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1. Introduction

Perturbative expansion of amplitudes in the light-cone gauge NSR superstring field the-

ory [2, 3] involves divergences even at the tree level. Transverse supercurrents are inserted

at the interaction points of the joining-splitting interaction and divergences arise when

they get close to each other. Similar divergences exist in other superstring field theories

[4, 5, 6, 7, 8].

In the previous paper [9] we have proposed a dimensional regularization scheme to deal

with these divergences. In the light-cone gauge, one can define the theory in d (d ̸= 10)

dimensions. Taking d to be largely negative, we can make the tree level amplitudes finite.

Defining the amplitudes for such d, one can obtain the amplitudes for d = 10 by analytic

continuation. Since what matters is the Virasoro central charge on the worldsheet, one can

effectively change d also by using conformal field theory other than that for the transverse

variables Xi, ψi, ψ̃i. In Ref. [9], we have proposed one such scheme and shown that the

results of the first quantized formulation can be reproduced by such a procedure, in the

case of the four string amplitudes.

In order for the dimensional regularization scheme to be effective, it should preserve

as many symmetries of the theory as possible. In Refs. [10, 1], we have shown that the
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light-cone gauge string field theory in noncritical spacetime dimensions corresponds to a

BRST invariant worldsheet theory with the longitudinal variables and the ghosts. Since

the BRST symmetry on the worldsheet is supposed to be related to the gauge symmetry

of the string field theory, these results imply that the dimensional regularization can be

carried out with the gauge symmetry preserved.

In this paper, we would like to propose a dimensional regularization scheme for the

light-cone gauge NSR superstring field theory, in which the results of Ref. [1] can be

used. We just formulate the theory in d dimensions and define the amplitudes as analytic

functions of d. In this paper, we deal with closed string field theory and restrict ourselves

to the amplitudes with only the (NS,NS) external lines. We show that the tree level

amplitudes can be recast into a BRST invariant form using the superconformal field theory

proposed in Ref. [1]. In this form, it is easy to show that the amplitudes coincide with

the results of the first quantized formulation without any need for the modification of the

action by adding the counterterms.

The organization of this paper is as follows. In section 2, we study the light-cone

gauge closed string field theory for NSR superstrings defined in spacetime dimension d ̸=
10. We show that the tree level amplitudes become well-defined by setting d to be a

sufficiently large negative value. In section 3, we rewrite the tree level amplitudes into a

BRST invariant form, using the superconformal field theory for the longitudinal variables

X±, ψ±, ψ̃± formulated in Ref. [1] and introducing the ghost fields. In section 4, we show

that the tree level amplitudes coincide with the results of the first quantized formulation

in the limit d → 10. Section 5 is devoted to conclusions and discussions. In appendix A,

we explain the details of the action of the superstring field theory given in section 2. In

appendix B, we present the calculations to obtain the tree level amplitudes. In appendix C,

we present a proof of the property satisfied by the correlation functions of ψ−, which is

used in section 3.

2. Amplitudes for d ̸= 10 and Dimensional Regularization

In order to dimensionally regularize the light-cone gauge NSR string field theory, we take

the worldsheet theory to be the free theory of the transverse variables Xi, ψi, ψ̃i (i =

1, · · · , d − 2). The light-cone gauge string field theory can be defined even for d ̸= 10. In

this paper, we concentrate on the closed strings in the (NS,NS) sector and the action is

given in the form

S =

∫
dt

[
1

2

∫
d1d2 ⟨R (1, 2) |Φ(t)⟩1

(
i
∂

∂t
−
L
LC(2)
0 + L̃

LC(2)
0 − d−2

8

α2

)
|Φ(t)⟩2

+
2g

3

∫
d1d2d3 ⟨V3 (1, 2, 3) |Φ(t)⟩1 |Φ(t)⟩2 |Φ(t)⟩3

]
. (2.1)

In order for the amplitudes of the light-cone gauge string field theory to be rewritten into

a BRST invariant form, the three-string interaction term should be taken appropriately.

Details of the action (2.1) are explained in appendix A.
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Starting from this action, the tree level N -string amplitudes can be calculated pertur-

batively. A typical tree level N -string diagram is depicted in Fig. 1 (a) for the N = 5 case.

On such string diagrams, we introduce a complex ρ-coordinate as usual. The N -string tree

diagram is mapped to the complex z-plane in Fig. 1 (b) via the Mandelstam mapping ρ(z)

defined as

ρ(z) =

N∑
r=1

αr ln(z − Zr) , (2.2)

where the external lines are mapped to the regions z ∼ Zr (r = 1, . . . , N). We denote the

interaction points by zI (1, . . . , N − 2) which determined by ∂ρ(zI) = 0. The resulting

3

2

1
ρ(z1)

C1 ρ(z2) 4

5

C2

Reρ

ρ(z3)

ρ z

Z1

Z2 z1

Z3

Z5

Z4

z3 z2

(b)(a)

Figure 1: In (a) is depicted a typical N -string tree diagram with N = 5, on which a complex

coordinate ρ is introduced. Via the Mandelstam mapping ρ(z), the ρ-plane is mapped to the

complex z-plane in (b). ρ(zI) (I = 1, 2, 3) are the interaction points on the ρ-plane. For the string

diagram (a), the complex Schwinger parameters TI (I = 1, 2) are given by T1 = ρ(z2)− ρ(z1) and

T2 = ρ(z3)− ρ(z2). CI are the contours of the integrals in eq.(3.30) for this string diagram.

amplitudes can be expressed as an integral over the moduli space of the string diagram as

AN = (4ig)N−2
∫ (N−3∏

I=1

d2TI
4π

)
FN

(
TI , T̄I

)
, (2.3)

where TI (I = 1, . . . , N−3) denotes the complex Schwinger parameter for the I-th internal

propagator. TI ’s constitute the N−3 complex moduli parameters of the tree string diagram

with N external strings, and are the N -string generalization of T given in eq.(B.10) for the

four-string case. The integral in eq.(2.3) is taken over the whole moduli space of the string

diagram. The integrand FN (TI , T̄I) is described by using the worldsheet field theory for

the transverse variables [9] as

FN

(
TI , T̄I

)
= (2π)2 δ

(
N∑
r=1

p+r

)
δ

(
N∑
r=1

p−r

)
sgn

(
N∏
r=1

αr

)
e−

d−2
16

Γ[ln(∂ρ∂̄ρ̄)]

×

⟨
N−2∏
I=1

[(
∂2ρ (zI) ∂̄

2ρ̄ (z̄I)
)− 3

4 TLC
F (zI) T̃

LC
F (z̄I)

] N∏
r=1

V LC
r

⟩
. (2.4)
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Here ⟨O⟩ denotes the expectation value of the operator O on the complex z-plane, defined

as

⟨O⟩ =

∫ [
dXidψidψ̃i

]
e−SLC O∫ [

dXidψidψ̃i
]
e−SLC

, (2.5)

and SLC denotes the worldsheet action of the light-cone gauge NSR superstring. V LC
r

is the vertex operator defined in eq.(B.21), and TLC
F (z) is the transverse supercurrent.

