

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Impact of leaf phenology on estimates of aboveground biomass density in a deciduous broadleaf forest from simulated Global Ecosystem Dynamics Investigation (GEDI) lidar.

Citation for published version:

Cushman, K, Armston, J, Dubayah, R, Duncanson, LI, Hancock, S, Janík, D, Král, K, Krek, M, Minor, D, Tang, H & Kellner, JR 2023, 'Impact of leaf phenology on estimates of aboveground biomass density in a deciduous broadleaf forest from simulated Global Ecosystem Dynamics Investigation (GEDI) lidar.', *Environmental Research Letters*. https://doi.org/10.1088/1748-9326/acd2ec

Digital Object Identifier (DOI):

10.1088/1748-9326/acd2ec

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Environmental Research Letters

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

ENVIRONMENTAL RESEARCH LETTERS

ACCEPTED MANUSCRIPT • OPEN ACCESS

Impact of leaf phenology on estimates of aboveground biomass density in a deciduous broadleaf forest from simulated Global Ecosystem Dynamics Investigation (GEDI) lidar.

To cite this article before publication: KC Cushman et al 2023 Environ. Res. Lett. in press https://doi.org/10.1088/1748-9326/acd2ec

Manuscript version: Accepted Manuscript

Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an 'Accepted Manuscript' watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors"

This Accepted Manuscript is © 2023 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <u>https://creativecommons.org/licences/by/4.0</u>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.

1		
2 3	1	
4	1	Title: Impact of leaf phenology on estimates of aboveground biomass density in a deciduous
5	2	broadleaf forest from simulated Global Ecosystem Dynamics Investigation (GEDI) lidar.
6	3	
7	4	Autnors:
8	5 6	KC Cushman ^{1,2} John Armaton ³ Balnh O Duhayah ³ Laura Dunaansan ³ Stayan Hanaak ⁴
10	0 7	Net Cushinan ⁴ , John Arniston, Kaipi. O. Dubayan, Laura Duncanson, Steven Hancock, David Janik ⁵ Kamil Král ⁵ Martin Krůček ⁵ David M. Minor ³ Hao Tang ^{3,6} James P. Kellner ^{1,2}
11	8	David Jank, Kann Kiai, Martin Kideek, David M. Minor, Hao Tang , Janes K. Kenner
12	0	1 Department of Ecology Evolution and Organismal Biology Brown University
13	10	Providence RI 02912 United States of America
14 15	11	Tiovidence Ri, 02512, Olined States of America
16	12	2. Institute at Brown for Environment and Society, Brown University, Providence RI.
17	13	02912. United States of America
18	14	
19	15	3. Department of Geographical Sciences, University of Maryland, College Park, College
20 21	16	Park, MD, 20742, United States of America
22	17	
23	18	4. School of Geosciences, University of Edinburgh, Crew Building, Edinburgh EH9 3FF,
24	19	United Kingdom
25	20	
26 27	21	5. Department of Forest Ecology, The Silva Tarouca Research Institute, 60200 Brno,
28	22	Czech Republic
29	23	
30	24	6. Department of Geography, National University of Singapore, Singapore, Singapore
31	25	
33	26	* Corresponding author: KC Cushman (<u>katherine_cushman@brown.edu</u>)
34	21	
35	20 20	Keywords: lider GEDI phenology shoveground biomass forest structure
36	29	Keywords. Idar, OEDI, phenology, aboveground biomass, forest structure
37 38		
39		
40		
41		
42		
45 44		
45		
46		
47		
48 ⊿0		
51		
52		
53 54		
54		
56		
57		
58		
59 60		
00		

4

30	Abstract
31	
32	The Global Ecosystem Dynamics Investigation (GEDI) is a waveform lidar instrument on
33	the International Space Station used to estimate aboveground biomass density (AGBD) in
34	temperate and tropical forests. Algorithms to predict footprint AGBD from GEDI relative height
35	(RH) metrics were developed from simulated waveforms with leaf-on (growing season)
36	conditions. Leaf-off GEDI data with lower canopy cover are expected to have shorter RH
37	metrics, and are therefore excluded from GEDI's gridded AGBD products. However, the effects
38	of leaf phenology on RH metric heights, and implications for GEDI footprint AGBD models that
39	can include multiple nonlinear RH predictors, have not been quantified. Here, we test the
40	sensitivity of GEDI data and AGBD predictions to leaf phenology. We simulated GEDI data
41	using high-density drone lidar collected in a temperate mountain forest in the Czech Republic
42	under leaf-off and leaf-on conditions, 51 days apart. We compared simulated GEDI RH metrics
43	and footprint-level AGBD predictions from GEDI Level 4A models from leaf-off and leaf-on
44	datasets. Mean canopy cover increased by 31% from leaf-off to leaf-on conditions, from 57% to
45	88%. RH metrics < RH50 were more sensitive to changes in leaf phenology than RH metrics \geq
46	50. Candidate AGBD models for the deciduous-broadleaf-trees prediction stratum in Europe that
47	were trained using leaf-on measurements exhibited a systematic prediction difference of $0.6 -$
48	19% when applied to leaf-off data, as compared to leaf-on predictions. Models with the least
49	systematic prediction difference contained only the highest RH metrics, or contained multiple
50	predictor terms that contained both positive and negative coefficients, such that the difference
51	from systematically shorter leaf-off RH metrics was partially offset among the multiple terms.
52	These results suggest that, with consideration of model choice, leaf-off GEDI data can be

1 2			
3	53	suitable for AGBD prediction, which could increase data availability and reduce sampling error	
4 5			
6	54	in some forests.	
7 8			
9			
10			
11 12			
13			
14			
15 16			
17			
18			
19 20			
21			
22			
25 24			
25			
26 27			
28			
29			
30 31			
32			
33			
34 35			
36			
37 38			
39			
40			
41 42			
43			
44 45			
45 46			
47			
48 49			
50			
51			
52 53			
54			
55 56	7		
57			
58	,		
59 60			3

1. Introduction

5	6
J	U

55	1. Introduction
56	
57	Forests are a large global carbon stock, but substantial current uncertainties in the spatial
58	distribution of forest aboveground biomass density (AGBD) limit our ability to understand
59	feedbacks between forests and global land use and climate change (Friedlingstein et al 2022).
60	The Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne lidar mission designed to
61	characterize ecosystem structure and improve estimates of AGBD in temperate and tropical
62	forests (Dubayah et al 2020, Dubayah et al 2022). The GEDI instrument, onboard the
63	International Space Station (ISS), is a waveform lidar sensor that samples ~ 25 m footprints in 8
64	parallel ground tracks following the trajectory of the ISS. In addition to full waveform data and
65	waveform relative height (RH) metrics, GEDI data products include footprint level estimates of
66	AGBD (the GEDI L4A product; Dubayah et al 2022b).
67	
68	GEDI predicts footprint AGBD using ordinary least squares regression models with $1 - 4$
69	predictor variables derived from RH metrics (Duncanson et al 2022, Kellner et al 2022). The
70	models applied to on-orbit GEDI data were developed using a comprehensive training data set of
71	plot-based estimates of AGBD and simulated GEDI waveforms, derived from airborne lidar
72	(Duncanson et al 2022, Hancock et al 2019, Kellner et al 2022). This dataset was contributed by
73	a large community of researchers and encompasses 21 countries on 6 continents, resulting in 13
74	linear models used in 32 combinations of plant functional type (PFT) and geographic world
75	region (Duncanson et al 2022, Kellner et al 2022). Further details on the training datasets are
76	provided in Duncanson et al (2022). An important feature of this dataset is that simulated

