There is a significant difference of size, shape, and structure of the workflow on the
proposed scheduling algorithm.

To verify the validity of the proposed algorithm and null hypothesis, the statistic “Two-factor
ANOVA without Replication” has been selected and executed successfully at a confidence interval
of 95% with 5% a margin of error. The basic difference between the two-factor ANOVA with and
without replication is that the sample size is different [63]. In the replication technique, all the sample
are mostly unique, and if this happens, then there is a need to calculate the mean independently. In
this experiment also, we have different sized workflows as depicted in Table 5.

Definition 17. Two factor ANOVA without Replication A factor is an independent variable. A
level is some aspect of a factor; these are also called groups or treatments.The two factors considered
are: factor A (Algorithms) and factor B (Workflow Size). Factor ‘Algorithms’ has 6 levels (FCFS,
min–min, max–min, MCT, MaxChild, and P2C). Factor ‘Workflow Size’ has 4 levels (e.g., for
montage workflow: Montage_25, Montage_50, Montage_100, Montag_1000) as depicted in Table 5.
The levels for the factor ‘Algorithms’ are organized as rows and the levels for factor ‘Workflow Size’
are organized as columns. The two-factor ANOVA will either test for the main effects of factor
‘Algorithms’ or factor ‘Workflow Size’ as represented in Equation (22) or Equation (23) and depicted
in Table 6.

H0 : µ1 = µ2 = µ3......µm(Factor Algorithms) (22)

or
H0 : µ1 = µ2 = µ3......µn(Factor Work f low Size) (23)

Table 6. Two way ANOVA Summary results for CyberShake Workflow.

Factors SUMMARY Sum Average Variance

Algorithms

FCFS 1566.79 391.69 48,472.73
Min-min 1608.55 402.13 57,146.5
Max-min 1499.74 374.93 46,607.81

MCT 1566.79 391.69 48,472.73
MaxChild 1563.36 390.84 47,722.96

P2C 1456.5 364.12 49,551.19

Workflow Size

CyberShake_30 1579.98 263.33 172.31
CyberShake_50 1581.96 263.66 55.93

CyberShake_100 1785.53 297.58 305.15
CyberShake_1000 4314.26 719.04 511.36

Bold numbers are results of proposed approach.



Electronics 2021, 10, 1320 21 of 29

Table 6 indicates that total (sum of all the tasks of CyberShake workflow in all four
variants) execution time and average execution time for the proposed P2C algorithm is
less as compared to other comparative scheduling. Further, the value of variance for the
proposed approach is higher than the other scheduling algorithms. The descriptive results
of Two factor ANOVA test are represented in Table 7.

Table 7. Two way ANOVA descriptive results for CyberShake Workflow.

Source of Variation SS df MS F p-Value F-crit

Algorithms 3798.654 5 759.73 7.996 0 2.901
Workflow Size 892,496.7 3 297,498.91 3131.242 3.39E+00 3.287

Error 1425.148 15 95.009
Total 897,720.5 23

Since the p-Value for the factor Algorithms (0.000 < 0.05) or (F = 7.996 > 2.901 = F-crit)
as depicted in Table 7. Therefore, the null hypothesis is rejected, and there is no significant
difference of size, shape, and structure of the CyberShake workflow on the proposed P2C
algorithm. Similarly, the summary as well as descriptive results of two-factor ANOVA for
montage workflow are depicted in Tables 8 and 9.

Table 8. Two way ANOVA Summary results for Montage Workflow.

Factors SUMMARY Sum Average Variance

FCFS 866.94 216.73 75,982.15
Min-min 870.54 217.63 76,802.02
Max-min 866.08 216.52 75,850.97

MCT 866.94 216.73 75,982.15
MaxChild 866.63 216.65 75,903.93

Algorithms

P2C 833.23 208.3 74,158.48

Montage_25 340.79 56.79 1.73
Monatge_50 458.18 76.36 7.33

Montage_100 606.7 101.11 19.26Workflow Size

Montage_1000 3764.69 627.44 32.63
Bold numbers are results of proposed approach.

Table 8 indicates that total and average execution time for montage workflow of
proposed P2C algorithm is less than other comparative scheduling algorithms. Since the
p-Value for the factor Algorithm (0.000 < 0.05) or (F = 12.752 > 2.901 = F-crit) as depicted in
Table 9. Therefore, the null hypothesis is rejected, and there is no significant difference of
size, shape, and structure of the montage workflow on the proposed P2C algorithm.

