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High symmetry metallosupramolecular architectures (MSAs) have been exploited for a range of 

applications including molecular recognition, catalysis and drug delivery. Recently there have 

been increasing efforts to enhance those applications by generating reduced symmetry MSAs. Here 

we report our efforts to use supramolecular (dispersion and hydrogen bonding) forces and 

solvophobic effects to generate isomerically pure [Pd2(L)4]4+ cage architectures from a family of 

new reduced symmetry ditopic tripyridyl ligands. The reduced symmetry tripyridyl ligands 

featured either solvophilic polyether chains, solvophobic alkyl chains or amino substituents. We 

show using NMR, HPLC, X-ray diffraction data and DFT calculations that a combination of 

dispersion forces and solvophobic effects does not provide any control of the [Pd2(L)4]4+ cage 

isomer distribution with mixtures of all four cage isomers (HHHH, HHHT, cis-HHTT or trans-

HTHT, H = head and T = tail) obtained in each case. More control was obtained by exploiting 

hydrogen bonding interactions between amino units. While cage assembly with a 3-amino-

substituted tripyridyl ligand lead to a mixture of all four possible isomers, the related 2-amino-

substituted tripyridyl ligand generated a cis-HHTT cage architecture. The formation of the cis-

HHTT [Pd2(L)4]4+ cage was confirmed using NMR studies and X-ray crystallography. 

Introduction 

Self-assembled coordination complexes, and in particular metallosupramolecular architectures 

(MSAs), have been subject to increasing interest1-8 due to their many potential applications. The 

molecular recognition properties of these systems have been exploited to encapsulate 

environmental pollutants9-10 and reactive species.11-13 These systems have also been used for 

catalysis14-18 and as drug delivery vectors.19-22 Additionally, MSAs have been utilized as molecular 
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flasks,23-26 and their biological,27-29 electronic,30-32 redox33-34 and photophysical35-37 properties have 

been extensively examined. 

Nature has been developing self-assembled and noncovalent folded molecules for specific 

purposes, such as catalysis, for millennia. Most biological systems are typically (but not always38-

40) characterized by low symmetry as these can be much more effective as they are tailored to 

recognize the vast majority of substrates, intermediates and transition states that possess little or 

no symmetry elements. In contrast, virtually all the accomplishments that have been achieved with 

MSAs have utilized high-symmetry structures; these are significantly easier to prepare due to the 

limitations of thermodynamic assembly reactions, where reversibility leads to multiple species of 

similar energy, maximizing global entropy. As such, wholly synthetic, reduced-symmetry MSAs 

are not only more desirable as functional systems, they also push the boundaries of current self-

assembly methods.41-44   

While almost any metal ion with a correctly designed ligand system can be exploited to generate 

MSAs, palladium(II) based architectures45-46 represent one of the largest subsets of these materials. 

In particular, [Pd2(L)4]4+ cage architectures, first reported by McMorran and Steel,47 have been 

extensively studied.45-46, 48-52 Their molecular recognition properties with neutral organic12, 53-60, 

inorganic61-65 guests and anions66-75 have been extensively examined. They have also been 

exploited for drug delivery76 and catalysis.77-80 Additionally, [Pd2(L)4]4+  cage architectures have 

been at the forefront of efforts to develop reduced symmetry MSAs (Figure 1).81-84 This is 

presumably because they are assembled from relatively few components (six: four ligands and two 

metal ions) and the synthesis of the diheterocyclic ligands used to assemble the cages is usually 

facile. Several different groups have developed methods for the generation of lower symmetry 

[Pd2(L)4]4+ cage architectures that feature different ligands. [Pd2(Lx)2(Ly)2]4+ cages, both cis85-86 
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and trans87 isomers, and [Pd2(La)3(Lb)]4+ cage systems88 (Figure 1) have been generated by 

exploiting geometric complementarity or steric control.89 These approaches have been further 

extended to develop larger heteroleptic [Pdn(Lx)n(Ly)n]2n+ cage architectures (where n = 4, 6 and 

8), 42, 90 and very recently a heteroleptic [Pd3(Lx)2(Ly)3]6+ cage has been generated by elegantly 

exploiting geometric complementarity.91 Guest templates (C60) have also been used to bias the 

formation of a heteroleptic cis-[(C60)⊂Pd2(Lc)2(Ld)2]4+ cage−guest adduct.92   

 

 

 

 

 

 

 

Figure 1: Cartoons depicting the different types of hetero and homoleptic [Pd2(L)4]4+ cages.  Cis- 

and trans-[Pd2(LA)2(LB)2]4+ (top left) and [Pd2(LA)3(LB)]4+ (top right). A hypothetical tetra-

heteroleptic [Pd2(LA)(LB)(LC)(LD)]4+ cage (bottom left) and the more common homoleptic 

[Pd2(L)4]4+ cage (bottom right). 