Γ
[
ln
(
∂ρ∂̄ρ̄

)]
is given in Ref. [10] as1

e−Γ[ln(∂ρ∂̄ρ̄)] =

∣∣∣∣∣
N∑
r=1

αrZr

∣∣∣∣∣
4 N∏
r=1

(
|αr|−2e−2Re N̄rr

00

)N−2∏
I=1

∣∣∂2ρ(zI)∣∣−1
, (2.6)

where N̄ rr
00 denotes a Neumann coefficient defined as

N̄ rr
00 =

τ
(r)
0 + iβr
αr

−
∑
s ̸=r

αs

αr
ln (Zr − Zs) , τ

(r)
0 + iβr ≡ ρ(zI(r)) . (2.7)

Here zI(r) denotes the interaction point on the z-plane at which the r-th string interacts.

Which of zI should be identified with zI(r) depends on the channel. For example, zI(1) =

zI(2) = z1, zI(3) = z2 and zI(4) = zI(5) = z3 for the string diagram depicted in Fig. 1 (a),

while zI(1) = z1, zI(2) = zI(3) = z2 and zI(3) = zI(4) = z3 for the string diagram in Fig. 2. See

appendix B for details of the calculations to obtain the expression (2.3) of the amplitude.

3

2

1

4

5

C2

Reρ

ρ(z3)

ρC1

ρ(z2)

ρ(z1)

Figure 2: A 5-string tree diagram in a different channel from that in Fig. 1 (a).

In general, FN

(
TI , T̄I

)
in eq.(2.4) is singular in the limit zI → zJ . Nevertheless, if d is

taken to be a sufficiently large negative value as a regularization, FN

(
TI , T̄I

)
vanishes in

the limit zI → zJ . It is because in this limit, e−
d−2
16

Γ[ln(∂ρ∂̄ρ̄)] behaves as |zI − zJ |−
d−2
8 and

the contributions of the other operators are with d independent power of |zI − zJ |. The

1We assume ∂2ρ(zI) ̸= 0 for all zI which is true generically. ∂2ρ(zI) = 0 when zI coincides with another

interaction point. Since such cases are of measure 0 in the moduli space, we treat it as a limit of the generic

case, in which the interaction points zI (I = 1, · · · , N − 2) are all distinct.
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other singularities can be dealt with by the analytic continuation of the external momenta

pr. Thus we can define the integral in eq.(2.3) for such d and obtain the dimensionally

regularized amplitudes.

3. BRST Invariant Form of Amplitudes

In this section, we would like to show that the amplitude (2.3) can be recast into a BRST

invariant form using the superconformal field theory proposed in Ref. [1]. We basically

follow the procedure given in Refs. [11, 12, 9, 10]. In the subsequent calculations, we will

not care about the overall numerical factor.

We first note that from eq.(2.6) one can obtain the relation

e−
d−2
16

Γ[ln(∂ρ∂̄ρ̄)] = e−
d−10
16

Γ[ln(∂ρ∂̄ρ̄)]

∣∣∣∣∣
N∑
s=1

αsZs

∣∣∣∣∣
2

×
N∏
r=1

(
|αr|−1 e−Re N̄rr

00

)N−2∏
I=1

(
∂2ρ (zI) ∂̄

2ρ̄ (z̄I)
)− 1

4 . (3.1)

By using this relation, eq.(2.4) becomes

FN

(
TI , T̄I

)
∼ (2π)2 δ

(
N∑
r=1

p+r

)
δ

(
N∑
r=1

p−r

)
e−

d−10
16

Γ[ln(∂ρ∂̄ρ̄)]

∣∣∣∣∣
N∑
s=1

αsZs

∣∣∣∣∣
2

×

⟨
N−2∏
I=1

[(
∂2ρ (zI) ∂̄

2ρ̄ (z̄I)
)−1

TLC
F (zI) T̃

LC
F (z̄I)

] N∏
r=1

(
α−1
r V LC

r e−Re N̄rr
00

)⟩
.(3.2)

3.1 Ghosts

In order to obtain a BRST invariant form, we need to introduce the longitudinal variables

and the ghosts. Let us first consider the ghost fields b, c, β, γ and their anti-holomorphic

counterparts. The ghosts can be introduced [9] by multiplying FN by∫
[d(ghost)] e−Sgh lim

z→∞

(
1

|z|4
c(z)c̃(z̄)

)
×

N−2∏
I=1

[
b (zI) b̃ (z̄I) e

ϕ (zI) e
ϕ̃ (z̄I)

] N∏
r=1

[
c (Zr) c̃

(
Z̄r

)
e−ϕ (Zr) e

−ϕ̃
(
Z̄r

)]
, (3.3)

which is just a constant. Here Sgh denotes the worldsheet action for the ghost fields.

We have used a shorthand notation d(ghost) = dbdcdβdγdb̃dc̃dβ̃dγ̃, and bosonized βγ-

ghosts [13] as

β = e−ϕ∂ξ , γ = ηeϕ . (3.4)

3.2 Longitudinal variables

Next, let us consider the longitudinal variables X±, ψ±, ψ̃±, which are the component fields

of the superfields X± given as

X±(z, z̄) = X± + iθψ± + iθ̄ψ̃± + iθθ̄F± . (3.5)
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We can rewrite the correlation function on the right hand side of eq.(3.2) using the X±

CFT [1]. The X± CFT is a superconformal field theory of the longitudinal variables, with

the action

S± ≡ − 1

2π

∫
d2z

(
D̄X+DX− + D̄X−DX+

)
+
d− 10

8
Γsuper [Φ] . (3.6)

Here Γsuper [Φ] is the super Liouville action,

d− 10

8
Γsuper [Φ] = −d− 10

16π

∫
d2zD̄ΦDΦ , (3.7)

and Φ is the superfield given by

Φ (z, z̄) = ln
(
−4
(
DΘ+

)2
(z)
(
D̄Θ̄+

)2
(z̄)
)
,

Θ+ (z) =
DX+

(∂X+)
1
2

(z) . (3.8)

In this superconformal field theory, we have

∫ [
dX±dψ±dψ̃±

]
e−S± F

[
X+, ψ+, ψ̃+

] N∏
r=1

e−ip+r X− (
Zr, Z̄r

)
∼ e−

d−10
16

Γ[ln(∂ρ∂̄ρ̄)]F

[
− i

2
(ρ+ ρ̄) , 0, 0

]
, (3.9)

for any functional F
[
X+, ψ+, ψ̃+

]
of X+, ψ+, ψ̃+. This can be obtained from eq.(2.11) of

Ref. [1] by setting all the Grassmann odd coordinates of the external lines Θr (r = 1, . . . , N)

to be 0. By using eq.(3.9), we obtain

∫
[dX±dψ±dψ̃±]e−S±

N∏
r=1

[
V ′DDF
r

(
Zr, Z̄r

)
e

d−10
16

i

p+r
X+

(zI(r) , z̄I(r))

]