Table 9. Two way ANOVA descriptive results for Montage Workflow.

Source of Variation SS df MS F p-Value F-crit

Algorithms 246.771 5 49.354 12.752 5.85373E−05 2.901
Workflow 1,363,981.131 3 454,660.38 117,479.76 5.34794E−33 3.287

Error 58.051 15 3.87
Total 1,364,285.955 23

Table 10 indicates that total and average execution time for epigenomics workflow for
the proposed P2C algorithm is less or equal to other comparative scheduling algorithms.
Since the p-Value for the factor Algorithms (0.024 < 0.05) but (F = 2.526 < 2.901 = F-crit) as
depicted in Table 11. Therefore, the null hypothesis for comparative scheduling algorithms
with respect to proposed P2C algorithm rejected in some cases while accepted in a majority
of the remaining cases. Due to this variable behavior, a significant difference of size, shape
and structure of the epigenomics workflow on proposed scheduling algorithm can not



Electronics 2021, 10, 1320 22 of 29

be determined. Further, by carefully examining the total and average execution time
for epigenomics workflow, it has been observed that either the proposed P2C algorithm
outperforms or behaves similar to some existing algorithms. It could be possible due to the
parallel, as well as pipeline, structure of the epigenomics workflow.

Table 10. Two way ANOVA Summary results for Epigenomics Workflow.

Factors SUMMARY Sum Average Variance

Algorithms

FCFS 161,211.02 40,302.75 2,520,942,674
Min-min 174,101.15 43,525.28 2,741,892,698
Max-min 171,923.1 42,980.77 2,713,164,848

MCT 161,211.02 40,302.75 2,520,942,674
MaxChild 161,211.02 40,302.75 2,520,942,674

P2C 161,211.33 40,302.33 2,520,942,674

Workflow Size

Epigenomics_24 33,578.68 5596.44 0.04
Epigenomics_46 46,459.45 7743.24 0
Epigenomics_100 230,865.9 38,477.65 15,052,972.16
Epigenomics_997 682,378.61 113,729.76 10,729,351.4

Table 11. Two way ANOVA descriptive results for Epigenomics Workflow.

Source of Variation SS df MS F p-Value F-crit

Algorithms 43,480,779.16 5 8,696,155.832 2.526 0.024 2.901
Workflow 45,928,839,780 3 15,309,613,260 2688.071 0 3.287

Error 85,430,838.92 15 5,695,389.261
Total 46,057,751,398 23

Table 12 clearly indicates that total and average execution time for inspiral workflow
of proposed P2C algorithm is less as compared to other comparative scheduling algorithms.

Table 12. Two way ANOVA Summary results for inspiral workflow.

Factors SUMMARY Sum Average Variance

Algorithms

FCFS 10,800.33 2700.08 4,953,313
Min-min 12,054.6 3013.65 4,808,698
Max-min 10,771.88 2692.97 4,884,867

MCT 10,800.33 2700.08 4,953,313
MaxChild 10,802.75 2700.68 4,957,883

P2C 10,748.33 2687.08 4,884,225

Workflow

Inspiral_30 10,469.64 1744.94 17,561.79
Inspiral_50 9741.8 1623.63 31,777.85
Inspiral_100 9350.48 1558.41 10,026.64

Inspiral_1000 36416.3 6069.38 12,884.62
Bold numbers are results of proposed approach.

Since the p-Value for the factor Algorithm (0.000 < 0.05) or (F = 40.834 > 2.901 =
F-crit) as depicted in Table 13. Therefore, the null hypothesis is rejected, and there is no
significant difference of size, shape, and structure of the inspiral workflow on proposed
scheduling algorithm.

Table 13. Two way ANOVA descriptive results for inspiral workflow.

Source of Variation SS df MS F p-Value F-crit

Algorithms 336,530.6 5 67,306.1 40.834 0 2.901
Workflow Size 88,302,172.05 3 2.9E+07 17,857.59 0 3.287

Error 24,723.993 15 1648.27
Total 88,663,426.64 23



Electronics 2021, 10, 1320 23 of 29

Table 14 indicates that total and average execution time of SIPHT Workflow for the pro-
posed P2C algorithm is less compared to other comparative scheduling algorithms. Since
the p-Value for the factor Algorithm (0.025 < 0.05) or (F = 3.471 > 2.901 = F-crit) as depicted
in Table 15. Therefore, the null hypothesis is rejected, and there is no significant difference
of size, shape, and structure of the SIPHT workflow on the proposed scheduling algorithm.

