
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machine Learning Based Wavelength Modulation Spectroscopy
for Rapid Gas Sensing

Citation for published version:
Zhang, W, Zhang, R, Fu, Y, Enemali, G, Si, J & Liu, C 2021, Machine Learning Based Wavelength
Modulation Spectroscopy for Rapid Gas Sensing. in 2021 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC). IEEE, IEEE International Instrumentation and
Measurement Technology Conference, 17/05/21. https://doi.org/10.1109/I2MTC50364.2021.9459850

Digital Object Identifier (DOI):
10.1109/I2MTC50364.2021.9459850

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. May. 2023

https://doi.org/10.1109/I2MTC50364.2021.9459850
https://doi.org/10.1109/I2MTC50364.2021.9459850
https://www.research.ed.ac.uk/en/publications/d19d9ca6-a80e-4be0-9840-d841396a9859


Machine Leaning Based Wavelength Modulation
Spectroscopy for Rapid Gas Sensing
Wanlu Zhang, Rui Zhang, Yalei Fu, Godwin Enemali, Jingjing Si, Chang Liu*
School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom

Email: C.Liu@ed.ac.uk

Abstract—As a non-intrusive, fast-response and highly
sensitive and diagnostic tool, Wavelength Modulation
Spectroscopy (WMS) has been extensively applied in
accurate retrieval of gas properties, e.g. species
concentration and temperature. Using the
calibration-free WMS (CF-WMS) strategy, the first
harmonic normalised second harmonic signal, e.g. 2f/1f,
of the modulated laser transmission is extracted, and
then fitted to calculate the path-integrated absorbance.
However, the fitting process mainly suffers from (a)
noise in the fitting results introduced by the shift of the
centre wavelength of the laser, and (b) a relatively high
computational cost due to the least square optimisation.
To improve the measurement precision and efficiency,
this paper proposes a machine learning regression
algorithm to calculate the gas properties. The proposed
method employs artificial neural networks (ANN) to
compute the path-integrated absorbance rapidly with a
high signal-to-noise ratio, which was experimentally
validated by calculating the absorption of water vapour
at the wavelength of 1391.2 nm. In comparison with the
traditional fitting method, the proposed machine
learning based WMS is two times more noise-resistant
with high capability to compute 100 sets of 2f/1f signals
in approximately 0.4 s, denoting its potential
applicability in real-time and rapid trace gas sensing.

Keywords—Artificial Neural Networks (ANN), Gas
Sensing, Machine Learning, Wavelength Modulation
Spectroscopy (WMS)

I. INTRODUCTION
Gas sensing technique has been highly applied in a

variety of industrial applications [1-3]. In Tunable Diode
Laser Absorption Spectroscopy (TDLAS) systems, tunable
diode lasers are applied to generate lasers passing through
the target gas. The transmission signal detected by
photodiode detectors can be processed to determine the gas
compositions and properties [4-6]. As one of the
representative TDLAS techniques, WMS is implemented by
imposing high-frequency modulation on the low-frequency
wavelength scan [2, 3]. Generally, strong noise rejection is
achieved by the demodulation of WMS signal [7-9]. To
facilitate the industrial implementation of WMS, the
calibration-free WMS (CF-WMS) was proposed mostly by
fitting the first harmonic normalised second harmonic signal,
e.g. 2f/1f, of the modulated laser transmission. The
path-integrated absorbance extracted from the fitting results
can be used to calculate the gas properties, e.g. species
concentration and temperature, with high sensitivity and fast
response [1, 3, 8].
Given the 2f/1f signal, the spectral-fitting routine is

commonly employed to calculate the path-integrated
absorbance. In general, the spectral-fitting routine is
implemented by least square fitting the 2f/1f signals from a
simulated spectra to an experimental spectra. However, the
fitting process can introduce measurement noise caused by
the unknown shift of the central wavelength of the laser. In
addition, the fitting process inevitably introduces massive
and time-consuming repeated iterations until the iteration
converges [3, 8]. These limitations, consequently, hinder the
application of TDLAS where high-precision and rapid
measurement is highly demanded.

Fig. 1. Schematic of the scanned-WMS and calibration-free processes.