We have also synthesized a cis-[Pd2(tripy)2(2A-tripy)2]4+ cage, by using unsubstituted (tripy = 2,6-

bis(pyridin-3-ylethynyl)pyridine) and 2-amino-substituted tripyridyl ligands (2A-tripy = 5,5'-

(pyridine-2,6-diylbis(ethyne-2,1-diyl))bis(pyridin-2-amine), Figure 2).93 The formation of the cis-
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heteroleptic system was achieved through hydrogen bonding and steric effects.86, 94 Interestingly, 

density function theory (DFT) calculations indicated that the cis-[Pd2(tripy)2(2A-tripy)2]4+ system 

was a long lived kinetically metastable intermediate rather than the thermodynamic product of the 

reaction. While these systems, along with others,88, 92 have been desymmetrized in one dimension, 

giving mixed ligand architectures, the two palladium ions are in the same environment. An 

alternative approach to low/reduced symmetry [Pd2(L)4]4+ cage architectures would be to use lower 

symmetry ligands where the two “ends” are different. This would lead to four potential isomeric 

outcomes; a head-to-head-to-head-to-head (HHHH), a head-to-head-to-head-to-tail (HHHT), a 

cis-head-to-head-to-tail-to-tail (cis-HHTT) or trans-head-to-tail-to-head-to-tail (trans-HTHT) 

[Pd2(L)4]4+ cage systems (Figure 2). Efforts to generate these types of low symmetry [Pd2(L)4]4+ 

cages isomerically pure have been developed recently.95 Lewis and co-workers96-97 (and others98) 

have used both steric effects and geometric complementarity in dipyridyl ligands to generate 

isomerically pure [Pd2(L)4]4+ cage systems with lateral asymmetry.96-97 This has been extended to 

[Pdn(L)2n]4+ cages (where n = 4 or 6) as well.99  In an alternative approach the Yuasa,100 Chand101 

and Lewis102 groups have used low-symmetry ligands that feature one pyridyl donor site and a 

second different donor unit (either an imidazole, a 1,2,3-triazole or an aryl amine) to selectively 

from the cis-HHTT [Pd2(L)4]4+ cage isomers. There is only one reported attempt to use non-

covalent/supramolecular forces to generate low symmetry [Pd2(L)4]4+ cages isomerically pure. 

Natarajan and co-workers have exploited hydrogen bonding interactions between alcohol 

functionalised low symmetry dipyridyl amide ligand based on cholic acid (Lcholic). DFT 

calculations indicated that the HHHH [Pd2(Lcholic)4]4+ isomer was the most stable.103 However, 1H 

NMR spectra of the cage mixtures were broad (even at 343 K) and do not provide clear insight 

into the isomer distribution within the system and no crystallographic evidence was obtained. 
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Additionally, hydrogen bonding interactions in amide104-105 and urea106 functionalized [Pd2(L)4]4+ 

cages have been used to generate lower symmetry cage conformations in the solid state.  

Building on our other work with [Pd2(L)4]4+ cage architectures,61-63, 66, 70-71, 107-108 we targeted the 

formation of isomerically pure [Pd2(L)4]4+ cage architectures, where the two palladium(II) ions are 

in different environments, using low-symmetry ligands and solvated palladium(II) ions. We 

proposed to achieve this through the use of supramolecular (dispersion and hydrogen bonding) 

forces and solvophobic effects.109-110 We have generated a family of new low symmetry tripyridyl 

ligands featuring hydrophilic polyether chains, hydrophobic alkyl chains or amino substituents 

(Figure 2). For ligands featuring the hydrophobic alkyl chains the combination of solvophobic and 

dispersion forces could potentially lead to aggregation/clumping of those groups influencing the 

isomer distribution, as has been observed by others in macrocyclic systems.109-110 Alternatively, 

for the ligands appended with the amino units a combination of steric effects and hydrogen bonding 

could affect the isomer distributions of the cage.88, 92 In both cases the overall symmetry of the 

cages is reduced/lowered relative to the parent [Pd2(L)4]4+ system. However, the micro/local 

symmetry of the cage cavity is unaffected. Herein we describe the synthesis of a series of new 

[Pd2(L)4]4+ cage architectures from these low symmetry tripyridyl ligands along with observed 

isomer distributions of the cages. It is shown that certain supramolecular forces are more useful 

than others in providing control over the isomer distributions. 