Table 14. Two way ANOVA summary results for SIPHT workflow.

Factors SUMMARY Sum Average Variance

Algorithms

FCFS 20,100.22 5025.05 1,058,606.8
Min-min 20,575.48 5143.87 1,589,971.89
Max-min 18,846.06 4711.51 172,348.68

MCT 20,100.22 5025.05 1,058,606.8
MaxChild 20,199.08 5049.77 1,162,325.93

P2C 18,375.08 4593.77 296,019.17

Workflow

SIPHT_30 26,058.77 4343.12 31,144.96
SIPHT_60 27,849.2 4641.53 30.09

SIPHT_100 26,859.25 4476.54 48.18
SIPHT_1000 37,428.92 6238.15 549,233.12

Bold numbers are results of proposed approach.

Table 15. Two way ANOVA descriptive results for SIPHT workflow.

Source of Variation SS df MS F p-Value F-crit

Algorithms 955,130.555 5 191,026.111 3.471 0.0256 2.901
Workflow Size 14,066,486.6 3 4,688,828.875 36.12 0 3.287

Error 1,947,151.29 15 129,810.086
Total 16,968,768.5 23

6.5. Results

Initially, all the scheduling algorithms have been implemented for existing scientific
applications such as CyberShake, montage, epigenomics, inspiral and SIPHT with different
tasks and different numbers of VMS but having the same structure. The experimental
results have been compared with a different number of virtual machines for different sizes
of workflows. The existing, as well as proposed, algorithms have been validated on all the
test cases listed in Table 5 and results are shown in Figures 12–16, etc.

0

100

200

300

400

500

600

700

800

CyberShake_30 CyberShake_50 CyberShake_100 CyberShake_1000

Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

Scheduling Algorithms

FCFS Min-min Max-min MCT MaxChild P2C

Figure 12. Comparison of execution time for CyberShake workflow.



Electronics 2021, 10, 1320 24 of 29

0

100

200

300

400

500

600

700

Montage_25 Monatge_50 Montage_100 Montage_1000

Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

Scheduling Algorithms

FCFS Min-min Max-min MCT MaxChild P2C

Figure 13. Comparison of execution time for montage workflow.

0

20000

40000

60000

80000

100000

120000

140000

Epigenomics_24 Epigenomics_46 Epigenomics_100 Epigenomics_997

Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

Scheduling Algorithms

FCFS Min-min Max-min MCT MaxChild P2C

Figure 14. Comparison of execution time for epigenomics workflow.



Electronics 2021, 10, 1320 25 of 29

0

1000

2000

3000

4000

5000

6000

7000

Inspiral_30 Inspiral_50 Inspiral_100 Inspiral_1000

Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

Scheduling Algorithms

FCFS Min-min Max-min MCT MaxChild P2C

Figure 15. Comparison of execution time for inspiral workflow.

0

1000

2000

3000

4000

5000

6000

7000

8000

SIPHT_30 SIPHT_60 SIPHT_100 SIPHT_1000

Ex
ec

u
ti

o
n

 T
im

e 
(m

s)

Scheduling Algorithms

FCFS Min-min Max-min MCT MaxChild P2C

Figure 16. Comparison of execution time for SIPHT workflow.

It is clearly visible in Figure 12 that for CyberShake workflow, the proposed approach
outperforms the existing approaches in terms of total execution time for less number of
tasks. However, due to its parallel nature, in case of availability of more number of tasks,
the proposed approach behaves similar to max–min scheduler and takes the same time
as of max–min scheduler. Similarly, in some cases of Inspiral and Epigenomics workflow,
the proposed algorithms behaves similar to max–min algorithms. It is clearly visible
in Figure 13 for montage workflow and Figure 16 for SIPHT workflow, the proposed
algorithm P2C outperforms the existing scheduling in terms of total execution time.