∼ (2π)2δ

(
N∑
r=1

p+r

)
δ

(
N∑
r=1

p−r

)
e−

d−10
16

Γ[ln(∂ρ∂̄ρ̄)]
N∏
r=1

(
α−1
r V LC

r e−Re N̄rr
00

)
. (3.10)

The vertex operator V ′DDF
r on the left hand side is defined as

V ′DDF
r

(
Zr, Z̄r

)
≡: V DDF

r e
− d−10

16
i

p+r
X+ (

Zr, Z̄r

)
: , (3.11)

and V DDF
r is the vertex operator for the DDF state which corresponds to V LC

r in eq.(B.21),

defined as

V DDF
r

(
Zr, Z̄r

)
≡ A

i1(r)
−n1

· · · Ãı̃1(r)
−ñ1

· · ·Bj1(r)
−s1 · · · B̃ ȷ̃1(r)

−s̃1
· · · e

ipirX
i−ip+r X−−i

(
p−r −Nr

p+r

)
X+ (

Zr, Z̄r

)
. (3.12)
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Here A
i(r)
−n and B

i(r)
−s denote the DDF operators given by

A
i(r)
−n ≡

∮
Zr

dz

2πi

(
i∂Xi +

n

p+r
ψiψ+

)
e
−i n

p+r
X+

L (z) ,

B
i(r)
−s ≡

∮
Zr

dz

2πi

(
ψi − ∂Xi ψ

+

∂X+
− 1

2
ψi ψ

+∂ψ+

(∂X+)2

)(
i∂X+

p+r

) 1
2

e
−i s

p+r
X+

L (z) , (3.13)

and Nr is the level number,

Nr ≡
∑
i

ni +
∑
j

sj =
∑
k

ñk +
∑
l

s̃l . (3.14)

The on-shell condition (B.14) implies that p−r is given as

p−r =
1

p+r

(
1

2
p⃗ 2
r +Nr −

d− 2

16

)
. (3.15)

We need some care to precisely define the operator e
d−10
16

i

p+r
X+

(zI(r) , z̄I(r)) in the path

integral (3.10) with the action S±. The argument zI(r) itself depends on αs, Zs and it is

influenced by the presence of other operators.2 Here we take the expression∮
z
I(r)

dz

2πi
DΦ(z)

∮
z̄
I(r)

dz̄

2πi
D̄Φ(z̄)e

d−10
16

i

p+r
X+

(z, z̄) . (3.16)

As the definition of this operator, this coincides with e
d−10
16

i

p+r
X+

(zI(r) , z̄I(r)) under the

identification X+ ∼ − i
2 (ρ+ ρ̄); ψ+, ψ̃+ ∼ 0, which can be done in the path integral of the

form on the left hand side of eq.(3.9).

We can introduce the longitudinal variables by substituting eqs.(3.10) and (3.16) into

eq.(3.2). With the ghost variables introduced above, and using the relation b
∂2ρ

(zI) =∮
zI

dz
2πi

b
∂ρ(z), we obtain

FN ∼
∫ [

dXdψdψ̃d(ghost)
]
e−S lim

z→∞

(
1

|z|4
c(z)c̃(z̄)

) ∣∣∣∣∣
N∑
r=1

αrZr

∣∣∣∣∣
2

×
N∏
r=1

[
ce−ϕc̃e−ϕ̃V ′DDF

r

(
Zr, Z̄r

) ∮
z
I(r)

dz

2πi
DΦ(z)

∮
z̄
I(r)

dz̄

2πi
D̄Φ(z̄)e

d−10
16

i

p+r
X+

(z, z̄)

]

×
N−2∏
I=1

[∮
zI

dz

2πi

b

∂ρ
(z)eϕTLC

F (zI)

∮
z̄I

dz̄

2πi

b̃

∂̄ρ̄
(z̄)eϕ̃T̃LC

F (z̄I)

]
, (3.17)

up to an overall constant factor, where

S = S± + SLC + Sgh . (3.18)

2In Ref. [10], we were not precise enough about this point. The operator e
d−26
24

i

p
+
r

X+

(zI(r) , z̄I(r)) which

appears in eq.(4.2) of Ref. [10] should have been defined as∮
z
I(r)

dz

2πi
∂ ln ∂X+(z)

∮
z̄
I(r)

dz̄

2πi
∂̄ ln ∂̄X+(z̄)e

d−26
24

i

p
+
r

X+

(z, z̄) .
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3.3 eϕTLC
F (zI) and the picture changing operator

FN is now expressed by the worldsheet theory with the action S given in eq.(3.18). As was

shown in Ref. [1], this system possesses a nilpotent BRST charge, which can be written

using the superfields as

QB =

∮
dz

2πi

[
−C (TX± + TLC)− C(DC)(DB) +

3

4
(DC)2B

]
+ c.c. , (3.19)

where C(z) and B(z) are the ghost and the anti-ghost superfields, TLC(z) = TLC
F + θTLC

B

denotes the transverse super energy-momentum tensor, and TX±(z) is the super energy-

momentum tensor of the X± CFT defined as

TX±(z) ≡ 1

2
DX+∂X− +

1

2
DX−∂X+ − d− 10

4
S
(
z,X+

L

)
,

S
(
z,X+

L

)
≡ D4Θ+

DΘ+
− 2

D3Θ+D2Θ+

(DΘ+)2
. (3.20)

From QB, the picture changing operator X is obtained as

X(z) ≡ {QB , ξ(z)} = c∂ξ(z)− eϕTF (z)+
1

4
∂bηe2ϕ(z)+

1

4
b
(
2∂ηe2ϕ + η∂e2ϕ

)
(z) , (3.21)

where TF is the supercurrent of the matter sector, namely the lower component of TX± +

TLC, given by

TF (z) ≡ TLC
F (z) +

i

2

(
∂X+ψ− + ∂X−ψ+

)
(z)

− d− 10

4
i

[(
5
(
∂2X+

)2
4 (∂X+)3

− ∂3X+

2 (∂X+)2

)
ψ+

− 2∂2X+

(∂X+)2
∂ψ+ +

∂2ψ+

∂X+
− ψ+∂ψ+∂2ψ+

2 (∂X+)3

]
(z) . (3.22)

In the correlation functions of the X± CFT with the insertion
∏N

r=1 e
−ip+r X−

(Zr, Z̄r), the

variables X−, ψ−, ψ̃− may have poles at the interaction points zI , even if no operators are

there. However, the supercurrent TF and thus the picture changing operator X are regular

at zI , when no operators are inserted there [1].

