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 2 

Abstract 30 

 31 

The Global Ecosystem Dynamics Investigation (GEDI) is a waveform lidar instrument on 32 

the International Space Station used to estimate aboveground biomass density (AGBD) in 33 

temperate and tropical forests. Algorithms to predict footprint AGBD from GEDI relative height 34 

(RH) metrics were developed from simulated waveforms with leaf-on (growing season) 35 

conditions. Leaf-off GEDI data with lower canopy cover are expected to have shorter RH 36 

metrics, and are therefore excluded from GEDI’s gridded AGBD products. However, the effects 37 

of leaf phenology on RH metric heights, and implications for GEDI footprint AGBD models that 38 

can include multiple nonlinear RH predictors, have not been quantified. Here, we test the 39 

sensitivity of GEDI data and AGBD predictions to leaf phenology. We simulated GEDI data 40 

using high-density drone lidar collected in a temperate mountain forest in the Czech Republic 41 

under leaf-off and leaf-on conditions, 51 days apart. We compared simulated GEDI RH metrics 42 

and footprint-level AGBD predictions from GEDI Level 4A models from leaf-off and leaf-on 43 

datasets.  Mean canopy cover increased by 31% from leaf-off to leaf-on conditions, from 57% to 44 

88%. RH metrics < RH50 were more sensitive to changes in leaf phenology than RH metrics ≥ 45 

50. Candidate AGBD models for the deciduous-broadleaf-trees prediction stratum in Europe that 46 

were trained using leaf-on measurements exhibited a systematic prediction difference of 0.6 – 47 

19% when applied to leaf-off data, as compared to leaf-on predictions. Models with the least 48 

systematic prediction difference contained only the highest RH metrics, or contained multiple 49 

predictor terms that contained both positive and negative coefficients, such that the difference 50 

from systematically shorter leaf-off RH metrics was partially offset among the multiple terms. 51 

These results suggest that, with consideration of model choice, leaf-off GEDI data can be 52 
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 3 

suitable for AGBD prediction, which could increase data availability and reduce sampling error 53 

in some forests.  54 

Page 3 of 31 AUTHOR SUBMITTED MANUSCRIPT - ERL-115422.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 4 

1. Introduction 55 

 56 

Forests are a large global carbon stock, but substantial current uncertainties in the spatial 57 

distribution of forest aboveground biomass density (AGBD) limit our ability to understand 58 

feedbacks between forests and global land use and climate change (Friedlingstein et al 2022). 59 

The Global Ecosystem Dynamics Investigation (GEDI) is a spaceborne lidar mission designed to 60 

characterize ecosystem structure and improve estimates of AGBD in temperate and tropical 61 

forests (Dubayah et al 2020, Dubayah et al 2022). The GEDI instrument, onboard the 62 

International Space Station (ISS), is a waveform lidar sensor that samples ~ 25 m footprints in 8 63 

parallel ground tracks following the trajectory of the ISS. In addition to full waveform data and 64 

waveform relative height (RH) metrics, GEDI data products include footprint level estimates of 65 

AGBD (the GEDI L4A product; Dubayah et al 2022b). 66 

 67 

GEDI predicts footprint AGBD using ordinary least squares regression models with 1 – 4 68 

predictor variables derived from RH metrics (Duncanson et al 2022, Kellner et al 2022). The 69 

models applied to on-orbit GEDI data were developed using a comprehensive training data set of 70 

plot-based estimates of AGBD and simulated GEDI waveforms, derived from airborne lidar 71 

(Duncanson et al 2022, Hancock et al 2019, Kellner et al 2022). This dataset was contributed by 72 

a large community of researchers and encompasses 21 countries on 6 continents, resulting in 13 73 

linear models used in 32 combinations of plant functional type (PFT) and geographic world 74 

region (Duncanson et al 2022, Kellner et al 2022). Further details on the training datasets are 75 

provided in Duncanson et al (2022). An important feature of this dataset is that simulated 76 
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 5 

waveform data were acquired under leaf-on conditions for ecosystems with seasonal 77 

deciduousness. 78 

 79 

Changes in leaf phenology affect GEDI waveform data because canopy cover decreases 80 

during leaf-off conditions, which will result in more total energy in GEDI waveform ground 81 

returns and a reduction in the height of RH metrics (Fig. 1). Consequently, AGBD predictions 82 

may differ between leaf-off and leaf-on data. GEDI footprint AGBD models are not intended to 83 

be applied to leaf-off GEDI data because leaf-off conditions are not represented in the model 84 

training data. To avoid generating predictions under leaf-off conditions, GEDI uses the 1 km 85 

Visible Infrared Imaging Radiometer Suite (VIIRS) land surface phenology product generated 86 

from daily 22-band imagery (Zhang et al 2018) to flag leaf-off measurements in deciduous 87 

forests (Kellner et al 2022). These leaf-off measurements are then excluded when generating 88 

gridded estimates of AGBD (the GEDI Level 4B AGBD product) in deciduous broadleaf and 89 

deciduous needleleaf strata (Dubayah et al 2022a, Healey et al 2022). 90 

 91 

A consequence of excluding leaf-off GEDI measurements from gridded estimates of 92 