6.6. Complexity Analysis

The task scheduling problem in the cloud environment takes a large solution space.
Moreover, the scheduling of n tasks onto m resources have been considered as an NP-Hard
problem. Thus, it will take O(nm) time which is non-polynomial since, there is no existence
of any algorithm that can find the optimal solution in a polynomial run time. The proposed



Electronics 2021, 10, 1320 26 of 29

P2C algorithm is based on a priority queue structure. In general, a priority queue ranks their
tasks by a particular key with an order relation. Here, each element has its key, and such
keys are not necessarily unique. Some major operations have been associated with priority
queue such as TaskList, ReadyQueue, AvailableQueue, READYQUEUESTATUS(), etc.
The priority-based task scheduling consists of the following properties:

1. Each task has a priority associated with it;
2. A task with high priority must precedes the low priority tasks;
3. Two tasks can have same priority, however, such tasks will be scheduled as per their

order in the queue.

Insertion time: Implementing priority queue without sorting would take O(1) time.
However, implementing priority queue with linear sorting would take O(n) time.

Removal time: The functions like TaskList, ReadyQueue, AvailableQueue over un-
sorted priority queue would take O(n) time. However, in case of linear sorted list it would
take O(n2) time. Here, first remove() task takes O(n), the second O(n− 1) and so on until
the last removal task takes only O(1) time. The total time needed to complete the first
pass is: O(n + (n− 1) + (n− 2) + ...... + 2 + (1)) = O(∑n

i=1 i) = n(n+1)
2 . Hence the total

computational complexity for removal() is O(n2).
In case of the non-linear sorting, if priority queue is using heap then, insert() and

remove() each take O(logn), where n is the number of tasks. Here, each pass takes O(nlogn)
time for insert(), as well as remove().

7. Conclusions and Future Scope

Workflow scheduling is one of the significant issue in cloud computing among other
popular issues, such as virtual machine migration, databases management, security, perfor-
mance, fault tolerance, and server consolidation, etc. Workflow scheduling is a challenging
job to find the proper sequence of workflow tasks for execution. It further depends upon
the QoS requirements of the cloud applications. Due to heterogeneity; uncertainty and
resource mobilization; resource scheduling is one of the hotspot area of research in demand.
Different criteria for scheduling various resources and the parameters, requires different
categories of resource scheduling techniques. In this paper, existing time-based schedul-
ing algorithms such as first come first serve (FCFS), min–min, max–min, and minimum
completion time (MCT), along with dependency-based scheduling algorithm MaxChild
have been considered. The main objective of the existing time based schedulers is to reduce
the workflow’s execution time, but there is no importance given to resource utilization.
The proposed (P2C) algorithm mainly focuses on utilization of the resources efficiently.
Further, The proposed P2C algorithm outperforms existing time and dependency based
scheduling algorithms in terms of total execution time. The experimental results conclude
that the existing schedulers have varying execution time based on the size, shape, and
number of resources and virtual machines available. From the statistical analysis, it has
been analyzed that proposed algorithm has no significance of size, shape, and structure of
the workflow. There are still many challenges that need to be overcome to achieve more
effective and comprehensive results. Further, at present, the results have been computed
for the standard CyberShake, montage, epigenomics, inspiral, and SIPHT workflow with
varying number of tasks and virtual machines. However, in the future, the work could be
extended to other scientific systems beyond the natural environment, and verification can
be tested over real-time cloud space.

Author Contributions: The initial writing on the ideas; Preparation, creation and/or presentation of
the published work by those from the original research group, specifically critical review, commentary
or revision—including pre-or post-publication stages have been done by first author V.P. The other
authors, S.B. and L.G. have played the role of supervisors with oversight and leadership responsibility
for the research activity planning and execution, including mentorship external to the core team.
Further, they have provided valuable suggestions specifically on the critical review, commentary



Electronics 2021, 10, 1320 27 of 29

or revision—including pre-or post-publication stages. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Harmon, P. Business Process Change: A Business Process Management Guide For Managers and Process Professionals; Morgan Kaufmann:

San Francisco, CA, USA, 2019.
2. Li, J.; Li, X.; He, D. A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction. IEEE

Access 2019, 7, 75464–75475. [CrossRef]
3. Deelman, E.; Vahi, K.; Rynge, M.; Mayani, R.; da Silva, R.F.; Papadimitriou, G.; Livny, M. The evolution of the pegasus workflow

management software. Comput. Sci. Eng. 2019, 21, 22–36. [CrossRef]
4. de Carvalho Silva, J.; de Oliveira Dantas, A.B.; de Carvalho Junior, F.H. A Scientific Workflow Management System for

orchestration of parallel components in a cloud of large-scale parallel processing services. Sci. Comput. Program. 2019, 173, 95–127.
[CrossRef]

5. Pandey, S.; Vahi, K.; da Silva, R.F.; Deelman, E.; Jiang, M.; Harrison, C.; Chu, A.; Casanova, H. Event-Based Triggering and
Management of Scientific Workflow Ensembles. In Proceedings of the HPC Asia, Tokyo, Japan, 28–31 January 2018.