Results and Discussion 

Ligand synthesis 

To test if dispersion forces and solvophobic effects could produce a uniform single cage isomer, 

ligands with both polyether and alkyl chains (L1, L2 and L3), only polyether chains (L4, L6 and 
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L8) or only alkyl chains (L5, L7 and L9) were synthesized.  Additionally, we have previously 

used the hydrogen bonding effect between amino-functionalized ligands to generate cis-

[Pd2(tripy)2(2A-tripy)2]4+ heteroleptic cages, thus low-symmetry amino-substituted ligands (L10 

and L11) were also synthesized to assess whether a single isomer cage could be formed by using 

hydrogen bonding as the main driving force.  

Exploiting methods reported previously by ourselves61-63, 66, 70-71, 107-108 and others53, 80, 88, 111-112 we 

synthesised a family of new low symmetry tripyridyl ligands using the standard procedures 

outlined in the Supporting Information (L1 – L11, 60-75%, Figure 2, Supporting Information). 

There are four distinct sub families of ligands, L1-L3 feature an alkyl chain at one end and a 

polyether chain at the other, with the length of the chains decreasing across the series. L4, L6 and 

L8 are singly substituted with ethylene glycol chains of different length, featuring either one (L8 

monoethylene glycol (MEG)), two (L6 diethylene glycol (DEG)) or four (L4 tetraethylene glycol 

(TEG)) repeat units.  

L5, L7 and L9 are singly substituted with a linear alkyl chain (again of differing chain lengths, L5 

= dodecyloxy (DdO), L7 = hexyloxy (HexO), L9 = propyloxy (PrO). Additionally, two ligands 

featuring an amine substituent at one end (L10, 2-amino, L11 3-amino) were generated (Figure 2 

and Supporting Information). Each new low-symmetry ligand was characterized through 1H and 

13C NMR spectroscopies, mass spectrometry and elemental analysis. For example, 1H NMR 

spectroscopy of L1 in CD3CN (Supporting Information) revealed nine distinct peaks in the 

aromatic region, as well as signals arising from TEG and DdO chains. A diffusion-ordered 

spectroscopy (DOSY) NMR spectrum of the ligand showed that all proton resonances displayed 

the same diffusion coefficient (D = 3.61 × 10-10 m-2 s-1, Supporting Information). High-resolution 

electrospray mass spectrometry (HR-ESMS) showed a single isotopically resolved peak at 
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694.3839 m/z (calc. m/z = 694.3827 [L1+Na]+), which was assigned to the sodiated ligand, 

providing further evidence for the generation of the ligand. 13C NMR spectroscopy, along with 

elemental analysis was consistent with the clean formation of L1 (Supporting Information). 

Ligands L2 – L11 displayed similar spectral properties (Supporting Information). 

 

 

 

 

 

 

 

Figure 2: a) The family of low-symmetry tripyridyl ligands (L1-L11) and 2A-tripy.93 b) Cartoon 

representation of the HHHH, HHHT, trans-HTHT and cis-HHTT isomers of the [Pd2(L)4]4+ cage 

architectures. H = head and T = tail 

Cage synthesis with L1-L9 

The cages C1-C9 were synthesized by reacting each low-symmetry ligand (L1-L9) in a 4:2 ratio 

with Pd(NO3)2·2H2O in dimethylformamide (DMF) at 40 °C for 14 hours. Precipitation with a 1:4 

mixture of diethyl ether and petroleum ether (40-60) resulted in colorless-tan solids that were 

collected through centrifugation or filtration. In situ 1H NMR spectra indicated that the cages 
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formed quantitatively as no signals due to the “free” ligands were observed. However, due to their 

solubility, the cages were only isolated in 65-76% yield. Electrospray ionization mass spectral 

analysis of each of the cages (C1-C9) showed a series of peaks consistent with the formation of 

the [Pd2(L)4]4+ cage; every spectrum displayed ions due to [Pd2(L)4]4+ and [Pd2(L)4](X-)3+ (where 