As a final step to recast the amplitude AN in eq.(2.3) into a BRST invariant form, in

the following we will show that the insertion eϕTLC
F (zI) in the path integral (3.17) can be

replaced by the picture changing operator X(zI) and thus

FN ∼
∫ [

dXdψdψ̃d(ghost)
]
e−S lim

z→∞

(
1

|z|4
c(z)c̃(z̄)

) ∣∣∣∣∣
N∑
r=1

αrZr

∣∣∣∣∣
2

×
N∏
r=1

[
ce−ϕc̃e−ϕ̃V ′DDF

r

(
Zr, Z̄r

) ∮
z
I(r)

dz

2πi
DΦ(z)

∮
z̄
I(r)

dz̄

2πi
D̄Φ(z̄)e

d−10
16

i

p+r
X+

(z, z̄)

]

×
N−2∏
I=1

[∮
zI

dz

2πi

b

∂ρ
(z)X(zI)

∮
z̄I

dz̄

2πi

b̃

∂̄ρ̄
(z̄)X̃(z̄I)

]
. (3.23)
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We would like to show this by proving that the right hand side is equal to that of eq.(3.17).

Let us introduce a nilpotent fermionic charge Q [9] as

Q ≡
∮

dz

2πi
∂ρ

[
c

(
i∂X+ − 1

2
∂ρ

)
+

1

2
ηeϕψ+

]
(z) . (3.24)

One can show∮
zI

dz

2πi

b

∂ρ
(z)X(zI)

= −
∮
zI

dz

2πi

b

∂ρ
(z)eϕTLC

F (zI) +

[
Q ,

∮
zI ,w

dz

2πi

b

∂ρ
(z)

∮
zI

dw

2πi

O(w)eϕ(zI)

w − zI

]
+

∮
zI ,w

dz

2πi

b

∂ρ
(z)

∮
zI

dw

2πi

1

w − zI

1

2

(
1− i∂2X+

∂2ρ
(w)

)
∂ρψ−(w)eϕ(zI) , (3.25)

where

O ≡ i

∂ρ
∂X−e−ϕ∂ξ +

1

2∂2ρ
∂bψ−

− d− 10

4
i

[(
5(∂2X+)2

4(∂X+)3
− ∂3X+

(∂X+)2

)
2e−ϕ∂ξ

∂ρ
− 2∂2X+

(∂X+)2
∂

(
2e−ϕ∂ξ

∂ρ

)
+

1

∂X+
∂2
(
2e−ϕ∂ξ

∂ρ

)
− 2e−ϕ∂ξ

∂ρ

∂ψ+∂2ψ+

2(∂X+)3

]
. (3.26)

Using the relations{
Q ,

∮
zI

dz

2πi

b

∂ρ

}
=
[
Q , eϕTLC

F (zI)
]
= 0 ,[

Q ,

∮
zI

dw

2πi

1

w − zI

(
1− i∂2X+

∂2ρ
(w)

)
∂ρψ−(w)eϕ(zI)

]
= 0 , (3.27)

one can easily find that Q (anti)commutes with all the insertions in the path integral (3.23).

The second term on the right hand side of eq.(3.25), which is Q-exact, is therefore irrelevant

in the path integral (3.23).

Hence the right hand side of eq.(3.23) becomes

∫ [
dXdψdψ̃d(ghost)

]
e−S lim

z→∞

(
1

|z|4
c(z)c̃(z̄)

) ∣∣∣∣∣
N∑
r=1

αrZr

∣∣∣∣∣
2

×
N∏
r=1

[
ce−ϕc̃e−ϕ̃V ′DDF

r

(
Zr, Z̄r

) ∮
z
I(r)

dz

2πi
DΦ(z)

∮
z̄
I(r)

dz̄

2πi
D̄Φ(z̄)e

d−10
16

i

p+r
X+

(z, z̄)

]

×
N−2∏
I=1

[∮
zI

dz

2πi

b

∂ρ
(z)eϕ

[
TLC
F +R

]
(zI)

∮
z̄I

dz̄

2πi

b̃

∂̄ρ̄
(z̄)eϕ̃

[
T̃LC
F + R̃

]
(z̄I)

]
, (3.28)

where

R (zI) ≡
∮
zI

dw

2πi

1

w − zI

1

2

(
1− i∂2X+

∂2ρ
(w)

)
∂ρψ−(w) . (3.29)
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Since ∂ρ (zI) = 0, the contour integral on the right hand side of eq.(3.29) is nonvanishing

only when ψ− (w) is singular at w = zI . By examining the singularities of the correlation

functions of ψ− carefully, one can show that R (zI) and R̃ (z̄I) do not contribute to the

correlation function. Since the proof is rather long, we present it in appendix C. Using

this fact, the right hand side of eq.(3.23) coincides with that of eq.(3.17) and eq.(3.23) is

proved.

Thus the amplitude AN is given by substituting eq.(3.23) into eq.(2.3). By deform-

ing the contours of the integrals
∮
zI

dz
2πi

b
∂ρ(z), we eventually obtain the supersymmetrized

version of the expression in Ref. [10]:

AN ∼
∫ [

dXdψdψ̃d(ghost)
]
e−S

×
∫ N−3∏

I=1

d2TI

(
N−3∏
I=1

[∮
CI

dz

2πi

b

∂ρ
(z)

∮
CI

dz̄

2πi

b̃

∂̄ρ̄
(z̄)

]
N∏
r=1

[
cc̃e−ϕ−ϕ̃V ′DDF

r

(
Zr, Z̄r

)]
×

N∏
r=1

∮
z
I(r)

dz

2πi
DΦ(z)

∮
z̄
I(r)

dz̄

2πi
D̄Φ(z̄)e

d−10
16

i

p+r
X+

(z, z̄)

×
N−2∏
I=1

[
X(zI)X̃(z̄I)

])
, (3.30)

where the integration contour CI lies around the I-th internal propagator (I = 1, . . . , N−3)

of the light-cone diagram for N strings as depicted in Fig. 1 (a).

3.4 BRST invariance

In the following, we will show the BRST invariance of the form of the amplitude in eq.(3.30).

First, we show that all the insertions other than
∏N−3

I=1

[∮
CI

dz
2πi

b
∂ρ(z)

∮
CI

dz̄
2πi

b̃
∂̄ρ̄
(z̄)
]
in

the path integral (3.30) are BRST invariant. By using the fact that the superfields Θ+ (z)

and e
d−10
16

i

p+r
X+

(z, z̄) are primary fields of weight 0, one can easily show that the OPE

between TX±(z) and the operator (3.16) is regular. Therefore the operator (3.16) is BRST

invariant. V ′DDF
r can be considered as the vertex operator (3.12) for the DDF state with

modified momentum

p′−r = p−r +
d− 10

16

1

p+r
, (3.31)

and it is a primary field of weight (12 ,
1
2). Hence cc̃e−ϕ−ϕ̃V ′DDF

r

(
Zr, Z̄r

)
is BRST invariant.

Finally, because of eq.(3.21), it is obvious that X(z) is BRST invariant.

Next, we consider the remaining insertion
∮
CI

dz
2πi

b
∂ρ(z). It satisfies the relation,{

QB ,

∮
CI

dz

2πi

b

∂ρ
(z)

}
=

∮
CI

dz

2πi

T total
B

∂ρ
(z) , (3.32)

where T total
B (z) is the energy-momentum tensor of the total system. Since the insertion

(3.32) yields the total derivative with respect to TI , the amplitude AN in eq.(3.30) turns

out to be BRST invariant if the surface terms vanish. The surface terms correspond to
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the limits zI → zJ and Zr → Zs. We note that Zr → zI only when Zr → Zs for some

s. By setting d to be a sufficiently large negative value, we can make the surface terms

corresponding to the limit zI → zJ vanishing, as explained in section 2. The limit Zr → Zs

can be dealt with by choosing the external momenta appropriately. Therefore, with large

negative d and appropriately chosen external momenta pµr , the surface terms are vanishing.