6. Senkul, P.; Toroslu, I.H. An architecture for workflow scheduling under resource allocation constraints. Inf. Syst. 2005, 30, 399–422.
[CrossRef]

7. Yu, J.; Buyya, R. A taxonomy of workflow management systems for grid computing. J. Grid Comput. 2005, 3, 171–200. [CrossRef]
8. Ma, X.; Gao, H.; Xu, H.; Bian, M. An IoT-based task scheduling optimization scheme considering the deadline and cost-aware

scientific workflow for cloud computing. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 249. [CrossRef]
9. Marozzo, F.; Talia, D.; Trunfio, P. A workflow management system for scalable data mining on clouds. IEEE Trans. Serv. Comput.

2016, 11, 480–492. [CrossRef]
10. Khennaoui, R.; Belala, N. Towards a Formal Context-Aware Workflow Model for Ambient Environment. In Proceedings

of the International Conference on Smart Homes and Health Telematics, Hammamet, Tunisia, 24–26 June 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 415–422.

11. Talwani, S.; Singla, J. Comparison of Various Fault Tolerance Techniques for Scientific Workflows in Cloud Computing. In
Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon),
Faridabad, India, 14–16 February 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 454–459.

12. Deelman, E.; Mandal, A.; Jiang, M.; Sakellariou, R. The role of machine learning in scientific workflows. Int. J. High Perform.
Comput. Appl. 2019, 33, 1128–1139. [CrossRef]

13. Deelman, E.; Vahi, K.; Juve, G.; Rynge, M.; Callaghan, S.; Maechling, P.J.; Mayani, R.; Chen, W.; Da Silva, R.F.; Livny, M.; et al.
Pegasus, a workflow management system for science automation. Future Gener. Comput. Syst. 2015, 46, 17–35. [CrossRef]

14. Singh, S.; Chana, I. A survey on resource scheduling in cloud computing: Issues and challenges. J. Grid Comput. 2016, 14, 217–264.
[CrossRef]

15. Kijak, J.; Martyna, P.; Pawlik, M.; Balis, B.; Malawski, M. Challenges for scheduling scientific workflows on cloud functions. In
Proceedings of the 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 460–467.

16. George, S.S.; Pramila, R.S. A review of different techniques in cloud computing. In Materials Today: Proceedings; Elsevier:
Amsterdam, The Netherlands, 2021.

17. Zhou, J.; Wang, T.; Cong, P.; Lu, P.; Wei, T.; Chen, M. Cost and makespan-aware workflow scheduling in hybrid clouds. J. Syst.
Archit. 2019, 100, 101631. [CrossRef]

18. Barrett, E.; Howley, E.; Duggan, J. A learning architecture for scheduling workflow applications in the cloud. In Proceedings of
the 2011 IEEE Ninth European Conference on Web Services, Lugano, Switzerland, 14–16 September 2011; IEEE: Piscataway, NJ,
USA, 2011; pp. 83–90.

19. Isaac, E.U.; Izuchukwu, A.C. Development of a Model Architecture for Job Scheduling. Sci. J. Circuits Syst. Signal Process. 2020,
9, 16. [CrossRef]

20. Yu, J.; Buyya, R. A taxonomy of scientific workflow systems for grid computing. ACM Sigmod Rec. 2005, 34, 44–49. [CrossRef]
21. Kintsakis, A.M.; Psomopoulos, F.E.; Mitkas, P.A. Reinforcement learning based scheduling in a workflow management system.

Eng. Appl. Artif. Intell. 2019, 81, 94–106. [CrossRef]
22. Varalakshmi, P.; Ramaswamy, A.; Balasubramanian, A.; Vijaykumar, P. An optimal workflow based scheduling and resource

allocation in cloud. In Proceedings of the International Conference on Advances in Computing and Communications, Kochi,
India, 22–24 July 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 411–420.