In the past decades, research in the field of machine
learning, one of the most crucial topics of artificial
intelligence at present, has been rapidly developed, due to
the advantages of high efficiency, remarkable stability and
automation [10, 11]. In this paper, a noise-resistant
approach with a relatively low computation cost is proposed
by employing the machine learning regression algorithms.
Simulation was carried out to model massive 2f/1f signals
and corresponding path-integrated absorbances taken as
training sets and labels. After network training and
optimisation, ANN takes the measured 2f/1f signals as
testing inputs, and computes their corresponding
path-integrated absorbances at an immensely fast speed.
Finally, experiments were carried out to validate the
proposed method in terms of noise resistance and
computational speed.

II. METHODOLOGY

In this section, the detailed WMS technique, traditional
spectral-fitting routine and new approach based on machine
learning are demonstrated step by step.

A. Fundamentals of WMS
Fig. 1 depicts the flow chart of the typical scanned-WMS

absorption system. In general, the laser diode is driven by a
high-frequency modulation sinusoid superimposed on a low
frequency sinusoid [1-3, 6, 8, 9]. The accurate absorbance
can be demodulated from the transmitted light intensity, and
has strong resistance to the environmental noise [1, 3, 5, 12].
The modulated wavenumber can be expressed as Eq. (1):

)t(v)t(vv)t(v ms ++= 0 (1)
where v0 is the central wavenumber according to a specific
transition of the target specie, vs(t) and vm(t) are the
scanning and modulation wavenumbers, respectively. Eq. (2)
describes the modulated incident laser intensity I0(t):
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where Ic is the central average laser intensity, I0,s(t) and I0,m(t)
are the scanning and modulation intensity, respectively.
The modulated incident laser intensity I0(t) passes

through the target gas and is detected by photodiode
detectors. According to the Beer-Lambert law, Eq. (3)
shows the relationship between the incident laser intensity
I0(t) and the transmitted laser intensity It(t):
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where α(v(t)) means the wavenumber-depended absorbance.
Provided that the target gas is a homogeneous medium
whose temperature and concentration is uniform distributed;
the absorbance can be further described as Eqs. (4) and (5):
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where P represents the total pressure; L means the length of
the laser path; S(T) is temperature-depended line strength;
 (v(t)) is the wavenumber-depended absorption lineshape
function; X and T are the uniform concentration and
temperature along the laser path, respectively.
Therefore, with the path-integrated absorbance A derived

accurately by computations based on the 2f/1f signal, the

compositions and properties of target gas can be easily
obtained with high precision and sensitivity [4-6].

B. Traditional Fitting of CF-WMS Strategy
CF-WMS strategy has been developed for the absorption

measurement with harsh environments or unknown
hardware-related conditions [1, 8, 13]. Essential harmonics
extraction employs digital lock-in analysis and finite
impulse response (FIR) low pass filters, in which the
transmitted laser intensity It(t) is multiplied by reference
sine and cosine signals at each nf-harmonic, respectively, to
expand the Xnf (cosine) and Ynf (sine) components [1, 3, 7, 8].
Considering both transmitted and non-absorbing laser
intensities, the amplitude of first harmonic R1f, the X2f and
Y2f components of the second harmonics are required in the
normalisation of the 2f/1f signal to avoid evaluating the
background noises unambiguously. The normalisation
process is defined as Eqs. (6) and (7):
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where ‘real’ represents the components of measured
transmitted laser intensity; ‘bg’ means the components of
non-absorbing incident laser intensity. By analysing the
2f/1f signal S2f/1f, the path-integrated absorbance A can be
derived by applying spectral-fitting routine, to further
determine the essential gas compositions and properties [8].
Fig. 2 depicts the flow chart of steps and iteration processes
of the tradition fitting strategy.

Fig. 2. Flowchart of spectral-fitting method.