BRST invariant amplitudes can be defined by analytically continuing pµr .

4. Amplitudes for d = 10

Using the BRST invariant form thus obtained, let us examine if we can obtain the results

of the first quantized formalism in the limit d → 10. Using the standard argument [13],

one can change the positions of the picture changing operators X(z). By moving them

to Zr (r = 3, . . . , N) and then deforming the contours of the integrals
∮
CI

dz
2πi

b
∂ρ(z) as in

Ref. [10], we obtain the expression

AN ∼
∫ [

dXdψdψ̃d(ghost)
]
e−S

∏
s=1,2

[
cc̃e−ϕ−ϕ̃V ′DDF

s

(
Zs, Z̄s

)]
cc̃V

′(0)DDF
3 (Z3, Z̄3)

×
∫ N∏

s=4

d2Zs

(
N∏
r=4

V ′(0)DDF
r (Zr, Z̄r)

×
N∏
r=1

∮
z
I(r)

dz

2πi
DΦ(z)

∮
z̄
I(r)

dz̄

2πi
D̄Φ(z̄)e

d−10
16

i

p+r
X+

(z, z̄)

)
, (4.1)

where the vertex operator V
′(0)DDF
r (Zr, Z̄r) is defined as

V ′(0)DDF
r (Zr, Z̄r) ≡

{
G− 1

2
,
[
G̃− 1

2
, V ′DDF

r (Zr, Z̄r)
]}

, (4.2)

and

G− 1
2
≡
∮

dz

2πi
TF (z) , G̃− 1

2
≡
∮

dz̄

2πi
T̃F (z̄) . (4.3)

Total derivative terms with respect to the moduli parameters TI arise in rearranging AN

into the above form. However, they vanish with d largely negative and the external mo-

menta pµr appropriately chosen, as explained above. We define the amplitudes for such d

and analytically continue it to d = 10. In the form of the amplitude given in eq.(4.1),

the divergences corresponding to the limit zI → zJ are no longer there for any value of d.

Therefore we can take the limit d→ 10 in this expression, and it coincides with the result

of the first quantized theory,

AN ∼
∫ [

dXdψdψ̃d(ghost)
]
e−Sd=10

×
∏
s=1,2

[
cc̃e−ϕ−ϕ̃V DDF

s (Zs, Z̄s)
]
cc̃V

(0)DDF
3 (Z3, Z̄3)

N∏
r=4

∫
d2ZrV

(0)DDF
r (Zr, Z̄r) ,(4.4)

where Sd=10 denotes the worldsheet action of the d = 10 dimensional NSR superstring with

the ghosts, which is obtained from S in eq.(3.18) by setting d = 10.
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5. Conclusions and Discussions

In this paper, we have formulated a dimensional regularization scheme to deal with the

divergences in the light-cone gauge closed string field theory for NSR superstrings. Starting

from the action (2.1), we have obtained the tree level amplitudes with (NS,NS) external

lines, which can be recast into a BRST invariant form using the superconformal field

theory proposed in Ref. [1]. We have shown that the results coincide with those of the first

quantized formulation without introducing any contact term interactions.

There are several things which remain to be done to show that our scheme really

works. One thing is to include the Ramond sector fields. Another is to examine how to

apply our dimensional regularization to the multi-loop amplitudes. In dealing with the

ultraviolet divergences in the loop amplitudes, the way to take the number of the Ramond

sector ground states for d ̸= 10 will be important. We may have to take something like

the dimensional reduction scheme in supersymmetric field theory. We hope that we come

back to these problems elsewhere.
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A. Action of Light-cone Gauge String Field Theory for d ̸= 10

In this appendix, we explain the details of the action (2.1) defined for d ̸= 10.

We represent the string field |Φ(t)⟩ by a Fock state for the non-zero modes and a wave

function for the zero-modes (t, α, p⃗), where α = 2p+ is the string-length parameter and

p⃗ is the transverse (d − 2)-momentum. The integration measure dr for the momentum

zero-modes of the r-th string is defined as

dr =
αrdαr

4π

dd−2pr

(2π)d−2
. (A.1)

The string field |Φ(t)⟩ is taken to be GSO even and satisfy the level matching condition:

PGSO|Φ(t)⟩ = |Φ(t)⟩ ,
∫ 2π

0

dθ

2π
e−iθ(LLC

0 −L̃LC
0 )|Φ(t)⟩ = |Φ(t)⟩ , (A.2)

as well as the reality condition, where LLC
0 denotes the zero-mode of the transverse Virasoro

generator.

In the action (2.1), g is the coupling constant. ⟨R (1, 2)| is the reflector given by

⟨R (1, 2)| = 1

α1
δ (1, 2) 12 ⟨0| eE(1,2) , 12⟨0| = 2⟨0|1⟨0| ,
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E (1, 2) = −
∞∑
n=1

1

n

(
αi(1)
n αi(2)

n + α̃i(1)
n α̃i(2)

n

)
+ i
∑
r>0

(
ψi(1)
r ψi(2)

r + ψ̃i(1)
r ψ̃i(2)

r

)
,

δ (1, 2) = 4πδ (α1 + α2) (2π)
d−2 δ (p1 + p2) . (A.3)

⟨V3 (1, 2, 3)| denotes the three-string interaction vertex defined as

⟨V3 (1, 2, 3)| = 4πδ

(
3∑

r=1

αr

)
(2π)d−2 δd−2

(
3∑

r=1

pr

)⟨
V LPP
3 (1, 2, 3)

∣∣P123 e
−Γ[3](1,2,3) ,

e−Γ[3](1,2,3) = sgn (α1α2α3)

∣∣∣∣∣e−2τ̂0
∑

r
1
αr

α1α2α3

∣∣∣∣∣
d−2
16

, τ̂0 =

3∑
r=1

αr ln |αr| , (A.4)

where
⟨
V LPP
3 (1, 2, 3)

∣∣ is the LPP vertex [14]. By the definition of the LPP vertex, for local

operators Oi (ρi, ρ̄i) on the light-cone diagram,∫
dd−2p1
(2π)d−2

dd−2p2
(2π)d−2

dd−2p3
(2π)d−2

(2π)d−2δd−2

(
3∑

r=1

pr

)

×
⟨
V LPP
3 (1, 2, 3)

∣∣O1 (ρ1, ρ̄1) · · · On (ρn, ρ̄n)
3∏

r=1

(
|0⟩r(2π)d−2δd−2(pr)

)
=

⟨
O1 (ρ (z1) , ρ̄ (z̄1)) · · · On (ρ (zn) , ρ̄ (z̄n))

⟩
, (A.5)

where ρ(z) is the Mandelstam mapping (2.2) with N = 3, and ⟨O⟩ is given in eq.(2.5). The

prefactor P123 in the three-string vertex is defined to satisfy∫
dd−2p1
(2π)d−2

dd−2p2
(2π)d−2

dd−2p3
(2π)d−2

(2π)d−2δd−2

(
3∑

r=1

pr

)

×
⟨
V LPP
3 (1, 2, 3)

∣∣P123O1 (ρ1, ρ̄1) · · · On (ρn, ρ̄n)

3∏
r=1

(
|0⟩r(2π)d−2δd−2(pr)

)
=
(
∂2ρ (z0) ∂̄

2ρ̄ (z̄0)
)− 3

4

⟨
TLC
F (z0) T̃

LC
F (z̄0)O1 (ρ (z1) , ρ̄ (z̄1)) · · · On (ρ (zn) , ρ̄ (z̄n))

⟩
.(A.6)

z0 here denotes the z coordinate of the interaction point which satisfies ∂ρ (z0) = 0.