23. Zhou, X.; Zhang, G.; Sun, J.; Zhou, J.; Wei, T.; Hu, S. Minimizing cost and makespan for workflow scheduling in cloud using
fuzzy dominance sort based HEFT. Future Gener. Comput. Syst. 2019, 93, 278–289. [CrossRef]

24. Prakash, V.; Bala, A.G. An Efficient Workflow Scheduling Approach in Cloud Computing. Ph.D. Thesis, Thapar Institute of
Engineering and Technology, Patiala, India, 2014.

http://doi.org/10.1109/ACCESS.2019.2919566
http://dx.doi.org/10.1109/MCSE.2019.2919690
http://dx.doi.org/10.1016/j.scico.2018.04.004
http://dx.doi.org/10.1016/j.is.2004.03.003
http://dx.doi.org/10.1007/s10723-005-9010-8
http://dx.doi.org/10.1186/s13638-019-1557-3
http://dx.doi.org/10.1109/TSC.2016.2589243
http://dx.doi.org/10.1177/1094342019852127
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1007/s10723-015-9359-2
http://dx.doi.org/10.1016/j.sysarc.2019.08.004
http://dx.doi.org/10.11648/j.cssp.20200901.12
http://dx.doi.org/10.1145/1084805.1084814
http://dx.doi.org/10.1016/j.engappai.2019.02.013
http://dx.doi.org/10.1016/j.future.2018.10.046


Electronics 2021, 10, 1320 28 of 29

25. Masdari, M.; ValiKardan, S.; Shahi, Z.; Azar, S.I. Towards workflow scheduling in cloud computing: A comprehensive analysis. J.
Netw. Comput. Appl. 2016, 66, 64–82. [CrossRef]

26. Tong, Z.; Chen, H.; Deng, X.; Li, K.; Li, K. A scheduling scheme in the cloud computing environment using deep Q-learning. Inf.
Sci. 2020, 512, 1170–1191. [CrossRef]

27. Mansouri, N.; Javidi, M.M. Cost-based job scheduling strategy in cloud computing environments. In Distributed and Parallel
Databases; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–36.

28. Kumar, A.; Bawa, S. DAIS: Dynamic access and integration services framework for cloud-oriented storage systems. In Cluster
Computing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–20.

29. Buyya, R.; Yeo, C.S.; Venugopal, S.; Broberg, J.; Brandic, I. Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future Gener. Comput. Syst. 2009, 25, 599–616. [CrossRef]

30. Hu, J.; Gu, J.; Sun, G.; Zhao, T. A scheduling strategy on load balancing of virtual machine resources in cloud computing
environment. In Proceedings of the 2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming,
Dalian, China, 18–20 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 89–96.

31. Prakash, V.; Bala, A. Workflow Scheduling Algorithms in Grid and Cloud Environment—A Survey. J. Comput. Technol. 2014,
3, 2278–3814.

32. Njenga, K.; Garg, L.; Bhardwaj, A.K.; Prakash, V.; Bawa, S. The cloud computing adoption in higher learning institutions in
Kenya: Hindering factors and recommendations for the way forward. Telemat. Inform. 2019, 38, 225–246. [CrossRef]

33. Yu, Y.; Su, Y. Cloud Task Scheduling Algorithm Based on Three Queues and Dynamic Priority. In Proceedings of the 2019
IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 12–14 July 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 278–282.

34. Xia, W.; Shen, L. Joint resource allocation using evolutionary algorithms in heterogeneous mobile cloud computing networks.
China Commun. 2018, 15, 189–204. [CrossRef]

35. Patra, M.K.; Sahoo, S.; Sahoo, B.; Turuk, A.K. Game theoretic approach for real-time task scheduling in cloud computing
environment. In Proceedings of the 2019 International Conference on Information Technology (ICIT), Bhubaneswar, India, 19–21
December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 454–459.

36. Li, J.; Ma, T.; Tang, M.; Shen, W.; Jin, Y. Improved FIFO scheduling algorithm based on fuzzy clustering in cloud computing.
Information 2017, 8, 25. [CrossRef]

37. Nazar, T.; Javaid, N.; Waheed, M.; Fatima, A.; Bano, H.; Ahmed, N. Modified shortest job first for load balancing in cloud-fog
computing. In Proceedings of the International Conference on Broadband and Wireless Computing, Communication and
Applications, Taichung, Taiwan, 15 July–15 August 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 63–76.