ן כ	
2 3 4	77
5 6	78
7 8	79
9 10 11	80
12 13	81
14 15	82
16 17	83
18 19 20	84
20 21 22	85
23 24	86
25 26	87
27 28 20	88
29 30 31	89
32 33	90
34 35	91
36 37 28	92
38 39 40	02
41 42	95
43 44	94
45 46	95
47 48 40	96
49 50 51	97
52 53	98
54 55	99
56 57	
58 59	

waveform data were acquired under leaf-on conditions for ecosystems with seasonal deciduousness. Changes in leaf phenology affect GEDI waveform data because canopy cover decreases during leaf-off conditions, which will result in more total energy in GEDI waveform ground returns and a reduction in the height of RH metrics (Fig. 1). Consequently, AGBD predictions may differ between leaf-off and leaf-on data. GEDI footprint AGBD models are not intended to be applied to leaf-off GEDI data because leaf-off conditions are not represented in the model training data. To avoid generating predictions under leaf-off conditions, GEDI uses the 1 km Visible Infrared Imaging Radiometer Suite (VIIRS) land surface phenology product generated from daily 22-band imagery (Zhang et al 2018) to flag leaf-off measurements in deciduous forests (Kellner et al 2022). These leaf-off measurements are then excluded when generating gridded estimates of AGBD (the GEDI Level 4B AGBD product) in deciduous broadleaf and deciduous needleleaf strata (Dubayah et al 2022a, Healey et al 2022).

A consequence of excluding leaf-off GEDI measurements from gridded estimates of AGBD is a loss of data in deciduous prediction strata. For example, Kellner *et al* (2022) documented that 55% of the observations in global deciduous broadleaf strata were acquired under leaf-off conditions during mission weeks 17 – 153 (April, 2019 – November, 2021). GEDI is fundamentally a sampling mission that will result in approximately 4% of the Earth's surface being directly overlaid by a GEDI footprint at the end of the original planned mission (the exact coverage depends on mission length and orbital resonance). Data losses due to leaf phenology filtering reduce the number of ground tracks and observations available to estimate gridded AGBD, limiting the number of 1 km cells with valid AGBD estimates, and increasing the
sampling component of the standard error of cells with AGBD estimates (Patterson *et al* 2019,
Ståhl *et al* 2016).
Leaf-off reductions in canopy cover are expected to decrease RH metric height, but the

Leaf-off reductions in canopy cover are expected to decrease RH metric height, but the magnitude of this phenomenon has not been directly tested using GEDI data. Consequently, we do not know the extent to which different RH metrics are affected by changes in leaf phenology, or the degree of associated bias in AGBD predictions from multi-variable, nonlinear candidate AGBD models. Characterizing the effects of leaf phenology on GEDI RH metrics and footprint AGBD estimates is an important first step towards assessing the potential use of GEDI leaf-off data for AGBD estimation. If leaf-off data could be incorporated in AGBD estimates, the sampling component of GEDI AGBD uncertainty could be reduced.

Previous research comparing leaf-off and leaf-on lidar data has shown that discrete-return lidar data collected under leaf-off or leaf-on conditions can each be used, separately, to predict AGBD (Anderson and Bolstad 2013, Bouvier et al 2015, Næsset 2005, Villikka et al 2012, White et al 2015, Krůček et al 2020). Whether models perform best when trained and tested on leaf-off or leaf-on data, separately, depends on forest type, but absolute differences in the predictive power of the best leaf-off vs. leaf-on model were generally small for a suite of candidate models including: height percentiles; minimum, maximum, and mean canopy height; and metrics related to structural variability (Anderson and Bolstad 2013, Bouvier et al 2015). Fewer studies have examined whether models trained under one set of conditions can generalize to the other, but one study found that estimating biomass from leaf-off data using a model trained

2		
3 4	123	on leaf-on data (again using a suite of lidar metrics including height percentiles, cover metrics,
5 6	124	and metrics related to variability) increased model error (root mean square error, RMSE) by 33%
7 8 9	125	for AGBD compared to the original leaf-on data accuracy, and increased bias by 2.2% (White et
10 11	126	al 2015).
12 13	127	
14 15 16	128	Here we quantify the impact of leaf-off conditions on predictions of AGBD using
17 18	129	simulated GEDI waveforms in a temperate mountain forest in the southwest Czech Republic.
19 20 21	130	Our analysis is based on simulated waveform data derived from two high-density drone lidar
22 23	131	datasets collected 51 days apart under leaf-off and leaf-on conditions. These measurements
24 25	132	isolate the importance of leaf phenology with little to no change in woody structure, allowing us
26 27 28	133	to quantify the systematic prediction difference associated with the application of candidate
29 30	134	GEDI models developed under leaf-on conditions when applied to leaf-off data.
31 32	135	
33 34	136	2. Methods
35 36 37	137	
37 38 39	138	2.1 Study site and inventory data
40 41	139	
42 43	140	We performed this study in a deciduous broadleaf forest in the southern Czech Republic
44 45 46	141	(Kellner et al 2019). The site contains the Zofin Forest Dynamics Plot, which is a 25-ha
47 48	142	permanent-inventory plot in which all free-standing woody plants > 1 cm diameter at breast
49 50	143	height (DBH) have been mapped and monitored since 2012 (Davies et al 2021, Janík et al 2016).
51 52 53	144	This forest is dominated by old-growth European beech (Fagus sylvatica, 78% of basal area),
54 55		
56 57		
58 59		
60		

2		
3 4	145	Norway spruce (<i>Picea abies</i> , 17%), and silver fir (<i>Abies alba</i> , 4.5%) with occasional other
5 6 7	146	broadleaf tree species (Janík et al 2016, Krůček et al 2020).
7 8 9	147	
10 11	148	Aboveground biomass of each tree was estimated using the models of Forrester et al.
12 13	149	(2017) applied to the 2017 plot census. These equations are species-specific for the three most
14 15 16	150	common species. For all other species, we used the generalized broadleaf equation of Forrester et
17 18	151	al. (2017). The allometric models of Forrester et al. (2017) were used to develop the GEDI04_A
19 20	152	aboveground biomass density (AGBD) data product in Europe (Duncanson et al 2022, Kellner et
21 22 23	153	al 2022).
24 25	154	
26 27	155	2.2 High-density airborne lidar under leaf-off and leaf-on conditions
28 29 30	156	
31 32	157	Airborne lidar data were collected in two sets of orthogonal flight lines using a heavy-lift
33 34	158	helicopter drone (Scout B1-100; Aeroscout GmbH, Lucerne-Horw, Switzerland) carrying a
35 36 37	159	RIEGL VUX-1 laser scanner (RIEGL Laser Measurement Systems GmbH, Horn, Austria)
38 39	160	coupled to an Oxford Technical Solutions Survey +2 GPS-IMU (Oxford Technical Solutions
40 41	161	Ltd., Oxfordshire, United Kingdom). Additional technical details about the drone platform and
42 43	162	payload are provided in (Kellner et al 2019). Flights were repeated on 2 dates that were 51 days
44 45 46	163	apart-the first flights began on April 16, 2018, and the second flights started on June 6, 2018, at
47 48	164	the beginning of full leaf-on conditions for this site. These dates captured leaf-off and leaf-on
49 50	165	conditions with little to no change in woody structure (Fig. 1). The April campaign was
52 53	166	completed in six flights over two consecutive days. The June campaign required six flights over
54 55	167	three consecutive days. The total flight time for each campaign was about 5 hours. For each
56 57		
58 59		8