X = NO3
-, Cl-, or HCO2

-) with some spectra also displaying ions due to [Pd2(L)4](2X-)2+ and 

fragmentation  (Supporting Information). The 1H and 1H DOSY NMR spectroscopic data of the 

cages (C1-C9) were also consistent with cage formation. For each of the cages (C1-C9) the proton 

resonances due to the terminal pyridine unit were shifted downfield (0.5-1.0 ppm) relative to the 

“free” ligands, consistent with coordination to the cationic Pd(II) ions (Supporting Information), 

and similar to what has been observed for related [Pd2(L)4]4+ cages. 1H DOSY NMR data were 

obtained for each cage and showed that each cage was diffusing at a slower rate than its 

corresponding ligand, providing further evidence for the generation of the cages. Additionally, the 

observed diffusion coefficients (Supporting Information), were similar to those found for related 

[Pd2(L)4]4+ cages.53, 61-62, 66, 70-71, 80, 88, 107-108, 111-113 

Closer inspection of the 1H NMR spectra (400 MHz, d7-DMF) of C1-C3 showed relatively sharp 

spectra displaying what appeared to be a single set of resonances consistent with the formation of 

a single isomer (Supporting Information). Disappointingly, despite the presence of the ethylene 

glycol substituents and nitrate counter anions the cages were not soluble in water/D2O. However, 

C1-C3 did display excellent solubility in a range of polar solvents and we were able to obtain 1H 

NMR spectra in d7-DMF, d6-DMSO, CD3CN, CD3NO2, CD3OD and d6-acetone (Supporting 

information). Like the d7-DMF spectra the data obtained were sharp and for the most part seemed 

consistent with the presence of a single isomer. In contrast to the data obtained for the C1-C3 

cages, the 1H NMR spectra (400 MHz, d7-DMF) of the cages with glycol chains (C4, C6 and C8) 
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and alkyl groups (C5, C7 and C9) indicated that mixtures of isomers were obtained as there were 

multiple resonances observed for each different proton (Supporting Information). Unfortunately, 

determining the exact isomer ratio for the C4-C9 cages using the 1H NMR data proved impossible 

due to peak overlap. However, 1H NOESY NMR spectra (500 MHz) provided additional support 

for the presence of isomers (Supporting Information). The ortho pyridyl protons (Ha, Hd, Hh and 

Hi) could be identified and NOE through-space coupling between Hd and Hh was observed.  This 

was consistent with the presence of the HHHT, and trans-HTHT and cis-HHTT isomers in solution 

(Figure 3 and Supporting Information). 

High Performance Liquid Chromatography114 (HPLC, C-18 column, CH3CN, 5% TFA)93 was used 

to gain further insight into the isomeric mixtures for the cages (C1-C9) (Figure 3 and Supporting 

Information). The glycol containing C4, C6, C8 cages all had similar retention times (~ 8 minutes) 

with the C4, C6 and C8 cage mixtures displaying three peaks (two smaller peaks flanking a larger 

broad peak). These results suggest cage mixtures contain at least three of the four expected cage 

isomers, although the broad nature of the larger central peak may indicate that it is in fact two 

overlapping peaks. 

The C5, C7 and C9 cage mixtures (the cages featuring the alkyl chains) all have different retention 

times (C5 ~ 15 mins, C7 ~ 12 mins and C9 ~ 9 mins) due the longer alkyl chains interacting more 

strongly with the C18 column and they all clearly displayed four peaks, one for each of the 

expected cage isomers suggesting that we obtain a mixture that features all the possible cage 

isomers (Figure 3 and Supporting Information). 

The HPLC data showed that C1-C3 cages were also mixtures of all four of the possible cage 

isomers, similar to what was observed for the C4-C9 cages. The retention times for the C1-C3 
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cages tracked the alkyl chain length similar to the C5, C7 and C9 systems. The C1 (retention time 

~ 15 minutes) and C2 (retention time ~ 12 minutes) cages clearly displayed four peaks due the 

isomers, while the C3 cage (retention time ~ 10 minutes) with the shortest substituents showed 

three peaks, a larger very broad peak flanked by two smaller peaks (Figure 3, Supporting 

Information). 