38. Devi, D.C.; Uthariaraj, V.R. Load balancing in cloud computing environment using improved weighted round robin algorithm
for nonpreemptive dependent tasks. Sci. World J. 2016, 2016, 3896065. [CrossRef] [PubMed]

39. Mazumder, A.M.R.; Uddin, K.A.; Arbe, N.; Jahan, L.; Whaiduzzaman, M. Dynamic task scheduling algorithms in cloud
computing. In Proceedings of the 2019 3rd International Conference on Electronics, Communication and Aerospace Technology
(ICECA), Coimbatore, India, 12–14 June 2019; IEEE: Piscataway, NJ, USA, 2019.

40. Ghosh, S.; Banerjee, C. Dynamic time quantum priority based round robin for load balancing in cloud environment. In
Proceedings of the 2018 Fourth International Conference on Research in Computational Intelligence and Communication
Networks (ICRCICN), Kolkata, India, 22–23 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 33–37.

41. Samadi, Y.; Zbakh, M.; Tadonki, C. E-HEFT: Enhancement heterogeneous earliest finish time algorithm for task scheduling based
on load balancing in cloud computing. In Proceedings of the 2018 International Conference on High Performance Computing &
Simulation (HPCS), Orleans, France, 16–20 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 601–609.

42. Gao, Y.; Zhang, S.; Zhou, J. A hybrid algorithm for multi-objective scientific workflow scheduling in IaaS Cloud. IEEE Access
2019, 7, 125783–125795. [CrossRef]

43. Bugingo, E.; Zheng, W.; Zhang, D.; Qin, Y.; Zhang, D. Decomposition based multi-objective workflow scheduling for cloud
environments. In Proceedings of the 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD), Suzhou,
China, 21–22 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 37–42.

44. Wu, N.; Zuo, D.; Zhang, Z. Dynamic fault-tolerant workflow scheduling with hybrid spatial-temporal re-execution in clouds.
Information 2019, 10, 169. [CrossRef]

45. Arabnejad, V.; Bubendorfer, K.; Ng, B. Budget and deadline aware e-science workflow scheduling in clouds. IEEE Trans. Parallel
Distrib. Syst. 2018, 30, 29–44. [CrossRef]

46. Kaur, G.; Bala, A. An efficient resource prediction–based scheduling technique for scientific applications in cloud environment.
Concurrent Eng. 2019, 27, 112–125. [CrossRef]

47. Kaur, G.; Bala, A. Prediction based task scheduling approach for floodplain application in cloud environment. In Computing;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–22.

48. Niehaus, D.; Ramamritham, K.; Stankovic, J.A.; Wallace, G.; Weems, C.; Burleson, W.; Ko, J. The Spring scheduling co-processor:
Design, use, and performance. In Proceedings of the 1993 Proceedings Real-Time Systems Symposium, Raleigh, NC, USA, 1–3
December 1993; IEEE: Piscataway, NJ, USA, 1993; pp. 106–111.

49. Burleson, W.; Ko, J.; Niehaus, D.; Ramamritham, K.; Stankovic, J.A.; Wallace, G.; Weems, C. The spring scheduling coprocessor: A
scheduling accelerator. IEEE Trans. Very Large Scale Integr. Syst. 1999, 7, 38–47. [CrossRef]

http://dx.doi.org/10.1016/j.jnca.2016.01.018
http://dx.doi.org/10.1016/j.ins.2019.10.035
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.tele.2018.10.007
http://dx.doi.org/10.1109/CC.2018.8438283
http://dx.doi.org/10.3390/info8010025
http://dx.doi.org/10.1155/2016/3896065
http://www.ncbi.nlm.nih.gov/pubmed/26955656
http://dx.doi.org/10.1109/ACCESS.2019.2939294
http://dx.doi.org/10.3390/info10050169
http://dx.doi.org/10.1109/TPDS.2018.2849396
http://dx.doi.org/10.1177/1063293X19832946
http://dx.doi.org/10.1109/92.748199


Electronics 2021, 10, 1320 29 of 29

50. Trakadas, P.; Nomikos, N.; Michailidis, E.T.; Zahariadis, T.; Facca, F.M.; Breitgand, D.; Rizou, S.; Masip, X.; Gkonis, P. Hybrid
clouds for data-intensive, 5G-enabled IoT applications: An overview, key issues and relevant architecture. Sensors 2019, 19, 3591.
[CrossRef] [PubMed]

51. Graves, R.; Jordan, T.H.; Callaghan, S.; Deelman, E.; Field, E.; Juve, G.; Kesselman, C.; Maechling, P.; Mehta, G.; Milner, K.; et al.
CyberShake: A physics-based seismic hazard model for southern California. Pure Appl. Geophys. 2011, 168, 367–381. [CrossRef]

52. Bharathi, S.; Chervenak, A.; Deelman, E.; Mehta, G.; Su, M.H.; Vahi, K. Characterization of scientific workflows. In Proceedings of
the 2008 Third Workshop on Workflows in Support of Large-Scale Science, Austin, TX, USA, 17 November 2008; IEEE: Piscataway,
NJ, USA, 2008; pp. 1–10.