Page 9 of 31

1

2		
3 4	168	campaign there were 45 flight lines in the NW-SE direction, and 45 flight lines in the NE-SW
5 6	169	direction. Flight altitude was 110 m above ground, and the nominal flight speed was 6 m \cdot s ⁻¹ .
7 8 9	170	During the autonomous portion of the flight, the flight-control system maintained stable control
9 10 11	171	of the aircraft and sensors. For example, during a representative flight line the realized speed was
12 13	172	6 m \cdot s ⁻¹ (SD = 0.06). The standard deviation in the pitch, roll, and heading axes was 0.3°, 0.6°,
14 15 16	173	and 0.8°, respectively. The total areas covered were 1.72 and 1.60 km ² , respectively, and mean
17 18	174	point density was 5,189 pts m ⁻² under leaf-off conditions and 3,165 pts m ⁻² under leaf-on
19 20	175	conditions. All data were post-processed and differentially corrected using a NovAtel FlexPak6
21 22 23	176	GPS receiver (NovAtel Inc., Calgary, Canada). A previous analysis demonstrated that the post-
24 25	177	processed range accuracy was 2.4 cm (estimated accuracy in measured distance between the lidar
26 27	178	sensor and reflecting targets), and the single-date precision was $2.1 - 4.5$ cm (estimated from
28 29 30	179	variation in return height on a uniform target; Kellner et al 2019).
31 32	180	
33 34	181	2.3 GEDI waveform simulation
35 36 27	182	
37 38 39	183	We used the GEDI waveform simulator to produce simulated waveforms from discrete-
40 41	184	return airborne lidar under leaf-off and leaf-on conditions (Blair and Hofton 1999, Hancock et al
42 43	185	2019). Because GEDI04_A AGBD models (hereafter AGBD models) have been developed using
44 45 46	186	simulated waveforms (Duncanson et al 2022, Kellner et al 2022), the simulator allows us to
47 48	187	evaluate the impact of leaf-off and leaf-on conditions on waveform relative-height (RH) metrics,
49 50	188	and the consequences of variation in simulated RH metrics on candidate AGBD models that
51 52 53	189	contain different RH metrics. For example, low-valued RH metrics may be more sensitive to
54 55	190	changes in leaf phenology than RH98, an index of maximum canopy height (Fig. 1).
56 57		
58 59		9

2 3	191	
4 5 6	192	Simulated waveform centers were placed on a 20×20 m grid within the 25 ha plot, for a
7 8	193	total of 570 simulated waveforms. We used exactly the same waveform centers to produce
9 10	194	simulated waveforms under leaf-off and subsequent leaf-on conditions. High scan angle data for
11 12 13	195	low altitude airborne lidar can have a higher contribution of data from the sides of trunks and
14 15	196	branches compared to actual GEDI data, so we retained points with scan angles < 6 degrees
16 17 18	197	(GEDI's maximum angle of incidence) for waveform simulation and excluded points collected
18 19 20	198	from scan angles \geq 6 degrees (Hancock <i>et al</i> 2019). Mean point densities for points < 6 degrees
21 22	199	within simulated waveforms were 1,753 and 1,304 pts m ⁻² under leaf-off and leaf-on conditions,
23 24 25	200	respectively (range = $543 - 2,981$ and $850 - 1,643$ pts m ⁻² for leaf-off and leaf-on conditions,
25 26 27	201	respectively) which exceeds the minimum point density recommendation in Hancock et al
28 29	202	(2019). Waveforms were simulated using 15.6 ns full width half maximum (FWHM) and 22 m
30 31 22	203	footprint diameter. RH metrics were computed relative to the center-of-gravity of the ground
32 33 34	204	waveform (Hancock et al 2019).
35 36	205	
37 38 20	206	2.4 Waveform sensitivity to leaf phenology
40 41	207	
42 43	208	We evaluated the sensitivity of simulated waveforms to leaf phenology by comparing
44 45 46	209	simulated canopy cover and RH metrics between leaf-off and leaf-on conditions. To determine
40 47 48	210	whether canopy cover and RH metrics changed between leaf-off and leaf-on conditions, we used
49 50	211	a paired Wilcoxon test. We also calculated the effect size (Cohen's d) associated with leaf-area
51 52 53	212	changes on each RH metric (e.g., the change in RH50 under leaf-off and leaf-on conditions).
54 55	213	Following the approach developed by the GEDI Science Team to predict AGBD, we considered
56 57		
58		

214	RH metrics from RH10 – RH90 in increments of 10% in addition to RH98 (Duncanson et al
215	2022, Kellner <i>et al</i> 2022).
216	
217	2.5 Impact of leaf phenology on GEDI AGBD predictions
218	
219	We quantified the impact of leaf-area changes on AGBD predictions using candidate
220	AGBD models described in Duncanson et al. (2022), including the currently selected model for
221	the deciduous broadleaf trees (DBT) prediction stratum in Europe. AGBD models are ordinary
222	least squares regressions with $1 - 4$ predictor variables, where potential predictor variables are
223	simulated RH metrics RH10 – RH90 in increments of 10%, RH98, and products between pairs of
224	RH metrics. Each model uses one of four transformation scenarios: either a natural logarithm or
225	square-root on the response variable, and either the same or no transformation on the predictors.
226	There were four feature sets under consideration for each transformation scenario. These were:
227	(1) all RH metrics were permitted in candidate models; (2) no RH metrics < RH50 were
228	permitted in models; (3) models were forced to contain RH98; and (4) no RH metrics < RH50
229	were permitted in models and models were forced to contain RH98. The performance of
230	thousands of candidate models was ranked for each transformation scenario and feature set
231	combination in order of smallest mean residual error, smallest percentage root mean squared
232	error (RMSE) rounded down to the nearest 5%, the maximum RH metric in the model, the
233	number of coefficients in the model, and the number of RH metrics in the model (Duncanson et
234	al 2022). We examined the top 20 models under each feature set scenario (i.e. 80 candidate
235	models).
236	
	11
	 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

2		
3 4	237	All candidate AGBD models were developed by the GEDI Science Team using simulated
5 6	238	GEDI waveforms under leaf-on conditions (Duncanson et al 2022, Kellner et al 2022).
7 8 9	239	Examining the difference in predicted AGBD by applying the coefficients from these models to
10 11	240	simulated waveforms collected under leaf-off and leaf-on conditions provides an estimate of the
12 13	241	magnitude of systematic prediction difference due exclusively to changes in leaf phenology.
14 15 16	242	Systematic prediction difference for candidate model j averaged across $n = 570$ waveforms was
17 18	243	computed according to:
19 20 21	244	
21 22 23	245	Systematic prediction difference _j = $100 \times \frac{\frac{1}{n} \sum_{i=1}^{n} (AGBD_{i,j,leaf off} - AGBD_{i,j,leaf on})}{\frac{1}{n} \sum_{i=1}^{n} AGBD_{i,j,leaf on}}$
24 25 26	246	$n^{-l-1} \text{(j,etu) of} (1)$
27 28 29	247	
30 31	248	Here, $AGBD_{i,j,leaf on}$ is the back-transformed and bias corrected AGBD for footprint <i>i</i> under
32 33	249	candidate model j under leaf-on conditions, and $AGBD_{i,j,leaf off}$ is the corresponding value for
34 35 36	250	footprint i , candidate model j under leaf-off conditions. Candidate AGBD models use the
37 38	251	Snowdon (1991) or Baskerville (1972) back-transformation and bias corrections (Kellner et al
39 40 41	252	2022). We also calculated the change in RMSE associated with the change in leaf phenology:
42 43	253	
44 45 46	254	$\Delta RMSE_j = RMSE_{j,leaf off} - RMSE_{j,leaf on} $ (2)
40 47 48	255	
49 50	256	Where $RMSE_{j,leaf off}$ and $RMSE_{j,leaf on}$ are RMSE during leaf-off and leaf-on conditions,
51 52 53	257	respectively, expressed as a percentage of the mean AGBD for this site. RMSE was calculated
54 55	258	using footprint-level AGBD estimates from inventory plot data.
56 57	259	
58 59		12