AGBD is a loss of data in deciduous prediction strata. For example, Kellner et al (2022) 93 

documented that 55% of the observations in global deciduous broadleaf strata were acquired 94 

under leaf-off conditions during mission weeks 17 – 153 (April, 2019 – November, 2021). GEDI 95 

is fundamentally a sampling mission that will result in approximately 4% of the Earth’s surface 96 

being directly overlaid by a GEDI footprint at the end of the original planned mission (the exact 97 

coverage depends on mission length and orbital resonance). Data losses due to leaf phenology 98 

filtering reduce the number of ground tracks and observations available to estimate gridded 99 
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 6 

AGBD, limiting the number of 1 km cells with valid AGBD estimates, and increasing the 100 

sampling component of the standard error of cells with AGBD estimates (Patterson et al 2019, 101 

Ståhl et al 2016).  102 

 103 

Leaf-off reductions in canopy cover are expected to decrease RH metric height, but the 104 

magnitude of this phenomenon has not been directly tested using GEDI data. Consequently, we 105 

do not know the extent to which different RH metrics are affected by changes in leaf phenology, 106 

or the degree of associated bias in AGBD predictions from multi-variable, nonlinear candidate 107 

AGBD models. Characterizing the effects of leaf phenology on GEDI RH metrics and footprint 108 

AGBD estimates is an important first step towards assessing the potential use of GEDI leaf-off 109 

data for AGBD estimation. If leaf-off data could be incorporated in AGBD estimates, the 110 

sampling component of GEDI AGBD uncertainty could be reduced. 111 

 112 

Previous research comparing leaf-off and leaf-on lidar data has shown that discrete-return 113 

lidar data collected under leaf-off or leaf-on conditions can each be used, separately, to predict 114 

AGBD (Anderson and Bolstad 2013, Bouvier et al 2015, Næsset 2005, Villikka et al 2012, 115 

White et al 2015, Krůček et al 2020). Whether models perform best when trained and tested on 116 

leaf-off or leaf-on data, separately, depends on forest type, but absolute differences in the 117 

predictive power of the best leaf-off vs. leaf-on model were generally small for a suite of 118 

candidate models including: height percentiles; minimum, maximum, and mean canopy height; 119 

and metrics related to structural variability (Anderson and Bolstad 2013, Bouvier et al 2015). 120 

Fewer studies have examined whether models trained under one set of conditions can generalize 121 

to the other, but one study found that estimating biomass from leaf-off data using a model trained 122 
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 7 

on leaf-on data (again using a suite of lidar metrics including height percentiles, cover metrics, 123 

and metrics related to variability) increased model error (root mean square error, RMSE) by 33% 124 

for AGBD compared to the original leaf-on data accuracy, and increased bias by 2.2% (White et 125 

al 2015). 126 

  127 

 Here we quantify the impact of leaf-off conditions on predictions of AGBD using 128 

simulated GEDI waveforms in a temperate mountain forest in the southwest Czech Republic. 129 

Our analysis is based on simulated waveform data derived from two high-density drone lidar 130 

datasets collected 51 days apart under leaf-off and leaf-on conditions. These measurements 131 

isolate the importance of leaf phenology with little to no change in woody structure, allowing us 132 

to quantify the systematic prediction difference associated with the application of candidate 133 

GEDI models developed under leaf-on conditions when applied to leaf-off data. 134 

 135 

2. Methods 136 

 137 

2.1 Study site and inventory data 138 

 139 

We performed this study in a deciduous broadleaf forest in the southern Czech Republic 140 

(Kellner et al 2019). The site contains the Zofin Forest Dynamics Plot, which is a 25-ha 141 

permanent-inventory plot in which all free-standing woody plants > 1 cm diameter at breast 142 

height (DBH) have been mapped and monitored since 2012 (Davies et al 2021, Janík et al 2016). 143 

This forest is dominated by old-growth European beech (Fagus sylvatica, 78% of basal area), 144 
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 8 

Norway spruce (Picea abies, 17%), and silver fir (Abies alba, 4.5%) with occasional other 145 

broadleaf tree species (Janík et al 2016, Krůček et al 2020). 146 

 147 

Aboveground biomass of each tree was estimated using the models of Forrester et al. 148 

(2017) applied to the 2017 plot census. These equations are species-specific for the three most 149 

common species. For all other species, we used the generalized broadleaf equation of Forrester et 150 

al. (2017). The allometric models of Forrester et al. (2017) were used to develop the GEDI04_A 151 

aboveground biomass density (AGBD) data product in Europe (Duncanson et al 2022, Kellner et 152 

al 2022). 153 

 154 

2.2 High-density airborne lidar under leaf-off and leaf-on conditions 155 

 156 

Airborne lidar data were collected in two sets of orthogonal flight lines using a heavy-lift 157 

helicopter drone (Scout B1-100; Aeroscout GmbH, Lucerne-Horw, Switzerland) carrying a 158 