 

 

 

 

 

 

 

Figure 3: HPLC traces (C-18 column, CH3CN, 5% TFA) for the cages C1-C9.  

To supplement the experimental data, density functional theory (DFT) calculations were 

undertaken using the BP86 functional with the def2-SVP basis set and a DMF solvent field 

(Supporting Information).115 Consistent with the experimental results, the calculations showed that 

there are only small differences in the energies of the different cages isomers (C1-C9). For the 

alkyl substituted cages (C5, C7 and C9) the calculations showed that the lowest energy isomer, in 

each case, was the HHHH system. The calculated energies of the four cage isomers only differed 

by a maximum of 3.23 kJ/mol, consistent with the experimental observation of mixtures. 

Interestingly, the calculations of the alkyl substituted cages (C4, C6 and C8) indicated that the 
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trans-HTHT isomer was the most stable for each of the three different substituted cages. Once 

again, however, the energy difference between the all isomers are small (<5 kJ/mol, Supporting 

Information).  

The calculations for C1-C3 indicated that in each case the HHHH isomer was the lowest energy 

species. However, the energy differences between the most stable and least stable isomers were 

small (5.14 kJ/mol for C1, 3.11 kJ/mol for C2 and 4.59 kJ/mol for C3) (Figure 4 and Supporting 

Information). These calculated energy differences for C1-C3 were similar to those observed for 

the C4-C9 cages. Thus, the DFT result are consistent with the HPLC data and indicate that all the 

cages (C1-C9) exist as mixture isomers. 

 

 

 

 

 

 

 

 

 

Figure 4: Energy diagram showing the energy difference between the different cage isomer of 

the [Pd2(L1)4]4+ cage (C1) obtained from DFT calculations.  

The DFT calculations and HPLC data strongly suggest that the C1-C3 cages exist as mixture of 

all cage isomers. This, however, was inconsistent with the NMR data obtained at 400 MHz (vide 

supra, and Supporting Information). We postulated that the isomers of the C1-C3 cages have 
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coincident/overlapping resonances at 400 MHz, this possibly due very similar electronic 

environments of the two “ends” of the ligands. Therefore, we obtained the 1H NMR spectra (d7-

DMF) of C1-C3 at 800 MHz (Figure 5 and Supporting Information). At the higher field strength, 

it was immediately apparent that the cages were mixtures, there were clearly multiple different 

resonances due to the exo protons Ha and Hi of the terminal pyridyl units consistent with the 

presence of more than one cage isomer. Unfortunately, due to signal overlap we were unable to 

use the NMR data to gain insight in the isomer ratios. 

Additionally, 1H NOESY 2D NMR spectra obtained at 800 MHz was employed to probe the 

existence of isomers further. Several cross-peaks between the ortho pyridyl protons on the terminal 

pyridine units of opposing ligands, i.e. cross-peaks between Ha and Hi, and Hc and Hg were 

observed. The NOESY spectra also displayed some cross-peaks, from the Hj and Ho protons (the 

first CH2 units of the alkyl and polyether substituents, (Figure 5c and Supporting Information). 

These cross peaks are consistent with the presence of HHTT, HTHT, and HHHT isomers within 

the mixture. Overall the collected data suggest that mixtures of isomers are obtained for all the 

generated cages C1-C9. 
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Figure 5: a) Labelled chemical structure of C1-C3; b) partial stacked 1H NMR spectrum (800 

MHz, d7-DMF, 298 K) of C1, C2 and C3 showing signals from ortho pyridyl protons Ha, Hc, Hg 

and Hi overlapping; and c) partial 1H NOESY spectrum (800 MHz, d7-DMF, 298 K) of C3 with 

cross-peaks between Ha,i and Hc,g, and Hj and Hm. 