3. Results

1

2	
3	260
4	200
5 6	261
7 8	262
9 10	263
11 12	200
13 14	264
15 16	265
17 18	266
19 20	267
21 22	268
23 24	269
25 26	270
27 28 20	271
29 30	070
31 32	272
33 34	273
35 36	274
37 38	275
39 40	276
41 42	277
43 44	270
45 46	278
47 48	279
49 50	280
51 52	281
53 54	282
55 56	
57	
58	
59	

60

261	
262	Measurements of vertical forest structure from high-density drone lidar were sensitive to
263	changes in leaf phenology (Fig. 1,3). The presence of leaves increased mean canopy cover by an
264	average of 31% (standard deviation = 8%), from 57% to 88%, reducing penetration into the
265	canopy (Fig. 2). For example, the density of ground returns under leaf-on conditions was 102 pts
266	$/m^2$. This is an 87% reduction in the frequency of ground returns compared to leaf-off conditions
267	(759 pts / m ²).
268	
269	All simulated waveform metrics changed significantly between leaf-off and leaf-on
270	conditions (Fig. 3, Table 1). RH metrics < RH50 were more sensitive to changes in leaf
271	phenology than upper-canopy RH metrics. For RH30 and above, the effect size of leaf-area
272	changes decreased with increasing RH values (Table 1). During leaf-off conditions RH10 -
273	RH30 were close to 0 m in height (and therefore contained within the ground-return portion of
274	the simulated waveform) with little variation, but during leaf-on conditions RH10 – RH30 were

275 larger and more variable (Fig. 3)

Candidate AGBD models developed using leaf-on data were sensitive to changes in leaf
phenology. As expected, systematic prediction difference (*i.e.* the % change in estimated AGBD;
Eqn. 1) was negative for all candidate models, indicating that predicted AGBD is smaller in leafoff conditions in comparison to the leaf-on conditions used for model development (Eqn. 1). The
magnitude of systematic prediction difference ranged from 0.6 to 19.0% among candidate
models (Fig. 4; Table 2). Distributions of predicted AGBD values are shown in Figure S1.

1 ว	
2 3 4	283
5 6	284
/ 8 9	285
10 11	286
12 13	287
14 15 16	288
10 17 18	289
19 20	290
21 22	291
23 24 25	292
26 27	293
28 29	294
30 31 32	295
33 34	296
35 36	297
37 38 30	298
40 41	299
42 43	300
44 45 46	301
40 47 48	302
49 50	303
51 52	304
53 54 55	
56	
57 58	
59 60	

283	
284	We considered 20 candidate models originally described by Duncanson et al (2022)
285	under each of four feature-set scenarios. The feature set scenarios were (1) all RH metrics were
286	permitted in candidate models; (2) no RH metrics < RH50 were permitted in models; (3) models
287	were forced to contain RH98; and (4) no RH metrics < RH50 were permitted in models and
288	models were forced to contain RH98 (Fig. 4). A one-way ANOVA indicated that predicted
289	AGBD varied among feature sets ($F = 85.5$; $DF = 3$; $P < 0.001$, $R^2 = 0.76$). A Tukey's post-hoc
290	multiple comparison test showed that feature sets that contained RH metrics < RH50 had smaller
291	systematic differences in predicted AGBD across leaf phenology conditions due than feature sets
292	that excluded RH metrics < 50 (Table S1). All candidate models with systematic prediction
293	difference < 5% included both the lowest (RH10) and the highest (RH98) RH metrics (Table 2).
294	The two models with the smallest systematic prediction difference included logarithmic
295	transformations of AGBD and RH metrics-these two models had prediction difference $< 2\%$,
296	whereas all other models had prediction difference > 4% (Table 2). There was no clear pattern of
297	reduced systematic prediction difference when RH metrics appeared either alone or as products -
298	the best model included RH10 in isolation and RH98 in a product (e.g., RH60 × RH98) while the
299	second-best model included RH98 in isolation and RH10 in a product (RH10 \times RH30; Table 2).
300	
301	There was a strong correlation between systematic prediction difference and $\Delta RMSE$
302	(Fig. 5), where ARMSE was calculated from field-estimated footprint-level AGBD (Eqn. 2).

304 RMSE in leaf-off conditions compared to leaf-on conditions (Pearson correlation r = -0.99, P <

Models with larger magnitude in systematic prediction difference also had larger increases in

0.001), increasing overall model RMSE by up to > 8%. Models with the lowest systematic

prediction difference had similar RMSE in both leaf phenology conditions.

1 2	
2 3 4	305
5 6	306
7 8	307
9 10	308
11 12 13	309
14 15	310
16 17	311
18 19	311
20 21	312
22 23	313
24 25	314
26 27	315
28 29	316
30 31	317
32 33 34	318
35 36	319
37 38	320
39 40	321
41 42 43	322
44	373
45 46	525
47 48	324
49 50	325
51 52	326
53 54	327
55 56	
57 58	

59

60

4. Discussion Our analysis demonstrates that changes in leaf phenology impact the vertical distribution of lidar data, with potential consequences for the estimation of AGBD. Using simulated GEDI waveforms, our results confirmed expectations that leaf-off conditions reduce canopy cover (Fig. 2), resulting in lower RH metric values (Fig. 3). Consequently, we found that predicted AGBD is systematically smaller when candidate GEDI AGBD models – developed using simulated waveforms under leaf-on conditions – were applied to waveforms simulated using leaf-off data (Fig. 4). Our novel dataset allowed us to quantitatively describe effects on predicted AGBD among models that can include nonlinear and interactive predictor variables. The magnitude of this systematic prediction difference data varied widely among candidate models, from < 1% to almost 20%. Models with greater systematic prediction difference also had greater increases in RMSE for leaf-off AGBD predictions when compared to field-estimated AGBD (Fig. 5), indicating that systematic prediction difference is associated with lower model accuracy, specifically an underestimation of AGBD (Fig. S1). Here, we discuss the causes of this variation, and how model selection can minimize systematic prediction difference in AGBD estimates from changes in leaf phenology in on-orbit GEDI data. The presence of leaves increases canopy cover, causing less lidar signal energy to be

reflected from the ground under leaf-on conditions. All RH metrics were smaller during leaf-off