53. Juve, G.; Chervenak, A.; Deelman, E.; Bharathi, S.; Mehta, G.; Vahi, K. Characterizing and profiling scientific workflows. Future
Gener. Comput. Syst. 2013, 29, 682–692. [CrossRef]

54. Braun, T.D.; Siegel, H.J.; Beck, N.; Bölöni, L.L.; Maheswaran, M.; Reuther, A.I.; Robertson, J.P.; Theys, M.D.; Yao, B.; Hensgen,
D.; et al. A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed
computing systems. J. Parallel Distrib. Comput. 2001, 61, 810–837. [CrossRef]

55. Dong, F.; Akl, S.G. Scheduling Algorithms for Grid Computing: State of the Art and Open Problems; Technical Report; Queen’s
University: Kingston, ON, Canada, 2006.

56. Prakash, V.; Bala, A. A novel scheduling approach for workflow management in cloud computing. In Proceedings of the 2014
International Conference on Signal Propagation and Computer Technology (ICSPCT 2014), Ajmer, India, 12–13 July 2014; IEEE:
Piscataway, NJ, USA, 2014; pp. 610–615.

57. Di Cosmo, R.; Lienhardt, M.; Treinen, R.; Zacchiroli, S.; Zwolakowski, J.; Eiche, A.; Agahi, A. Automated synthesis and
deployment of cloud applications. In Proceedings of the 29th ACM/IEEE International Conference On Automated Software
Engineering, Vasteras, Sweden, 15–19 September 2014; pp. 211–222.

58. Jennings, B.; Stadler, R. Resource management in clouds: Survey and research challenges. J. Netw. Syst. Manag. 2015, 23, 567–619.
[CrossRef]

59. Parikh, S.M.; Patel, N.M.; Prajapati, H.B. Resource management in cloud computing: Classification and taxonomy. arXiv 2017,
arXiv:1703.00374.

60. Chen, W.; Deelman, E. Workflowsim: A toolkit for simulating scientific workflows in distributed environments. In Proceedings
of the 2012 IEEE 8th International Conference on E-Science, Chicago, IL, USA, 8–12 October 2012; IEEE: Piscataway, NJ, USA,
2012; pp. 1–8.

61. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Software Pract. Exp. 2011, 41, 23–50. [CrossRef]

62. Glen, S. Statistical Analysis. Available online: https://www.statisticshowto.com/statistical-analysis/ (accessed on 15 April 2021).
63. Zaiontz, C. Two Factor ANOVA without Replication. Available online: https://www.real-statistics.com/two-way-anova/two-

factor-anova-without-replication/ (accessed on 15 April 2021).

http://dx.doi.org/10.3390/s19163591
http://www.ncbi.nlm.nih.gov/pubmed/31426555
http://dx.doi.org/10.1007/s00024-010-0161-6
http://dx.doi.org/10.1016/j.future.2012.08.015
http://dx.doi.org/10.1006/jpdc.2000.1714
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1002/spe.995
 https://www.statisticshowto.com/statistical-analysis/
 https://www.real-statistics.com/two-way-anova/two-factor-anova-without-replication/ 
 https://www.real-statistics.com/two-way-anova/two-factor-anova-without-replication/ 

	Introduction
	Existing Challenges
	Research Contribution
	Paper Organization

	Workflow Scheduling
	Scientific Applications
	 CyberShake
	 Montage
	 Epigenomics
	 Inspiral
	 SIPHT

	Problem Formulation
	Proposed Solution
	Experimental Setup and Results
	Cloud Resources
	Fast Computing Utility
	Storage Utility
	Communication Utility
	Power Utility
	Security

	 Workflows Dataset
	 Simulation Environment
	Statistical Analysis
	 Results
	 Complexity Analysis

	Conclusions and Future Scope
	References