RIEGL VUX-1 laser scanner (RIEGL Laser Measurement Systems GmbH, Horn, Austria) 159 

coupled to an Oxford Technical Solutions Survey +2 GPS-IMU (Oxford Technical Solutions 160 

Ltd., Oxfordshire, United Kingdom). Additional technical details about the drone platform and 161 

payload are provided in (Kellner et al 2019). Flights were repeated on 2 dates that were 51 days 162 

apart—the first flights began on April 16, 2018, and the second flights started on June 6, 2018, at 163 

the beginning of full leaf-on conditions for this site. These dates captured leaf-off and leaf-on 164 

conditions with little to no change in woody structure (Fig. 1). The April campaign was 165 

completed in six flights over two consecutive days. The June campaign required six flights over 166 

three consecutive days. The total flight time for each campaign was about 5 hours. For each 167 
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 9 

campaign there were 45 flight lines in the NW-SE direction, and 45 flight lines in the NE-SW 168 

direction. Flight altitude was 110 m aboveground, and the nominal flight speed was 6 m · s-1. 169 

During the autonomous portion of the flight, the flight-control system maintained stable control 170 

of the aircraft and sensors. For example, during a representative flight line the realized speed was 171 

6 m · s-1 (SD = 0.06). The standard deviation in the pitch, roll, and heading axes was 0.3°, 0.6°, 172 

and 0.8°, respectively. The total areas covered were 1.72 and 1.60 km2, respectively, and mean 173 

point density was 5,189 pts m-2 under leaf-off conditions and 3,165 pts m-2 under leaf-on 174 

conditions. All data were post-processed and differentially corrected using a NovAtel FlexPak6 175 

GPS receiver (NovAtel Inc., Calgary, Canada). A previous analysis demonstrated that the post-176 

processed range accuracy was 2.4 cm (estimated accuracy in measured distance between the lidar 177 

sensor and reflecting targets), and the single-date precision was 2.1 – 4.5 cm (estimated from 178 

variation in return height on a uniform target; Kellner et al 2019). 179 

 180 

2.3 GEDI waveform simulation 181 

 182 

We used the GEDI waveform simulator to produce simulated waveforms from discrete-183 

return airborne lidar under leaf-off and leaf-on conditions (Blair and Hofton 1999, Hancock et al 184 

2019). Because GEDI04_A AGBD models (hereafter AGBD models) have been developed using 185 

simulated waveforms (Duncanson et al 2022, Kellner et al 2022), the simulator allows us to 186 

evaluate the impact of leaf-off and leaf-on conditions on waveform relative-height (RH) metrics, 187 

and the consequences of variation in simulated RH metrics on candidate AGBD models that 188 

contain different RH metrics. For example, low-valued RH metrics may be more sensitive to 189 

changes in leaf phenology than RH98, an index of maximum canopy height (Fig. 1).  190 
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 10 

 191 

Simulated waveform centers were placed on a 20 × 20 m grid within the 25 ha plot, for a 192 

total of 570 simulated waveforms. We used exactly the same waveform centers to produce 193 

simulated waveforms under leaf-off and subsequent leaf-on conditions. High scan angle data for 194 

low altitude airborne lidar can have a higher contribution of data from the sides of trunks and 195 

branches compared to actual GEDI data, so we retained points with scan angles < 6 degrees 196 

(GEDI’s maximum angle of incidence) for waveform simulation and excluded points collected 197 

from scan angles ≥ 6 degrees (Hancock et al 2019). Mean point densities for points < 6 degrees 198 

within simulated waveforms were 1,753 and 1,304 pts m-2 under leaf-off and leaf-on conditions, 199 

respectively (range = 543 – 2,981 and 850 – 1,643 pts m-2 for leaf-off and leaf-on conditions, 200 

respectively) which exceeds the minimum point density recommendation in Hancock et al 201 

(2019). Waveforms were simulated using 15.6 ns full width half maximum (FWHM) and 22 m 202 

footprint diameter. RH metrics were computed relative to the center-of-gravity of the ground 203 

waveform (Hancock et al 2019). 204 

 205 

2.4 Waveform sensitivity to leaf phenology  206 

 207 

We evaluated the sensitivity of simulated waveforms to leaf phenology by comparing 208 

simulated canopy cover and RH metrics between leaf-off and leaf-on conditions. To determine 209 

whether canopy cover and RH metrics changed between leaf-off and leaf-on conditions, we used 210 

a paired Wilcoxon test. We also calculated the effect size (Cohen’s d) associated with leaf-area 211 

changes on each RH metric (e.g., the change in RH50 under leaf-off and leaf-on conditions). 212 