2		
3 4	328	conditions, as expected, and the magnitude of this change varied greatly among metrics - the
5 6	329	effect size for RH98 was nearly an order of magnitude less than lower-canopy metrics of RH20
/ 8	330	and RH30 (Fig. 3, Table 1). Larger changes in smaller RH metrics are expected in high canopy
9 10 11	331	cover forests like Zofin because the sensitivity of RH metrics to changes in waveform energy is
12 13	332	inversely proportional to waveform intensity near the RH metric height, and waveform intensity
14 15	333	is relatively smaller for smaller RH metrics in leaf-on high canopy cover forests (Hancock et al
16 17	334	2019). Surprisingly, although lower-canopy RH metrics were most affected by changes in leaf
18 19 20	335	phenology, the exclusion of metrics < RH50 increased systematic prediction differences among
21 22	336	candidate AGBD models, with or without the forced inclusion of RH98 (Fig. 4; Table S2). This
23 24	337	seemingly contradictory result is possible because some candidate GEDI AGBD models with RH
25 26 27	338	metrics < RH50 had both negative and positive coefficients (Table 2). Because all RH metrics
27 28 29	339	were systematically smaller in leaf-off conditions, the combination of both positive and negative
30 31	340	model coefficients allows some of the systematic difference in RH metrics to effectively "cancel
32 33	341	out", reducing the magnitude of the overall systematic difference in predicted AGBD. The only
34 35 36	342	model with systematic prediction difference < 6% that did <i>not</i> contain a combination of positive
37 38	343	and negative coefficients contained only a single predictor, RH98, the metric that changed least
39 40	344	between leaf-off and leaf-on conditions (Tables 1, 2). Further, all models with systematic
41 42 42	345	prediction difference < 6% contained RH98 as a predictor.
43 44 45	346	
46 47	347	Systematic differences in AGBD predictions from leaf phenological changes could be
48 49	348	reduced by considering land surface phenology at the time GEDI data are acquired. The
50 51 52	349	GEDI04 A data product contains flags derived from the VIIRS global land surface phenology
52 53 54	350	product that indicate whether the GEDI footprint was collected after the onset of maximum
55 56	7	
57 58		
50		

greenness and before the midpoint of the senescence phase at the resolution of the VIIRS 1 km grid (Kellner et al 2022). Although this characterization will correctly identify leaf-off conditions in northern-hemisphere deciduous forests, and some tropical dry forests that experience total leaf loss during dry-seasons, it may not detect crown-scale deciduousness that is common in some evergreen broadleaf forests. Consideration of leaf phenology effects on GEDI lidar data and derived products in other ecosystem types warrants further consideration. Forests do not exist in binary leaf-off or leaf-on states – rather, the degree and timing of deciduousness varies among individuals and species (Augspurger and Bartlett 2003, Condit et al 2000, Smith et al 2019). For example, one study in Panama documented up to 19.1% leafless crown area in a moist tropical forest canopy (Condit et al 2000). In that community the crown area of individual trees can reach up to 0.1 ha in size, roughly twice the area of a single GEDI footprint (Martínez Cano et al 2019). Additionally, total leaf area has been shown to vary seasonally across the Amazon basin by 5-10%, with asynchronous patterns in the canopy and understory that can complicate expected effects on predicted AGBD (Tang and Dubayah 2017). However, in some tropical forests community-level leaf phenology is more stable than individual-level patterns due to asynchronous phenology among species (Wirth et al 2001); if community-level phenology is sampled representatively in training data then individual variance is subsumed in AGBD model parameter covariance matrix. Other high-resolution gridded data products could help to identify leaf-off conditions at the scale of individual GEDI footprints, and/or resolve forest classification errors and resolution differences among current auxiliary products (Bolton et al 2020, Moon et al 2021). Modelled error can also address systematic biases and be propagated in AGBD prediction (Tang et al 2021).

Our analysis used simulated GEDI waveform data and focused on quantifying the impact of extreme changes in leaf phenology on AGBD prediction. We acknowledge that other sources of error are also important for understanding overall accuracy in AGBD predictions, including ground-finding error associated with GEDI waveform processing and allometric model error, among others. By using simulated waveforms derived from drone lidar collected 51 days apart, our analysis isolated the impact of leaf phenological changes on simulated GEDI AGBD at a single forest site in the absence of changes in woody vegetation structure. We believe that our study defines an upper limit on systematic prediction differences associated with leaf phenological changes in deciduous broadleaf forests of Europe. For example, changes in leaf area that are smaller than the range examined here occur throughout leaf-on conditions during the growing season, *i.e.* changing in leaf area during the growing season are expected to produce smaller changes in RH metrics than changes between the growing and post-senescence period. **5.** Conclusions

In this paper we demonstrated the quantitative sensitivity of applying GEDI AGBD models to leaf-off data in a deciduous old growth forest in Europe, and shows that there is an associated 1-20% underestimation when using this data for AGBD estimation compared to using only leafon data. Therefore, for the majority of current applications utilizing GEDI lidar for AGBD mapping, we confirm that caution must be taken when using leaf-off data. The currently GEDI L4A product does not include leaf-off data in its predictions, largely due to the theoretical bias that our paper quantitatively demonstrates.

Page 19 of 31

1	
2 3 4	397
5 6	398
7 8 9	399
10 11	400
12 13	401
14 15 16	402
17 18	403
19 20	404
21 22 23	405
23 24 25	406
26 27	407
28 29 20	408
30 31 32	409
33 34	410
35 36	411
37 38 39	412
40 41	413
42 43	414
44 45 46	415
40 47 48	416
49 50	417
51 52 53	418
55 55	419
56 57	
58 50	

60

397 We found that some AGBD models are more transferable to leaf-off conditions than others, 398 and while they all produced increases in RMSE and AGBD underestimation, there may be 399 conditions when it is highly desirable to use leaf-off data from GEDI (e.g. if those are the only 400 data available over a study site, or the sample size would increase sufficiently to justify a slight 401 bias in AGBD). In these cases, our paper can inform adoption of minimally biased AGBD 402 models for application to leaf-off conditions. For our study area, models that included RH98 had 403 the lowest systematic differences in predicted AGBD, and indeed RH98 was included in all 404 models that yielded <6% systematic prediction difference. This supports the expectation that maximum height should be the least sensitive to leaf phenology in comparison to any lower RH 405 406 metric. Additionally, multivariate models including both positive and negative model 407 coefficients had the lowest systematic prediction differences, due to the effect of systematically 408 smaller RH metrics partially compensating among predictor variables.

Further research into the potential utility of leaf-off data for GEDI AGBD estimation should 410 411 be conducted, potentially taking advantage of other datasets where direct comparisons between 412 leaf-on and leaf-off conditions can be made. These results are from a single data-rich study site, and therefore may not generalize to other deciduous ecosystems. GEDI to GEDI crossovers may 413 414 be one such dataset that can expand the analysis presented here for a global-scale analysis of the 415 impact of leaf area phenology on AGBD mapping. This may be particularly important for areas where relatively limited leaf-on data area available, *e.g.* due to persistent cloud-cover during the 416 growing season. The potential use of leaf-off data could increase the sample size of GEDI 417 418 AGBD estimates, reducing overall uncertainty in the spatial distribution of global AGBD.

420	6. Acknowledgments
421	
422	This work was supported by Brown University, the National Aeronautics and Space
423	Administration of the United States of America, and funds provided to Brown University by
424	Peggy and Henry D. Sharpe Jr. and Peter S. Voss. We thank Markus Birrer, Christoph Eck,
425	Cristoph Falleger, Benedikt Imbach, Henry Johnson, Jan Trochta, Tomáš Vrška, and Carlo
426	Zgraggen. K.K., M.K., and D.J. were supported by Inter-Action grant LTAUSA18200.
427	
428	7. Data availability
429	
430	Simulated GEDI RH metrics, associated footprint-level field-estimated AGBD values, and code
431	underlying analyses and results will be made available upon publication at the Brown University
432	Dataverse repository: https://doi.org/10.7910/DVN/TB13RI.