Simulation is used to mimic the absorption of target gas
on the incident laser intensity passing through it. After the
random initialization of required gas properties, the
HITRAN database is employed to calculate the absorbances
shown in Eq. (4), and the Beer-Lambert law is required to
generate the simulated transmitted laser intensity Is,t(t) [1, 3,
4]. The simulated 2f/1f signal S2f/1fS is obtained after the
signal extraction process applying harmonics extraction
method and digital lock-in technique. Necessarily, the
strategy of least square fitting is repetitively modifications
to reduce the sum of squared error between the measured
and simulated 2f/1f signal S2f/1fS, which represents the
accuracy of currently defined parameters [3]. The traditional
fitting strategy displayed in Fig. 2 is mainly based on
substantial iterations, calculations and comparisons until the
fitting routine converges, indicating the best-fit parameters
to determine the gas compositions and properties [1, 3, 13,
14].

C. Enhanced Machine Learning Method
In this approach, a substantial bivariate data set needs to

be established firstly, in which N temperature values and N
concentration values selected randomly within the
maximum demand range are combined as the preparation
for simulation. According to Eq. (4), absorbances α(v(t)) is
proportional to the line strength S(T), and the species
concentration X. In the simulation, the combinations of N
values of temperature and N values of species concentration
results into a data set with length of N2.
With pure incident laser intensity I0(t) detected and a set

of simulated absorbances α(v(t)) obtained, the Beer-Lambert
law shown in Eq. (3), can be applied to derive the simulated
transmitted laser intensities Is,t(t) of length N2. Following the
same harmonics extraction processes of fitting strategy, the
simulated 2f/1f signals S2f/1fS of length N2 are processed as
training inputs to an initialised ANN, while their
corresponding path-integrated absorbances AS derived
previously are defined as regression labels. Generally, each
2f/1f signal consists of considerable data points of length M,
requiring a high-dimensional machine learning neural
network. Therefore, the network structure should conform
to the input dimension, which is a N2  M matrix. The
dimension flow of different stages is depicted in Fig. 3.

Main steps and stages are demonstrated as follows:
1) The first step is data pre-processing, where simulation

and calculations are carried out based on the
temperature and concentration bivariate data set, to
obtain the simulated 2f/1f signal S2f/1fS.

2) The simulated 2f/1f signals and their corresponding
path-integrated absorbances AS are input as training
sets and labels given to the artificial neural network.

3) The shrouded stage is a processing based on the value
of each weight and completed in the procedure of
weight modification. Applying the backpropagation
algorithm based on the gradient descent method, the
input training set is processed layer by layer through
the hidden networks and transmitted to the output layer
repetitively. According to the least square strategy, the
sum of squared error between the output of the current
neural network and the label is taken as the loss
function to justify the conformity and accuracy. If the
expected output is not precise and accurate, the
backpropagation algorithm will repetitively calculate
the partial derivative of each neuron backwards, which
is the gradient of each weight and the modification
direction, and modify the weight values [10].

4) When the output conforms to its corresponding label's
value, the training process proceeds to the optimisation
stage. Neural network optimisation, such as
adjustments of the length of epochs and batch sizes,
determines the absolute accuracy and training period,
both of which are essential to be considered.

5) In order to prevent over-fitting, dropout and
regularisation are important which could control the
magnitude of the parameters to keep the model from
becoming too complex and to limit the parameter
search space.

6) The ultimate process enters the yield stage. Based on
the weights of the concealed units after training, the
test sets, consisting of the measured 2f/1f signals S2f/1fM,
pass through the completed neural network. The final
outputs, predicted path-integrated absorbances AM, are
therefore calculated weight by weight to the output
layer.

Following the above procedures, the proposed machine
learning approach can accurately compute the predicted
integrated absorbances AM of the measured 2f/1f signals,
which are defined as testing sets.

Fig. 4. Flowchart of machine learning processes.Fig. 3. Data dimensions in different simulation stages.



III. RESULTS AND DISCUSSION

In this section, the experimental setup, ultimate results
after optimisation and comparison with traditional fitting
strategy are provided in detail.