Following the approach developed by the GEDI Science Team to predict AGBD, we considered 213 

Page 10 of 31AUTHOR SUBMITTED MANUSCRIPT - ERL-115422.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 11 

RH metrics from RH10 – RH90 in increments of 10% in addition to RH98 (Duncanson et al 214 

2022, Kellner et al 2022). 215 

 216 

2.5 Impact of leaf phenology on GEDI AGBD predictions 217 

 218 

We quantified the impact of leaf-area changes on AGBD predictions using candidate 219 

AGBD models described in Duncanson et al. (2022), including the currently selected model for 220 

the deciduous broadleaf trees (DBT) prediction stratum in Europe. AGBD models are ordinary 221 

least squares regressions with 1 – 4 predictor variables, where potential predictor variables are 222 

simulated RH metrics RH10 – RH90 in increments of 10%, RH98, and products between pairs of 223 

RH metrics. Each model uses one of four transformation scenarios: either a natural logarithm or 224 

square-root on the response variable, and either the same or no transformation on the predictors. 225 

There were four feature sets under consideration for each transformation scenario. These were: 226 

(1) all RH metrics were permitted in candidate models; (2) no RH metrics < RH50 were 227 

permitted in models; (3) models were forced to contain RH98; and (4) no RH metrics < RH50 228 

were permitted in models and models were forced to contain RH98. The performance of 229 

thousands of candidate models was ranked for each transformation scenario and feature set 230 

combination in order of smallest mean residual error, smallest percentage root mean squared 231 

error (RMSE) rounded down to the nearest 5%, the maximum RH metric in the model, the 232 

number of coefficients in the model, and the number of RH metrics in the model (Duncanson et 233 

al 2022). We examined the top 20 models under each feature set scenario (i.e. 80 candidate 234 

models). 235 

 236 
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 12 

All candidate AGBD models were developed by the GEDI Science Team using simulated 237 

GEDI waveforms under leaf-on conditions (Duncanson et al 2022, Kellner et al 2022). 238 

Examining the difference in predicted AGBD by applying the coefficients from these models to 239 

simulated waveforms collected under leaf-off and leaf-on conditions provides an estimate of the 240 

magnitude of systematic prediction difference due exclusively to changes in leaf phenology. 241 

Systematic prediction difference for candidate model j averaged across n = 570 waveforms was 242 

computed according to: 243 

 244 

𝑆𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑗 = 100 ×  
1

𝑛
∑ (𝐴𝐺𝐵𝐷𝑖,𝑗,𝑙𝑒𝑎𝑓 𝑜𝑓𝑓−𝐴𝐺𝐵𝐷𝑖,𝑗,𝑙𝑒𝑎𝑓 𝑜𝑛)𝑛

𝑖=1
1

𝑛
∑ 𝐴𝐺𝐵𝐷𝑖,𝑗,𝑙𝑒𝑎𝑓 𝑜𝑛

𝑛
𝑖=1

                                 245 

(1) 246 

 247 

Here, 𝐴𝐺𝐵𝐷𝑖,𝑗,𝑙𝑒𝑎𝑓 𝑜𝑛 is the back-transformed and bias corrected AGBD for footprint i under 248 

candidate model j under leaf-on conditions, and 𝐴𝐺𝐵𝐷𝑖,𝑗,𝑙𝑒𝑎𝑓 𝑜𝑓𝑓 is the corresponding value for 249 

footprint i, candidate model j under leaf-off conditions. Candidate AGBD models use the 250 

Snowdon (1991) or Baskerville (1972) back-transformation and bias corrections (Kellner et al 251 

2022). We also calculated the change in RMSE associated with the change in leaf phenology: 252 

 253 

∆𝑅𝑀𝑆𝐸𝑗 = 𝑅𝑀𝑆𝐸𝑗,𝑙𝑒𝑎𝑓 𝑜𝑓𝑓 −  𝑅𝑀𝑆𝐸𝑗,𝑙𝑒𝑎𝑓 𝑜𝑛     (2) 254 

 255 

Where 𝑅𝑀𝑆𝐸𝑗,𝑙𝑒𝑎𝑓 𝑜𝑓𝑓 and 𝑅𝑀𝑆𝐸𝑗,𝑙𝑒𝑎𝑓 𝑜𝑛 are RMSE during leaf-off and leaf-on conditions, 256 

respectively, expressed as a percentage of the mean AGBD for this site. RMSE was calculated 257 

using footprint-level AGBD estimates from inventory plot data. 258 

 259 
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3. Results 260 

 261 

Measurements of vertical forest structure from high-density drone lidar were sensitive to 262 

changes in leaf phenology (Fig. 1,3). The presence of leaves increased mean canopy cover by an 263 

average of 31% (standard deviation = 8%), from 57% to 88%, reducing penetration into the 264 

canopy (Fig. 2). For example, the density of ground returns under leaf-on conditions was 102 pts 265 