8. Tables and figures

Table 1. Sensitivity of RH metrics to changes in leaf phenology. Data are from simulated GEDI waveforms in a temperate mountain forest in the DBT × Europe prediction stratum. Statistics are

for footprint-to-footprint differences in RH metrics between leaf-off and leaf-on conditions 51

10	438	days apart. All tests were significant ($P < 0.001$).
11		

Metric	Difference between leaf-off and	leaf-on height
	Paired Wilcoxon V	Cohen's d
RH10	162723	1.69
RH20	161561	1.92
RH30	162730	1.93
RH40	162140	1.25
RH50	162122	0.85
RH60	162122	0.61
RH70	162701	0.48
RH80	162169	0.39
RH90	161855	0.31
RH98	162477	0.21

1

446

Table 2. Systematic differences in predicted AGBD (Mg ha⁻¹) due to leaf-off conditions for
candidate GEDI AGBD models in the DBT × Europe prediction stratum. The 5 models with the
smallest systematic prediction difference (Eqn. 1) are shown for each of 4 feature sets. Data are
from simulated GEDI waveforms in a temperate mountain forest in the southwest Czech
Republic. Summaries from the top 20 models under each feature set are in Table S2). The model

being used to predict AGBD in release 1 and release 2 of the GEDI04 A data product is in bold.

Systematic Rank Model prediction difference (%) Feature set 1: all RH metrics permitted $\log(AGBD) = -2.21 \times 10^{01} - 3.22 \times \log(RH10) + 2.11 \times \log(RH20) - 2.00 \times \log(RH40 \times RH50)$ 1 -0.56 $+5.34 \times \log(RH60 \times RH98)$ 2 -1.39 $\log(AGBD) = -2.48 \times 10^{01} + 2.86 \times \log(RH40) + 6.75 \times \log(RH98) - 1.73 \times \log(RH10 \times RH30)$ 3 -4.41 $log(AGBD) = -5.57 \times 10^{-02} - 1.89 \times 10^{-02} \times RH10 + 4.71 \times 10^{-02} \times RH98 + 8.62 \times 10^{-05} \times RH60 \times RH70$ 4 $\log(AGBD) = 6.01 - 8.09 \times 10^{-02} \times RH10 + 4.87 \times 10^{-04} \times RH10 \times RH98 + 8.15 \times 10^{-05} \times RH60 \times RH70$ -7.09 $\log(AGBD) = -2.61 + 7.26 \times 10^{-02} \times RH98 + 6.82 \times 10^{-05} \times RH10 \times RH50 - 2.65 \times 10^{-04} \times RH10 \times RH98$ 5 -7.22 $+9.03\times10^{-05}\times RH20\times RH98$ Feature set 2: no RH metrics < 50 permitted 1 -13.57 $sqrt(AGBD) = -4.08 \times 10^{01} + 4.53 \times 10^{-01} \times sqrt(RH80 \times RH90)$ 2 $sqrt(AGBD) = -9.49 \times 10^{01} - 2.02 \times 10^{-01} \times sqrt(RH50) + 1.02 \times 10^{01} \times sqrt(RH80)$ -15.15 3 $sqrt(AGBD) = -3.97 \times 10^{01} - 3.25 \times 10^{-01} \times sqrt(RH50) + 4.77 \times 10^{-01} \times sqrt(RH70 \times RH90)$ -15.50 4 -15.59 $sqrt(AGBD) = -9.53 \times 10^{01} + 9.99 \times sqrt(RH80)$ 5 -15.71 $sqrt(AGBD) = -3.28 \times 10^{01} - 1.47 \times sqrt(RH50) + 5.25 \times 10^{-01} \times sqrt(RH70 \times RH80)$ Feature set 3: forced inclusion of RH98 1 -1.39 $\log(AGBD) = -2.48 \times 10^{01} + 2.86 \times \log(RH40) + 6.75 \times \log(RH98) - 1.73 \times \log(RH10 \times RH30)$ 2 $\log(AGBD) = -5.57 \times 10^{-02} - 1.89 \times 10^{-02} \times RH10 + 4.71 \times 10^{-02} \times RH98 + 8.62 \times 10^{-05} \times RH60 \times RH70$ -4.41 $\log(AGBD) = -3.74 + 1.15 \times 10^{-02} \times RH20 + 5.57 \times 10^{-03} \times RH50 + 7.55 \times 10^{-02} \times RH98 - 1.94 \times 10^{-04} \times 10^{-04}$ 3 -6.35 RH10×RH98 $\log(AGBD) = -3.07 + 1.10 \times 10^{-02} \times RH20 + 7.00 \times 10^{-02} \times RH98 - 1.92 \times 10^{-04} \times RH10 \times RH98 + 1.00 \times 10^{-02} \times$ 4 -6.77 $4.79 \times 10^{-05} \times RH50 \times RH98$ $\log(AGBD) = -2.55 + 7.17 \times 10^{-02} \times RH98 + 7.58 \times 10^{-05} \times RH10 \times RH60 - 2.72 \times 10^{-04} \times RH10 \times RH98 + 10^{-04} \times RH10 \times RH10$ 5 -6.79 9.36×10⁻⁰⁵ × *RH20*×*RH98* Feature set 4: no RH metrics < 50 permitted and forced inclusion of RH98 1 -5.99 $sqrt(AGBD) = -3.70 \times 10^{01} + 4.09 \times 10^{-01} \times RH98$ 2 -15.97 $sqrt(AGBD) = -5.28 \times 10^{01} + 2.05 \times sqrt(RH98) + 3.70 \times 10^{-01} \times sqrt(RH70 \times RH80)$ 3 $sqrt(AGBD) = -9.65 \times 10^{01} + 7.18 \times sqrt(RH70) + 2.92 \times sqrt(RH98)$ -16.29 4 -16.31 $sart(AGBD) = -2.07 \times 10^{01} + 1.07 \times 10^{-01} \times RH98 + 1.51 \times 10^{-03} \times RH70 \times RH80$ 5 $sqrt(AGBD) = -4.18 \times 10^{01} + 3.38 \times 10^{-01} \times RH70 + 1.28 \times 10^{-01} \times RH98$ -16.83 447