B. Amplitudes

In this appendix, we calculate the tree level amplitudes perturbatively starting from the

action (2.1). Here we calculate four-string amplitude explicitly as an example. It is straight-

forward to generalize the results to N -string case.

Propagator and vertex. It is convenient to introduce a basis {|n⟩} of the projected

Fock space for the non-zero modes which satisfies⟨
n|n′

⟩
= δn,n′ , 12 ⟨0| eE(1,2) |n⟩1 = 2 ⟨n| , (B.1)
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so that |Φ⟩ can be expanded as

|Φ(t)⟩ =
∑
n

ϕn (t, α, p⃗) |n⟩ , (B.2)

and (
LLC
0 + L̃LC

0 − d− 2

8

)
|Φ(t)⟩ =

∑
n

(
p⃗ 2 +m2

n

)
ϕn (t, α, p⃗) |n⟩ . (B.3)

ϕn corresponds to a particle in the spectrum of the string andmn is the mass of the particle.

The kinetic term of the action (2.1) can be rewritten as

1

2

∫
dt

∫
d1d2 ⟨R (1, 2) |Φ(t)⟩1

(
i
∂

∂t
−
L
LC(2)
0 + L̃

LC(2)
0 − d−2

8

α2

)
|Φ(t)⟩2

=

∫
ddp

(2π)d

∑
n

ϕ̃n(−p)
[
−1

2

(
p2 +m2

n

)]
ϕ̃n(p) , (B.4)

where

ϕ̃n(p) ≡
∫
dt eip

−tϕn(t, α, p⃗) . (B.5)

Then we obtain the propagator

ϕ̃n (p)ϕ̃n′
(
p′
)
= δn,n′ (2π)d δd

(
p+ p′

) −i
p2 +m2

n

. (B.6)

In terms of the string field
∣∣∣Φ̃(p−)⟩, defined as

∣∣∣Φ̃ (p−)⟩ ≡
∫
dt eip

−t |Φ(t)⟩ =
∑
n

ϕ̃n(p)|n⟩ , (B.7)

the propagator becomes∣∣∣Φ̃(p−1 )⟩
1

∣∣∣Φ̃2

(
p−2
)⟩

2

= (2π)d δd (p1 + p2)
∑
n

−i
p21 +m2

n

|n⟩1 |n⟩2

= −i (2π)d δd (p1 + p2)
1

|α1|
∑
n

∫ ∞

0
dT e

− T
|α1|

(p21+m2
n) |n⟩1 |n⟩2

=
1

α1
(2π)d δd (p1 + p2)

∫
d2T
4π

e
− T

|α1|

(
L
LC(1)
0 − d−2

16

)
− T̄

|α1|

(
L̃
LC(1)
0 − d−2

16

)

× e
α1
|α1|

p−1 T 1

α1
P(1)
GSOP

(2)
GSO e

E†(1,2) |0⟩12 , (B.8)

where

T ≡ T + i |α1| θ ,∫
d2T
4π

≡ −i |α1|
∫ ∞

0
dT

∫ 2π

0

dθ

2π
. (B.9)
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The Schwinger parameter T will become a complex moduli parameter of the amplitudes.

Another useful form of the propagator is

ϕ̃n (p)
∣∣∣Φ̃ (p′)⟩ = (2π)d δd

(
p+ p′

) −i
p2 +m2

n

|n⟩ . (B.10)

In terms of |Φ̃ (p−)⟩, the three-string interaction term can be written as∫
dt

∫
d1d2d3 ⟨V3 (1, 2, 3) |Φ(t)⟩1 |Φ(t)⟩2 |Φ(t)⟩3

=

∫ 3∏
r=1

(
ddpr

(2π)d
αr

)
(2π)d δd

(
3∑

r=1

pr

)
e−Γ[3](1,2,3)

×
⟨
V LPP
3 (1, 2, 3)

∣∣P123

∣∣∣Φ̃ (p−1 )⟩
1

∣∣∣Φ̃ (p−2 )⟩
2

∣∣∣Φ̃ (p−3 )⟩
3
. (B.11)

Four-string amplitudes. The four-string amplitudes A4 can be calculated from the

correlation functions of the string field theory,⟨⟨
ϕ̃n1(p1) ϕ̃n2(p2) ϕ̃n3(p3) ϕ̃n4(p4)

⟩⟩
, (B.12)

which can be calculated perturbatively by using the three-string vertex in eq.(B.11). Here

⟨⟨· · ·⟩⟩ denotes the expectation value in the string field theory. The tree level contribution

becomes

(4ig)2 (2π)d δd

(
4∑

r=1

pr

)
4∏

r=1

(
−i

p2r +m2
nr

αr

)
×
[
−
∫
d2T
4π

⟨
V LPP
3 (1, 2, 5)

∣∣ ⟨V LPP
3 (3, 4, 6)

∣∣P125P346

× e
− T

|α5|

(
L
LC(5)
0 − d−2

16

)
− T̄

|α5|

(
L̃
LC(5)
0 − d−2

16

)
e

α5
|α5|

p−5 T

× P(5)
GSOP

(6)
GSO e

E†(5,6) |0⟩56 |n1⟩1 |n2⟩2 |n3⟩3 |n4⟩4 e
−Γ[3](1,2,5)e−Γ[3](3,4,6)

+ other channels

]
. (B.13)

The amplitudes A4 can be obtained from the correlation functions by amputating the

external legs and putting pr on the mass shell:

0 = p2r +m2
nr

= − 2p+r p
−
r + p⃗ 2

r +m2
nr
. (B.14)

At the tree level it can therefore be written as

A4 = (4ig)2
[∫

d2T
4π

F4

(
T , T̄

)
+ other channels

]
, (B.15)

where

F4

(
T , T̄

)
≡ − (2π)d δd

(
4∑

r=1

pr

)(
4∏

r=1

αr

)
e−Γ[3](1,2,5)e−Γ[3](3,4,6)
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×
⟨
V LPP
3 (1, 2, 5)

∣∣ ⟨V LPP
3 (3, 4, 6)

∣∣P125P346

×e−
T

|α5|

(
L
LC(5)
0 − d−2

16

)
− T̄

|α5|

(
L̃
LC(5)
0 − d−2

16

)
e

α5
|α5|

p−5 T

×eE†(5,6) |0⟩56 |n1⟩1 |n2⟩2 |n3⟩3 |n4⟩4 . (B.16)

The integrand F4

(
T , T̄

)
corresponds to a light-cone diagram for the four-string amplitude.