A. Experimental setup
Water vapour (H2O) is selected as the target absorbing

species in this work, and we assume that there is no other
gases absorbing in this spectral region, which impact the
overall absorption. The experiments were carried out using
the H2O absorption transition at 1391.2 nm with ambient
pressure and a laser path of 30 cm. The transition is selected
due to its relatively high sensitivity within the required
temperature range. First, the ranges of temperature T and
H2O concentration X were set 276 K to 1500 K, and 0.01 to
0.15, respectively. As ANN works well for interpolation and
very bad for extrapolation, all necessary temperatures and
concentrations are taken into account. The ranges take into
account all general concentrations and temperatures of not
only combustion but non-combustion environments,
essentially required in the tomography system. Within the
given ranges, 50 evenly spaced points between the
maximum and minimum boundaries are generated, resulting
in a total of 2500 combinations as the preparation for
simulation. Therefore, based on the parameters provided in
the HITRAN database and the simulation processes
mentioned above, 2500 corresponding sets of simulated
2f/1f signal S2f/1fS with their path-integrated absorbances AS
were generated and proceeded to the artificial neural
network. The first 2200 sets were selected as the training
sets; the other 300 sets were marked as the validation sets,
while the path-integrated absorbances AS act as labels. As
single layer neural networks can only be used to represent
linearly separable functions, a six-layer artificial neural
network was applied, given in Fig. 4, in which the network
structure is simplified.
The number of neurons of the four hidden layers depends on
the number of input data points and the complexity of the
2f/1f signal, the number of input data points in this
experiment is 5000, which means the 2f/1f signal in both the
training sets and the test sets are composed of 5000 points.
The first hidden layer consists of 4096 neurons, the second
layer consists of 2048 neurons, and the number of

subsequent neurons is reduced by a factor of 4. The final
number of neurons in the output layer is 1, because there is
only one output which is the path-integrated absorbance A.
The number of layers and neurons in the artificial neural
network was obtained from a large number of experiments
to ensure the high stability and accuracy, and to meet the
requirements coming from the input data structure and
computational complexity. The activation function applied
in this experiment and every layer is the ‘ReLU’ function.
Additionally, the dropout and regularisation are used to
prevent over-fitting in the training process.
During the training process, the initialisation of the weights
can have a significant impact on the results. In this
experiment we use a Gaussian distribution initialisation to
provide a better initial value for the weights of neurons and
to improve the generalisation of the model. After
optimisation of the neural network, the well-trained model
was employed to receive the testing sets formed by
measured 2f/1f signals S2f/1fM, and predict their
corresponding path-integrated absorbances AM. Therefore,
the gas compositions and properties can be obtained
according to Eq. (5).

B. Experimental results
The measured transmitted laser intensities It(t) were

repetitively sampled for 100 times in the same environment,
from which 100 sets of measured 2f/1f signals S2f/1fM were
extracted. By feeding the S2f/1fM datasets into the trained
regression model, the output, i.e. the path integrated
absorbances were obtained. Fig. 5 compares the path
integrated absorbances calculated using the traditional
spectral fitting routine and the proposed machine learning
method.
Obviously, the path-integrated absorbances obtained by

machine learning regression algorithms caused much less
fluctuation, which means the new data processing
introduces lower noise level and carries a higher degree of
stability. In terms of statistics, the standard deviation of the
fitting strategy results, nearly 2.66  10-4, was
approximately three times larger than that of the machine
learning approach, which was 8.51  10-5.
From the perspective of time cost, the trained machine

learning model was able to test massive data sets at an
immensely high speed. The above validation model took
0.390625 s to calculate the path-integrated absorbances of
100 sets of 2f/1f signal S2f/1fM, while 0.296875 s was
spent on 50 sets of 2f/1f signal S2f/1fM.
However, there is no standard value of the path integrated

absorbances in this experiment. The bias differences of
fitting method and machine learning can not be calculated
to compare the root mean squared error, and therefore the
accuracy. Our tasks for the future is to improve the accuracy
of the model as much as possible and stabilise the outputs of
the neutral network.

IV. CONCLUSION
This paper demonstrated a new approach for deriving the

absorption parameters of target gas using machine learning
regression algorithms. Validated by lab-scale experiments of
water vapour absorption transition at 1391.2 nm, theFig. 5. Results comparison between machine learning and fitting.



proposed method can half the noise of WMS measurement,
in comparison with the traditional spectral-fitting routine.
Instead of fitting the harmonics with the time-consuming
iterations, the proposed method significantly reduces the
computational cost, resulting faster calculation of the path
integrated absorbance which computes 100 sets of 2f/1f
signals in 0.4 s. The machine learning based WMS is
potential for rapid spectroscopic computation towards active
control of flow fields.
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