44

58 59 60

1		
2		
3 4	479	9. References
5	480	
6	481	Anderson R S and Bolstad P v. 2013 Estimating aboveground biomass and average annual wood
7	482	biomass increment with airborne leaf-on and leaf-off lidar in great lakes forest types
8	483	Northern Journal of Applied Forestry 30 16–22
9	484	Augspurger C K and Bartlett E A 2003 Differences in leaf phenology between juvenile and adult
10	485	trees in a temperate deciduous forest <i>Tree Physiol</i> 23 517–25
17	486	Baskerville G L 1972 Use of Logarithmic Regression in the Estimation of Plant Biomass
12	487	Canadian Journal of Forest Research 2 49–53
14	488	Blair J B and Hofton M a 1999 Modeling laser altimeter return waveforms over complex
15	489	vegetation using high-resolution elevation data <i>Geophys Res Lett</i> 26 2509–12
16	490	Bolton D K Grav I M Melaas E K Moon M Eklundh L and Friedl M A 2020 Continental-scale
17	490 /191	land surface phenology from harmonized I and sat 8 and Sentinel-2 imagery <i>Remote Sens</i>
18	402	Environ 240 111685
19	492	Environ 240 111005 Pouvier M. Durrieu S. Fournier P. A and Peneud J.D.2015 Concrelizing predictive models of
20	495	bouvier M, Duffieu S, Fournier K A and Kenaud J F 2013 Generalizing predictive models of
21	494	forest inventory altributes using an area-based approach with arroorne LIDAR data Remote
22	495	Sens Environ 150 $322-34$
23	496	Condit R, watts K, Boniman S A, Perez R, Foster R B and Hubbell S P 2000 Quantifying the
25	497	deciduousness of tropical forest canopies under varying climates <i>Journal of Vegetation</i>
26	498	Science 11 649–58
27	499	Davies S J, Abiem I, Salim K A, Aguilar S, Allen D, Alonso A, Anderson-Teixeira K, Andrade
28	500	A, Arellano G, Ashton P S, Baker P J, Baker M E, Baltzer J L, Basset Y, Bissiengou P,
29	501	Bohlman S, Bourg N A, Brockelman W Y, Bunyavejchewin S, Burslem D F R P, Cao M,
30	502	Cárdenas D, Chang L-W, Chang-Yang C-H, Chao K-J, Chao W-C, Chapman H, Chen Y-Y,
31	503	Chisholm R A, Chu C, Chuyong G, Clay K, Comita L S, Condit R, Cordell S, Dattaraja H
2∠ 33	504	S, Oliveira A A de, Ouden J den, Detto M, Dick C, Du X, Duque A, Ediriweera S, Ellis E
34	505	C, Obiang N L E, Esufali S, Ewango C E N, Fernando E S, Filip J, Fischer G A, Foster R,
35	506	Giambelluca T, Giardina C, Gilbert G S, Gonzalez-Akre E, Gunatilleke I A U N,
36	507	Gunatilleke C V S, Hao Z, Hau B C H, He F, Ni H, Howe R W, Hubbell S P, Huth A,
37	508	Inman-Narahari F, Itoh A, Janík D, Jansen P A, Jiang M, Johnson D J, Jones F A, Kanzaki
38	509	M, Kenfack D, Kiratiprayoon S, Král K, Krizel L, Lao S, Larson A J, Li Y, Li X, Litton C
39	510	M, Liu Y, Liu S, Lum S K Y, Luskin M S, Lutz J A, Luu H T, Ma K, Makana J-R, Malhi Y,
40	511	Martin A, McCarthy C, McMahon S M, McShea W J, Memiaghe H, Mi X, Mitre D,
41 42	512	Mohamad M, et al 2021 ForestGEO: Understanding forest diversity and dynamics through a
43	513	global observatory network <i>Biol Conserv</i> 253 108907
44	514	Dubayah R, Armston J, Healey S, Bruening J, Patterson P, Kellner J, Duncanson L, Saarela S,
45	515	Ståhl G, Yang Z, Tang H, Blair B, Fatoyinbo L, Goetz S, Hancock S, Hansen M, Hofton M,
46	516	Hurtt G and Luthcke S 2022a GEDI Launches a New Era of Biomass Inference from Space
47	517	Environmental Research Letters 17 095001
48	518	Dubayah R. Armston J. Kellner J R. Duncanson L. Healey S P. Patterson P L. Hancock S. Tang
49 50	519	H. Bruening I. Hofton M.A. Blair I.B. and Luthcke S.B. 2022b GEDI 14A Footprint Level
50 51	520	Aboveground Biomass Density Version 2.1 (Oak Ridge, TN, USA: ORNL DAAC)
52	520	Dubayah R Blair I B Goetz S Fatoyinbo I. Hansen S Healey S Hurtt G Kellner I R Luthcke
53	521	S Armston I Tang H Duncanson I Hancock S Jantz P Marselis S M Patterson P Oi W
54	522	and Silva C 2020 The Global Ecosystem Dynamics Investigation: high-resolution laser
55	524	ranging of the Earth's forests and tonography Science of Remote Sensing 1 100002
56	544	ranging of the Latth 5 forests and topography science of Remote Sensing 1 100002
57		
58		
59		28

1
2
3
4
5
6
7
8
9
10
11
12
13

כ ∧	525	Duncanson L, Kellner J R, Armston J, Dubayah R, Minor D M, Hancock S, Healey S P,
4 5	526	Patterson P L, Saarela S, Marselis S, Silva C E, Bruening J, Goetz S J, Tang H, Hofton M,
5	527	Blair B, Luthcke S, Fatoyinbo L, Abernethy K, Alonso A, Andersen H-E, Aplin P, Baker T
7	528	R, Barbier N, Bastin J F, Biber P, Boeckx P, Bogaert J, Boschetti L, Boucher P B, Boyd D
8	529	S. Burslem D F R P. Calvo-Rodriguez S. Chave J. Chazdon R L. Clark D B. Clark D A.
9	530	Cohen W.B. Coomes D.A. Corona P. Cushman K.C. Cutler M.E.I. Dalling I.W. Dalponte
10	531	M Dash I de-Miguel S Deng S Ellis PW Frasmus B Fekety PA Fernandez-Landa A
11	532	Ferraz A Fischer R Fisher A G García-Abril A Gobakken T Hacker I M Heurich M Hill
12	532	D A Honkinson C Huong H Hubball S D Hudak A T Huth A Imbach B Joffory K J
13	524	KA, Hopkinson C, Huang H, Hubben ST, Hudak AT, Hudi A, Indach D, Jenery KJ, Vatah M, Kaamalay E, Kamfaaly D, Klivin N, Knamn N, Král K, Krůžaly M, Jahridna N, Javvia
14	534 525	Katon M, Kearsley E, Kenrack D, Kijun N, Knapp N, Krai K, Krucek M, Labriere N, Lewis
15	535	S L, Longo M, Lucas R M, Main R, Manzanera J A, Martinez R V, Mathieu R, Memiagne
16	536	H, Meyer V, Mendoza A M, Monerris A, Montesano P, Morsdorf F, Næsset E, Naidoo L,
1/ 10	537	Nilus R, O'Brien M, Orwig D A, Papathanassiou K, Parker G, Philipson C, Philips O L,
10 10	538	Pisek J, Poulsen J R, et al 2022 Aboveground biomass density models for NASA's Global
20	539	Ecosystem Dynamics Investigation (GEDI) lidar mission <i>Remote Sens Environ</i> 270 112845
20	540	Forrester D I, Tachauer I H H, Annighoefer P, Barbeito I, Pretzsch H, Ruiz-Peinado R, Stark H,
22	541	Vacchiano G, Zlatanov T, Chakraborty T, Saha S and Sileshi G W 2017 Generalized
23	542	biomass and leaf area allometric equations for European tree species incorporating stand
24	543	structure, tree age and climate For Ecol Manage 396 160–75
25	544	Friedlingstein P, Jones M W, O'Sullivan M, Andrew R M, Bakker D C E, Hauck J, Le Quéré C,
26	545	Peters G P, Peters W, Pongratz J, Sitch S, Canadell J G, Ciais P, Jackson R B, Alin S R,
27	546	Anthoni P. Bates N R. Becker M. Bellouin N. Bopp L. Chau T T T. Chevallier F. Chini L P.
28	547	Cronin M, Currie K I, Decharme B, Dieutchouang L M, Dou X, Evans W, Feelv R A, Feng
29	548	L. Gasser T. Gilfillan D. Gkritzalis T. Grassi G. Gregor L. Gruber N. Gürses Ö. Harris L
30 31	549	Houghton R A Hurtt G C Jida Y Ilvina T Luijkx I T Jain A Jones S D Kato E Kennedy
32	550	D Goldewijk K K Knauer I Korshakken U Körtzinger A Landschützer P Lauvset S K
33	551	Lefèvre N. Lienert S. Liu I. Marland G. McGuire P.C. Melton I.R. Munro D.R. Nabel I.F.
34	552	M S. Nakaoka S I. Niwa V. Ono T. Diarrot D. Doulter B. Pabder G. Pasplandy I. Pobertson
35	552	E Dödenheels C Desen T.M. Schwinger I. Schwingsheels C. Séférien D. Sutten A. I.
36	555	E, Rodenbeck C, Rosan T W, Senwinger J, Senwingsnacki C, Selenan R, Sutton A J,
37	554	Sweeney C, Talliua I, Talls F F, Hall H, Hibbook D, Tubleno F, Vall Del Well O K, Weishard N, Wada C, Wanninkhof D, Wataan A, L Willia D, Wiltshim A, L Yuan W, Yua C
38	555	Vuichard N, wada C, wanninkhol K, watson A J, wills D, willshife A J, Yuan W, Yue C, $N = N = 1 + 2000$
39	550	Yue X, Zaenie S and Zeng J 2022 Global Carbon Budget 2021 Earth Syst Sci Data 14
40 41	557	1917–2005
41	558	Hancock S, Armston J, Hofton M, Sun X, Tang H, Duncanson L I, Kellner J R and Dubayah R
43	559	2019 The GEDI Simulator: A Large-Footprint Waveform Lidar Simulator for Calibration
44	560	and Validation of Spaceborne Missions <i>Earth and Space Science</i> 6 294–310
45	561	Healey S P, Patterson P L and Armston J 2022 Algorithm Theoretical Basis Document (ATBD)
46	562	for GEDI Level-4B Gridded Aboveground Biomass Density
47	563	Janík D, Král K, Adam D, Hort L, Samonil P, Unar P, Vrska T and McMahon S 2016 Tree
48	564	spatial patterns of Fagus sylvatica expansion over 37 years For Ecol Manage 375 134-45
49	565	Kellner J R, Armston J, Birrer M, Cushman K C, Duncanson L, Eck C, Falleger C, Imbach B,
50	566	Král K, Krůček M, Trochta J, Vrška T and Zgraggen C 2019 New Opportunities for Forest
51 52	567	Remote Sensing Through Ultra-High-Density Drone Lidar Surv Geophys 40 959–77
52 53	568	Kellner J R, Armston J and Duncanson L 2022 Algorithm theoretical basis document for GEDI
54	569	footprint aboveground biomass density Earth and Space Science e2022EA002516
55		
56		
57		
58		
59		29