The light-cone diagram can be mapped to the complex z-plane by the Mandelstam mapping

ρ(z) in eq.(2.2) with N = 4. For later use, for each of the regions z ∼ Zr (r = 1, . . . , 4) to

which the external lines are mapped by the Mandelstam mapping ρ(z), we introduce the

local coordinate wr defined as

wr ≡ exp

[
1

αr

(
ρ− τ

(r)
0 − iβr

)]
. (B.17)

Here τ
(r)
0 + iβr are given in eq.(2.7). The Schwinger parameter T is expressed as the

difference between the ρ (zI)’s. It is easy to see

α5

|α5|
p−5 T = −

4∑
r=1

p−r τ
(r)
0 . (B.18)

Via the Mandelstam mapping, F
(
T , T̄

)
can be expressed in terms of the correlation func-

tions of the worldsheet theory on the complex z-plane as

F4

(
T , T̄

)
= (2π)2 δ

(
4∑

r=1

p+r

)
δ

(
4∑

r=1

p−r

)
e−Γ[4](1,2,3,4)

×

⟨ ∏
I=1,2

[(
∂2ρ (zI) ∂̄

2ρ̄ (z̄I)
)− 3

4 TLC
F (zI) T̃

LC
F (z̄I)

] 4∏
r=1

V LC
r

⟩
, (B.19)

where

e−Γ[4](1,2,3,4) = −e−Γ[3](1,2,5)e−Γ[3](3,4,6)
⟨
V LPP
3 (1, 2, 5)

∣∣ ⟨V LPP
3 (3, 4, 6)

∣∣
× e

− T
|α5|

(
L
LC(5)
0 − d−2

16

)
− T̄

|α5|

(
L̃
LC(5)
0 − d−2

16

)
eE

†(5,6) |0⟩56 |0⟩1 |0⟩2 |0⟩3 |0⟩4 ,(B.20)

and the vertex operator V LC
r is defined as

V LC
r = αr

i∂n1Xi1 (wr)

(n1 − 1)!
· · · i∂̄

ñ1X ı̃1 (w̄r)

(ñ1 − 1)!
· · · ∂

s1− 1
2ψj1 (wr)(
s1 − 1

2

)
!

· · · ∂̄
s̃1− 1

2 ψ̃ȷ̃1 (w̄r)(
s̃1 − 1

2

)
!

· · ·

×eipirXi
(wr, w̄r)

∣∣∣
wr=w̄r=0

e−p−r τ
(r)
0 , (B.21)

corresponding to the state whose non-zero mode part is |nr⟩r, namely

|nr⟩r = α
i1(r)
−n1

· · · α̃ı̃1(r)
−ñ1

· · ·ψj1(r)
−s1 · · · ψ̃ȷ̃1(r)

−s̃1
· · · |0⟩r , (B.22)

up to a normalization constant. e−Γ[4](1,2,3,4) is the partition function for the four-string

light-cone diagram and should behave as

e−Γ[4](1,2,3,4) ∼ −e−Γ[3](1,2,5)e−Γ[3](3,4,6)e
d−2
8

T
|α5| (B.23)
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for T = Re T → ∞. From these properties, one can show that

e−Γ[4](1,2,3,4) = sgn (α1α2α3α4) e
− d−2

16
Γ[ln(∂ρ∂̄ρ̄)] , (B.24)

where Γ
[
ln
(
∂ρ∂̄ρ̄

)]
is given in eq.(2.6) with N = 4.

One of the most important properties of F4

(
T , T̄

)
is that the integrands in the other

channels are obtained by analytically continuing T . In order to show this property, we

should prove that F4(T , T̄ ) in eq.(B.19) is independent of zI(r) , because the identification

of zI(r) depends on the channel as explained below eq.(2.7). Using the fact that V LC
r in

eq.(B.21) can be rewritten as

V LC
r =

∣∣∣∣∂wr

∂z
(Zr)

∣∣∣∣−(p⃗2r+2Nr)
V LC
r (Zr, Z̄r) = e(

d−2
8

+2p+r p−r )Re N̄rr
00V LC

r (Zr, Z̄r) , (B.25)

where V LC
r (Zr, Z̄r) is the primary field corresponding to V LC

r on the z-plane, it is easy

to see that F4

(
T , T̄

)
is independent of zI(r) if all the external lines are on shell, and

thus depends only on the shape of the diagram. Since Γ[4] given in eq.(B.24) satisfies the

factorization property in eq.(B.23) for any channels, one can conclude that the expression

(B.19) is valid for any channels, and thus the integrands in various channels are related by

analytic continuation. Therefore eq.(B.15) can be rewritten as

A4 = (4ig)2
∫
d2T
4π

F4

(
T , T̄

)
, (B.26)

where now the integration region is taken to cover the whole moduli space. Hence, with the

action (2.1), the amplitude can be expressed as an integral over the whole moduli space,

even in d ̸= 10 dimensional spacetime. What is essential is the choice of e−Γ[3](1,2,3).

It is straightforward to generalize the above procedure to show that N -string tree level

amplitudes can be expressed as eqs.(2.3) and (2.4).

C. Correlation Functions of ψ−

In this appendix, extracting the X± CFT part of the path integral (3.28), we will prove

that the terms of the form∫
[dX±dψ±dψ̃±]e−S±

n∏
i=1

R (zIi)
ñ∏

j=1

R̃
(
z̄Ij
)

×
N∏
r=1

[
e−ip+r X−

(Zr, Z̄r)

∮
z
I(r)

dz

2πi
DΦ(z)

∮
z̄
I(r)

dz̄

2πi
D̄Φ(z̄)e

d−10
16

i

p+r
X+

(z, z̄)

]
, (C.1)

vanish for any n and ñ with 1 ≤ n, ñ ≤ N − 2, and for an arbitrary set of n (ñ) distinct

interaction points zIi (i = 1, . . . , n) (z̄Ij (j = 1, . . . , ñ)) chosen out ofN−2 zI ’s (z̄I ’s). Using

this fact, one can easily show that R (zI) and R̃ (z̄I) do not contribute to the correlation

function (3.29) and the right hand side of eq.(3.23) coincides with that of eq.(3.17).
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Since X− appears only in S± and e−ip+r X−
(Zr, Z̄r), one can see that X+ in eq.(C.1) can

be replaced by its expectation value − i
2 (ρ+ ρ̄). The insertions at zI(r) can be transformed

as ∮
z
I(r)

dz

2πi
DΦ(z)

∮
z̄
I(r)

dz̄

2πi
D̄Φ(z̄)e

d−10
16

i

p+r
X+

(z, z̄)