/ m2. This is an 87% reduction in the frequency of ground returns compared to leaf-off conditions 266 

(759 pts / m2). 267 

  268 

All simulated waveform metrics changed significantly between leaf-off and leaf-on 269 

conditions (Fig. 3, Table 1). RH metrics < RH50 were more sensitive to changes in leaf 270 

phenology than upper-canopy RH metrics. For RH30 and above, the effect size of leaf-area 271 

changes decreased with increasing RH values (Table 1). During leaf-off conditions RH10 – 272 

RH30 were close to 0 m in height (and therefore contained within the ground-return portion of 273 

the simulated waveform) with little variation, but during leaf-on conditions RH10 – RH30 were 274 

larger and more variable (Fig. 3). 275 

 276 

Candidate AGBD models developed using leaf-on data were sensitive to changes in leaf 277 

phenology. As expected, systematic prediction difference (i.e. the % change in estimated AGBD; 278 

Eqn. 1) was negative for all candidate models, indicating that predicted AGBD is smaller in leaf-279 

off conditions in comparison to the leaf-on conditions used for model development (Eqn. 1). The 280 

magnitude of systematic prediction difference ranged from 0.6 to 19.0% among candidate 281 

models (Fig. 4; Table 2). Distributions of predicted AGBD values are shown in Figure S1. 282 
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 283 

We considered 20 candidate models originally described by Duncanson et al (2022)  284 

under each of four feature-set scenarios. The feature set scenarios were (1) all RH metrics were 285 

permitted in candidate models; (2) no RH metrics < RH50 were permitted in models; (3) models 286 

were forced to contain RH98; and (4) no RH metrics < RH50 were permitted in models and 287 

models were forced to contain RH98 (Fig. 4). A one-way ANOVA indicated that predicted 288 

AGBD varied among feature sets (F = 85.5; DF = 3; P < 0.001, R2 = 0.76). A Tukey’s post-hoc 289 

multiple comparison test showed that feature sets that contained RH metrics < RH50 had smaller 290 

systematic differences in predicted AGBD across leaf phenology conditions due than feature sets 291 

that excluded RH metrics < 50 (Table S1). All candidate models with systematic prediction 292 

difference < 5% included both the lowest (RH10) and the highest (RH98) RH metrics (Table 2). 293 

The two models with the smallest systematic prediction difference included logarithmic 294 

transformations of AGBD and RH metrics–these two models had prediction difference < 2%, 295 

whereas all other models had prediction difference > 4% (Table 2). There was no clear pattern of 296 

reduced systematic prediction difference when RH metrics appeared either alone or as products – 297 

the best model included RH10 in isolation and RH98 in a product (e.g., RH60 × RH98) while the 298 

second-best model included RH98 in isolation and RH10 in a product (RH10 × RH30; Table 2). 299 

  300 

There was a strong correlation between systematic prediction difference and ∆RMSE 301 

(Fig. 5), where ∆RMSE was calculated from field-estimated footprint-level AGBD (Eqn. 2). 302 

Models with larger magnitude in systematic prediction difference also had larger increases in 303 

RMSE in leaf-off conditions compared to leaf-on conditions (Pearson correlation r = -0.99, P < 304 
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0.001), increasing overall model RMSE by up to > 8%. Models with the lowest systematic 305 

prediction difference had similar RMSE in both leaf phenology conditions. 306 

 307 

4. Discussion 308 

 309 

Our analysis demonstrates that changes in leaf phenology impact the vertical distribution of 310 

lidar data, with potential consequences for the estimation of AGBD. Using simulated GEDI 311 

waveforms, our results confirmed expectations that leaf-off conditions reduce canopy cover (Fig. 312 

2), resulting in lower RH metric values (Fig. 3). Consequently, we found that predicted AGBD is 313 

systematically smaller when candidate GEDI AGBD models – developed using simulated 314 

waveforms under leaf-on conditions – were applied to waveforms simulated using leaf-off data 315 

(Fig. 4). Our novel dataset allowed us to quantitatively describe effects on predicted AGBD 316 

among models that can include nonlinear and interactive predictor variables. The magnitude of 317 

this systematic prediction difference data varied widely among candidate models, from < 1% to 318 

almost 20%.  Models with greater systematic prediction difference also had greater increases in 319 

RMSE for leaf-off AGBD predictions when compared to field-estimated AGBD (Fig. 5), 320 

indicating that systematic prediction difference is associated with lower model accuracy, 321 

specifically an underestimation of AGBD (Fig. S1). Here, we discuss the causes of this variation, 322 

and how model selection can minimize systematic prediction difference in AGBD estimates from 323 

changes in leaf phenology in on-orbit GEDI data. 324 

 325 

The presence of leaves increases canopy cover, causing less lidar signal energy to be 326 

reflected from the ground under leaf-on conditions. All RH metrics were smaller during leaf-off 327 
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conditions, as expected, and the magnitude of this change varied greatly among metrics – the 328 

effect size for RH98 was nearly an order of magnitude less than lower-canopy metrics of RH20 329 

and RH30 (Fig. 3, Table 1). Larger changes in smaller RH metrics are expected in high canopy 330 

cover forests like Zofin because the sensitivity of RH metrics to changes in waveform energy is 331 

inversely proportional to waveform intensity near the RH metric height, and waveform intensity 332 

is relatively smaller for smaller RH metrics in leaf-on high canopy cover forests (Hancock et al 333 