 $\mathbf{\nabla}$

V

59

2		
3	570	Krůček M, Král K, Cushman K C, Missarov A and Kellner J R 2020 Supervised segmentation of
4	571	ultra-high-density drone lidar for large-area mapping of individual trees <i>Remote Sens</i>
5	572	(Basel) 12 3260
0	573	Martínez Cano I, Muller-Landau H C, Joseph Wright S, Bohlman S A and Pacala S W 2019
/ 8	574	Tropical tree height and crown allometries for the Barro Colorado Nature Monument
9	575	Panama: A comparison of alternative hierarchical models incorporating interspecific
10	576	variation in relation to life history traits <i>Piageospiences</i> 16 847, 62
11	570	Moon M. Dichardson A. D. and Eriadl M. A. 2021 Multicasle accessment of land surface
12	570	moon M, Richardson A D and Fried M A 2021 Multiscale assessment of faild sufface
13	578	phenology from harmonized Landsat 8 and Sentinei-2, PlanetScope, and PhenoCam
14	5/9	imagery Remote Sens Environ 200 112/16
15	580	Næsset E 2005 Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on
16	581	biophysical stand properties derived from small-footprint airborne laser data <i>Remote Sens</i>
17	582	Environ 98 356–70
18	583	Patterson P L, Healey S P, Ståhl G, Saarela S, Holm S, Andersen H E, Dubayah R O, Duncanson
19	584	L, Hancock S, Armston J, Kellner J R, Cohen W B and Yang Z 2019 Statistical properties
20	585	of hybrid estimators proposed for GEDI - NASA's global ecosystem dynamics investigation
22	586	Environmental Research Letters 14 065007
23	587	Smith M N, Stark S C, Taylor T C, Ferreira M L, de Oliveira E, Restrepo-Coupe N, Chen S,
24	588	Woodcock T, dos Santos D B, Alves L F, Figueira M, de Camargo P B, de Oliveira R C,
25	589	Aragão L E O C, Falk D A, McMahon S M, Huxman T E and Saleska S R 2019 Seasonal
26	590	and drought-related changes in leaf area profiles depend on height and light environment in
27	591	an Amazon forest New Phytologist 222, 1284–97
28	592	Snowdon P 1991 A ratio estimator for bias correction in logarithmic regressions <i>Canadian</i>
29	503	Journal of Forest Research 21 720 4
30	504	Stohl G. Saarala S. Sahnall S. Holm S. Preidanbach I. Haalay S. P. Dattarson D. J. Magnusson S.
3 I 2 2	505	Stan O, Saarela S, Schnen S, Hohn S, Dieluchoach J, Healey S F, Fauerson F L, Wagnussen S,
32 33	393 506	Næsset E, Mickoberts K E and Gregoire T G 2010 Use of models in large-area forest
34	590	surveys: comparing model-assisted, model-based and hybrid estimation For Ecosyst 3 1–11
35	597	Tang H and Dubayan R 2017 Light-driven growth in Amazon evergreen forests explained by
36	598	seasonal variations of vertical canopy structure <i>Proceedings of the National Academy of</i>
37	599	Sciences 114 2640–4
38	600	Tang H, Ma L, Lister A, O'Neill-Dunne J, Lu J, Lamb R L, Dubayah R and Hurtt G 2021 High-
39	601	resolution forest carbon modeling for climate mitigation planning over the RGGI region,
40	602	USA Environ. Res. Lett. 16 035011 Online: https://iopscience.iop.org/article/10.1088/1748-
41	603	9326/abd2ef
42 42	604	Villikka M, Packalén P and Maltamo M 2012 The suitability of leaf-off airborne laser scanning
43 44	605	data in an area-based forest inventory of coniferous and deciduous trees Silva Fennica 46
45	606	99–110
46	607	White J C, Arnett J T T R, Wulder M A, Tompalski P and Coops N C 2015 Evaluating the
47	608	impact of leaf-on and leaf-off airborne laserscanning data on the estimation of forest
48	609	inventory attributes with the area-based approach Canadian Journal of Forest Research 45
49	610	1498–513
50	611	Wirth R Weber B and Ryel R I 2001 Spatial and temporal variability of canopy structure in a
51	612	tropical moist forest Acta Operatorica 22,235-44
52	612	Zhang X Liu I Liu Y Jayayelu S Wang I Moon M Henebry G M Friedl M A and Schoof C
ンン 54	61/	B 2018 Generation and evaluation of the VIIPS land surface phenology product <i>Parnota</i>
54 55	615	Sans Environ 216 212 20
56	015	Sens Environ 210 212-27
57		
58		