∼ (1 +K)
(
1 + K̃

)
e

d−10
16

1

2p+r
(ρ+ρ̄)

(zI(r) , z̄I(r)) , (C.2)

where K (K̃) consists of terms which involve derivatives of ψ+ (ψ̃+). Therefore what we

should show is∫
[dX±dψ±dψ̃±]e−S±

n∏
i=1

∮
zIi

dwi

2πi

∂ρψ−(wi)

wi − zIi

ñ∏
j=1

∮
z̄Ij

dūj
2πi

∂̄ρ̄ψ̃−(ūj)

ūj − z̄Ij

×
N∏
r=1

[
e−ip+r X−

(Zr, Z̄r) (1 +K(zI(r)))
(
1 + K̃(z̄I(r))

)]
= 0 . (C.3)

Since ∂ρ (wi) = 0 at wi = zIi , the contour integral with respect to wi is nonvanishing

only when ψ− (wi) has a singularity at wi = zIi . Here let us direct our attention to the

variable w1 and examine the singularities at w1 = zI1 , using the properties of the correlation

functions in the X± CFT [1]. Some of such singularities can come from the contraction of

ψ− (w1) with a derivative of ψ+ contained in K(zI(r)) such that zI(r) = zI1 . However, since

K consists of even number of ψ+, such a term necessarily involves another contraction

of ∂k−1ψ+ (zI1) (k ≥ 1) and ψ− (wi) (i ̸= 1), which is proportional to (wi − zI1)
−k. Then

the contour integral of it over wi around zIi( ̸= zI1) vanishes. Therefore such contractions

do not contribute to the path integral in eq.(C.3). The same arguments hold for the

anti-holomorphic part.

Therefore we can ignore K and K̃ in eq.(C.3) and what we should show becomes∫
[dX±dψ±dψ̃±]e−S±

N∏
r=1

e−ip+r X−
(Zr, Z̄r)

n∏
i=1

∮
zIi

dwi

2πi

∂ρψ−(wi)

wi − zIi

ñ∏
j=1

∮
z̄Ij

dūj
2πi

∂̄ρ̄ψ̃−(ūj)

ūj − z̄Ij
= 0 .

(C.4)

Now the problem is to examine the singularity of the correlation function∫
[dX±dψ±dψ̃±]e−S±

N∏
r=1

e−ip+r X−
(Zr, Z̄r)

n∏
i=1

ψ−(wi) , (C.5)

as a function of wi. One can see that the contour integrals over wi (i = 1, · · · , n) in eq.(C.4)

yield a nonvanishing result, only if the correlation function (C.5) behaves as∫
[dX±dψ±dψ̃±]e−S±ψ−(w1) · · ·ψ−(wn)

N∏
r=1

e−ip+r X−
(Zr, Z̄r)

∼ (w1 − zI1)
−m1 (w2 − zI2)

−m2 · · · (wn − zIn)
−mn , (C.6)
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for (w1, w2, · · · , wn) ∼ (zI1 , zI2 , · · · , zIn), where mi (i = 1, · · · , n) are positive integers. Here

zIi should be all distinct in order to contribute to the correlation function (C.1). In the

following, we would like to show that the correlation functions of ψ− cannot have the

singularities of the form (C.6) satisfying such conditions.

In the following analysis, it is convenient to introduce [1]

⟨
F [X+,X−]

⟩
ρ
≡
∫
[dX±]e−S±F [X+,X−]

∏N
r=1 e

−ip+r X−
(Zr, Z̄r)∫

[dX±]e−S±
∏N

r=1 e
−ip+r X−(Zr, Z̄r)

. (C.7)

Here Zr = (Zr,Θr) and the subscript ρ on the left hand side stands for the super Mandel-

stam mapping ρ(z) =
∑N

r=1 αr ln(z− Zr). Using this notation, the correlation function in

eq.(C.6) is proportional to

⟨
DX−(w1) · · ·DX−(wn)

⟩
ρ

∣∣∣
θi=Θr=0

, (C.8)

where wi = (wi, θi). As explained in Ref. [1], one can evaluate eq.(C.8) starting from the

one point function ⟨DX−(w1)⟩ρ. In order to do so, we introduce the super Mandelstam

mapping ρm defined as

ρm(z) =

m∑
i=2

α−i (ln(z−wi)− ln(z−w−i)) + ρ(z) . (C.9)

One can find that the correlation function (C.8) can be expressed as a sum of the products

of the connected ones like

m∏
i=2

(
2i∂α−iDwi

) ⟨
DX−(w1)

⟩
ρm

∣∣∣∣∣
α−i=θi=θ1=Θr=0

, (C.10)

with m ≤ n, as the correlation functions are expressed in terms of the connected ones

in the usual field theory. It is therefore sufficient to prove that the connected correlation

function (C.10) has no singularities of the form (C.6) satisfying the conditions mentioned

below eq.(C.6).

The explicit form of ⟨DX−(w1)⟩ρm can be obtained from eq.(4.1) of Ref. [1] by replacing

ρ with ρm. The super Mandelstam mapping ρm possesses N + 2m− 4 interaction points.

In the limit α−i → 0 for all i, 2m− 2 of them tend to wi,w−i (i = 2, . . . ,m) and the rest

tend to the interaction points of ρ. Let z̃
[m]
I denote the interaction point which goes to the

interaction point z̃I of ρ (I = 1, . . . , N − 2), in the limit.

Let us consider the terms in eq.(C.10) that have poles at w1 = zI1 , which are relevant for

us. These terms originate from the terms in ⟨DX−(w1)⟩ρm that have poles at w1 = z̃
[m]
I1

.

The residues of such poles are rational functions of Dρm(z̃
[m]
I1

), ∂2ρm(z̃
[m]
I1

) and higher

covariant derivatives of ρm(z) at z = z̃
[m]
I1

, with only powers of ∂2ρm in the denominators.

(See eqs.(4.1) and (B.3) in Ref. [1].) Let us apply
∏m

i=2

(
∂α−iDwi

)
to such terms. The

differentiation of z̃
[m]
I1

can be expressed by a rational function of the terms of the form
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(∏
∂α−i

)
Dlρm(z̃

[m]
I1

) with l ≥ 1. Therefore the results can be given by the terms of the

form (
1

(w1 − z̃
[m]
I1

)k
or

θ1 − θ̃
[m]
I1

(w1 − z̃
[m]
I1

)k

)
×
(
rational function of

(∏
∂α−i

)
Dlρm(z̃

[m]
I1

)
)
, (C.11)

with only powers of ∂2ρm in the denominators. By taking α−i = θi = θ1 = Θr = 0, such

terms can have singularities only at wi = zI1 as a function of wi. Namely, the correlation

function of ψ− can have singularities of the form (C.6), but there should be i (i ̸= 1) such

that zIi = zI1 . Since such singularities do not satisfy the conditions mentioned below

eq.(C.6), they cannot contribute to the correlation function (C.1). Thus we have shown

that eq.(C.4) holds.
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