2019). Surprisingly, although lower-canopy RH metrics were most affected by changes in leaf 334 

phenology, the exclusion of metrics < RH50 increased systematic prediction differences among 335 

candidate AGBD models, with or without the forced inclusion of RH98 (Fig. 4; Table S2). This 336 

seemingly contradictory result is possible because some candidate GEDI AGBD models with RH 337 

metrics < RH50 had both negative and positive coefficients (Table 2). Because all RH metrics 338 

were systematically smaller in leaf-off conditions, the combination of both positive and negative 339 

model coefficients allows some of the systematic difference in RH metrics to effectively “cancel 340 

out”, reducing the magnitude of the overall systematic difference in predicted AGBD. The only 341 

model with systematic prediction difference < 6% that did not contain a combination of positive 342 

and negative coefficients contained only a single predictor, RH98, the metric that changed least 343 

between leaf-off and leaf-on conditions (Tables 1, 2). Further, all models with systematic 344 

prediction difference < 6% contained RH98 as a predictor. 345 

 346 

Systematic differences in AGBD predictions from leaf phenological changes could be 347 

reduced by considering land surface phenology at the time GEDI data are acquired. The 348 

GEDI04_A data product contains flags derived from the VIIRS global land surface phenology 349 

product that indicate whether the GEDI footprint was collected after the onset of maximum 350 

Page 16 of 31AUTHOR SUBMITTED MANUSCRIPT - ERL-115422.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 17 

greenness and before the midpoint of the senescence phase at the resolution of the VIIRS 1 km 351 

grid (Kellner et al 2022). Although this characterization will correctly identify leaf-off 352 

conditions in northern-hemisphere deciduous forests, and some tropical dry forests that 353 

experience total leaf loss during dry-seasons, it may not detect crown-scale deciduousness that is 354 

common in some evergreen broadleaf forests. Consideration of leaf phenology effects on GEDI 355 

lidar data and derived products in other ecosystem types warrants further consideration. Forests 356 

do not exist in binary leaf-off or leaf-on states – rather, the degree and timing of deciduousness 357 

varies among individuals and species (Augspurger and Bartlett 2003, Condit et al 2000, Smith et 358 

al 2019). For example, one study in Panama documented up to 19.1% leafless crown area in a 359 

moist tropical forest canopy (Condit et al 2000). In that community the crown area of individual 360 

trees can reach up to 0.1 ha in size, roughly twice the area of a single GEDI footprint (Martínez 361 

Cano et al 2019). Additionally, total leaf area has been shown to vary seasonally across the 362 

Amazon basin by 5-10%, with asynchronous patterns in the canopy and understory that can 363 

complicate expected effects on predicted AGBD (Tang and Dubayah 2017). However, in some 364 

tropical forests community-level leaf phenology is more stable than individual-level patterns due 365 

to asynchronous phenology among species (Wirth et al 2001); if community-level phenology is 366 

sampled representatively in training data then individual variance is subsumed in AGBD model 367 

parameter covariance matrix. Other high-resolution gridded data products could help to identify 368 

leaf-off conditions at the scale of individual GEDI footprints, and/or resolve forest classification 369 

errors and resolution differences among current auxiliary products (Bolton et al 2020, Moon et al 370 

2021). Modelled error can also address systematic biases and be propagated in AGBD prediction 371 

(Tang et al 2021).  372 

 373 
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Our analysis used simulated GEDI waveform data and focused on quantifying the impact 374 

of extreme changes in leaf phenology on AGBD prediction. We acknowledge that other sources 375 

of error are also important for understanding overall accuracy in AGBD predictions, including 376 

ground-finding error associated with GEDI waveform processing and allometric model error, 377 

among others. By using simulated waveforms derived from drone lidar collected 51 days apart, 378 

our analysis isolated the impact of leaf phenological changes on simulated GEDI AGBD at a 379 

single forest site in the absence of changes in woody vegetation structure. We believe that our 380 

study defines an upper limit on systematic prediction differences associated with leaf 381 

phenological changes in deciduous broadleaf forests of Europe. For example, changes in leaf 382 

area that are smaller than the range examined here occur throughout leaf-on conditions during 383 

the growing season, i.e. changing in leaf area during the growing season are expected to produce 384 

smaller changes in RH metrics than changes between the growing and post-senescence period.  385 

 386 

5. Conclusions 387 

 388 

In this paper we demonstrated the quantitative sensitivity of applying GEDI AGBD models 389 

to leaf-off data in a deciduous old growth forest in Europe, and shows that there is an associated 390 

1-20% underestimation when using this data for AGBD estimation compared to using only leaf-391 

on data. Therefore, for the majority of current applications utilizing GEDI lidar for AGBD 392 

mapping, we confirm that caution must be taken when using leaf-off data. The currently GEDI 393 

L4A product does not include leaf-off data in its predictions, largely due to the theoretical bias 394 

that our paper quantitatively demonstrates. 395 

 396 
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We found that some AGBD models are more transferable to leaf-off conditions than others, 397 

and while they all produced increases in RMSE and AGBD underestimation, there may be 398 

conditions when it is highly desirable to use leaf-off data from GEDI (e.g. if those are the only 399 

data available over a study site, or the sample size would increase sufficiently to justify a slight 400 

bias in AGBD). In these cases, our paper can inform adoption of minimally biased AGBD 401 

models for application to leaf-off conditions. For our study area, models that included RH98 had 402 

the lowest systematic differences in predicted AGBD, and indeed RH98 was included in all 403 

models that yielded <6% systematic prediction difference. This supports the expectation that 404 

maximum height should be the least sensitive to leaf phenology in comparison to any lower RH 405 

metric. Additionally, multivariate models including both positive and negative model 406 

coefficients had the lowest systematic prediction differences, due to the effect of systematically 407 

smaller RH metrics partially compensating among predictor variables. 408 

 409 

Further research into the potential utility of leaf-off data for GEDI AGBD estimation should 410 

be conducted, potentially taking advantage of other datasets where direct comparisons between 411 

leaf-on and leaf-off conditions can be made. These results are from a single data-rich study site, 412 

and therefore may not generalize to other deciduous ecosystems. GEDI to GEDI crossovers may 413 

be one such dataset that can expand the analysis presented here for a global-scale analysis of the 414 

impact of leaf area phenology on AGBD mapping. This may be particularly important for areas 415 

where relatively limited leaf-on data area available, e.g. due to persistent cloud-cover during the 416 

growing season. The potential use of leaf-off data could increase the sample size of GEDI 417 

AGBD estimates, reducing overall uncertainty in the spatial distribution of global AGBD. 418 

 419 
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8. Tables and figures 433 

 434 

Table 1. Sensitivity of RH metrics to changes in leaf phenology. Data are from simulated GEDI 435 

waveforms in a temperate mountain forest in the DBT × Europe prediction stratum. Statistics are 436 

for footprint-to-footprint differences in RH metrics between leaf-off and leaf-on conditions 51 437 

days apart. All tests were significant (P < 0.001). 438 

Metric 
Difference between leaf-off and leaf-on height 

Paired Wilcoxon V Cohen's d 

RH10 162723 1.69 

RH20 161561 1.92 
RH30 162730 1.93 

RH40 162140 1.25 
RH50 162122 0.85 
RH60 162122 0.61 
RH70 162701 0.48 
RH80 162169 0.39 
RH90 161855 0.31 
RH98 162477 0.21 

  439 
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Table 2. Systematic differences in predicted AGBD (Mg ha-1) due to leaf-off conditions for 440 

candidate GEDI AGBD models in the DBT × Europe prediction stratum. The 5 models with the 441 

smallest systematic prediction difference (Eqn. 1) are shown for each of 4 feature sets. Data are 442 

from simulated GEDI waveforms in a temperate mountain forest in the southwest Czech 443 

Republic. Summaries from the top 20 models under each feature set are in Table S2). The model 444 

being used to predict AGBD in release 1 and release 2 of the GEDI04_A data product is in bold. 445 

 446 

Rank Model 

Systematic 

prediction 

difference (%) 

Feature set 1: all RH metrics permitted 

1 
log(AGBD) = -2.21×1001 - 3.22 × log(RH10) + 2.11 × log(RH20) - 2.00 × log(RH40×RH50)  

                      + 5.34 × log(RH60×RH98) 
-0.56 

2 log(AGBD) = -2.48×1001 + 2.86 × log(RH40) + 6.75 × log(RH98) - 1.73 × log(RH10×RH30)  -1.39 

3 log(AGBD) = -5.57×10-02 - 1.89×10-02 × RH10 + 4.71×10-02 × RH98 + 8.62×10-05 × RH60×RH70  -4.41 

4 log(AGBD) = 6.01 - 8.09×10-02 × RH10 + 4.87×10-04 × RH10×RH98 + 8.15×10-05 × RH60×RH70  -7.09 

5 
log(AGBD) = -2.61 + 7.26×10-02 × RH98 + 6.82×10-05 × RH10×RH50 - 2.65×10-04 × RH10×RH98  

                      + 9.03×10-05 × RH20×RH98 -7.22 

Feature set 2: no RH metrics < 50 permitted 

1 sqrt(AGBD) = -4.08×1001 + 4.53×10-01 × sqrt(RH80×RH90)    -13.57 

2 sqrt(AGBD) = -9.49×1001 - 2.02×10-01 × sqrt(RH50) + 1.02×1001 × sqrt(RH80)   -15.15 

3 sqrt(AGBD) = -3.97×1001 - 3.25×10-01 × sqrt(RH50) + 4.77×10-01 × sqrt(RH70×RH90)   -15.50 

4 sqrt(AGBD) = -9.53×1001 + 9.99 × sqrt(RH80)    -15.59 

5 sqrt(AGBD) = -3.28×1001 - 1.47 × sqrt(RH50) + 5.25×10-01 × sqrt(RH70×RH80)   -15.71 

Feature set 3: forced inclusion of RH98 

1 log(AGBD) = -2.48×1001 + 2.86 × log(RH40) + 6.75 × log(RH98) - 1.73 × log(RH10×RH30)  -1.39 

2 log(AGBD) = -5.57×10-02 - 1.89×10-02 × RH10 + 4.71×10-02 × RH98 + 8.62×10-05 × RH60×RH70  -4.41 

3 
log(AGBD) = -3.74 + 1.15×10-02 × RH20 + 5.57×10-03 × RH50 + 7.55×10-02 × RH98 - 1.94×10-04 × 

RH10×RH98 
-6.35 

4 
log(AGBD) = -3.07 + 1.10×10-02 × RH20 + 7.00×10-02 × RH98 - 1.92×10-04 × RH10×RH98 + 

4.79×10-05 × RH50×RH98 
-6.77 

5 
log(AGBD) = -2.55 + 7.17×10-02 × RH98 + 7.58×10-05 × RH10×RH60 - 2.72×10-04 × RH10×RH98 + 

9.36×10-05 × RH20×RH98 
-6.79 

Feature set 4: no RH metrics < 50 permitted and forced inclusion of RH98 

1 sqrt(AGBD) = -3.70×1001 + 4.09×10-01 × RH98    -5.99 

2 sqrt(AGBD) = -5.28×1001 + 2.05 × sqrt(RH98) + 3.70×10-01 × sqrt(RH70×RH80)   -15.97 

3 sqrt(AGBD) = -9.65×1001 + 7.18 × sqrt(RH70) + 2.92 × sqrt(RH98)   -16.29 

4 sqrt(AGBD) = -2.07×1001 + 1.07×10-01 × RH98 + 1.51×10-03 × RH70×RH80   -16.31 

5 sqrt(AGBD) = -4.18×1001 + 3.38×10-01 × RH70 + 1.28×10-01 × RH98   -16.83 

 447 
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 448 
Figure 1. High-density drone lidar in a temperate mountain forest in DBT × Europe. Point clouds 449 

(a,b) show a transect ~ 1 m in depth through an area the size of a single GEDI footprint. Point 450 

clouds are from the same location observed 51 days apart under leaf-off (a) and leaf-on (b) 451 

conditions. The presence of leaves reduces penetration of laser energy into the canopy. The 452 

associated simulated GEDI waveform (c) and relative height (RH) metrics (d) are shown for this 453 

location for each leaf phenology condition.  454 
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 455 

Figure 2. Distributions of canopy cover (a) and increase in canopy cover from leaf-off to leaf-on 456 

data (b) for 570 simulated GEDI waveforms collected 51 days apart in a temperate mountain 457 

forest in the southwest Czech Republic. Density values represent the relative frequency of cover 458 

values among waveforms.  459 
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 460 
Figure 3. Low-valued simulated GEDI waveform RH metrics change between leaf-off and leaf-461 

on conditions. The data are from 570 simulated GEDI waveforms collected 51 days apart in a 462 

temperate mountain forest in the southwest Czech Republic. These simulated waveforms are in 463 

the DBT × Europe prediction stratum.  464 
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 465 

 466 
Figure 4. Systematic differences in predicted AGBD caused by changes in leaf phenology (Eqn. 467 

1) among 20 candidate AGBD models in the DBT × Europe prediction stratum for each of 4 468 

feature-set scenarios (Table S2). AGBD was predicted using simulated GEDI waveform RH 469 

metrics. Here, boxes edges denote the first and third quantiles, solid lines indicate the median 470 

value, and whiskers indicate the data point furthest from the mean and less than 1.5 times the 471 

interquartile range; other outliers are included as solid points.  472 
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 473 
Figure 5. Relationship between systematic differences in predicted AGBD (Eqn. 1) and model 474 

∆RMSE (Eqn. 2) due to changes in leaf phenology for 80 candidate AGBD models for the DBT 475 

× Europe prediction stratum. Positive ∆RMSE indicates higher RMSE in leaf-off conditions 476 

compared to leaf-on conditions. AGBD was predicted using simulated GEDI waveform RH 477 

metrics.  478 
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