Remarkably, further evidence for the presence of isomeric mixtures was obtained using X-ray 

crystallography (Figure 6 and Supporting Information). Rhombic, yellow crystals of the C9 cage 

(propyloxy (OPr) substituted) suitable for X-ray diffraction were obtained via vapor diffusion of 
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diethyl ether into a DMF solution of the cage mixture. The structure was solved in the triclinic 

space group P1�, with the asymmetric unit containing two ligands, one palladium(II), a DMF 

molecule and a nitrate counterion. While the structure was disordered, and could potentially be 

modelled in a range of ways all the sensible solutions were consistent with the presence of a 

mixture of cage isomers. We found that freely refining the data from the C9 cage as mixture of the 

HHHH, HHHT, trans-HTHT and the cis-HHTT isomers (Figure 6, Supporting Information) 

provided a reasonable solution with the observed ratios of the four isomers similar to what was 

expected from statistics (Supporting information). The Pd-N bond lengths (2.025-2.038 Å) and the 

Pd-Pd distance (11.836 Å) are similar to those observed in related [Pd2(L)4]4+ cages,53, 61-62, 66, 70-

71, 80, 88, 107-108, 111-113  and two DMF guest molecules occupy the cavity of the cages (Figure 5 and 

Supporting Information). 

 

 

 

 

 

 

 

 

 

Figure 6: Tube representations showing the two major isomers of the [Pd2(L9)4]4+ cage (C9) 

observed via X-ray crystallography: a) cis-HHTT cage isomer and b) HHHT isomer. Colours: 

Grey = carbon, red = oxygen, blue = nitrogen and magenta = palladium. Counter-anions omitted 

for clarity. 
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Cage synthesis with the amino substituted ligands L10-L11 

Having established that that dispersion/solvophobic effects were not sufficient to provide 

isomerically pure low symmetry cages, we next investigated our second targeted supramolecular 

interaction, hydrogen bonding. We have previously used 2-amino substituted tripyridyl ligands to 

generate a heteroleptic cis-[Pd2(tripy)2(2A-tripy)2]4+ cage by exploiting hydrogen bonding and 

steric effects afforded by the 2-amino group.93 We targeted the same approach here in order to 

generate an isomerically pure low symmetry [Pd2(L)4]4+ cage. The 2-amino substituted ligand 

(L10) and the isomeric 3-amino substituted ligand (L11) could be complexed to Pd(II) ions in two 

different ways. The ligands (either L10 or L11) were added to Pd(NO3)2·2H2O in a 4:2 

stoichiometric ratio and heated at 50 °C for 14-72 hours in DMF (Supporting  Information). The 

cages (C10 and C11) could be isolated from the reaction mixtures as tan solids upon the addition 

of diethyl ether. Alternatively, the cages (C10 and C11) could be generated by heating (50 °C) a 

mixture of one of the ligands (L10 or L11, 4 equiv.) with [Pd(CH3CN)4](BF4)2 (2 equiv.) for 24-

72 hours (Supporting  Information). In both methods the more hindered C10 cage was formed 

more slowly than the C11 system. ESI-MS data on the cages indicated that [Pd2(L)4]4+ 

architectures were obtained (Supporting Information). 1H NMR spectra of C10 and C11 suggested, 

consistent with expectations, that the C10 cage was isomerically pure while C11 was a mixture of 

isomers.116 The 1H NMR spectrum (d7-DMF) for C11 exhibited an untidy aromatic region with 

overlap peaks consistent with an isomeric mixture while the 1H NMR spectrum for cage C10 was 

pleasingly different, displaying a single set of peaks, downfield shifted when compared to the free 

ligand L10, presumably due to the formation of a single cage isomer (Figure 7 and Supporting 

Information). A very large downfield shift, relative to free L10, was observed for the proton 
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resonances of the 2-amino unit (Δδ = 2.04 ppm, d6-DMSO) suggestive of a strong intramolecular 

hydrogen bonding interaction (Figure 7 and Supporting Information).93, 108 

The 1H ROESY NMR spectrum (d6-DMSO) of C10, displayed cross-peaks between the 

endohedral pyridyl protons, Hc and Hg. Additionally, there was a through-space coupling between 

the 2-amino protons and Hj. The 1H NMR and ROESY data was consistent with the formation of 

either cis-HHTT or trans-HTHT isomer (Supporting Information). However, given that the related 

cis-[Pd2(tripy)2(2A-tripy)2]4+ heteroleptic cage93  was generated from a 2-amino substituted ligand, 

it seemed likely that C10 would have formed the cis-HHTT isomer. 

 

 

 

 

 

 

 

Figure 7: Partial stacked 1H NMR spectra (400 MHz, d7-DMF, 298 K) of L10, C10 and C11. 

This was confirmed using X-ray crystallography (Figure 8 and Supporting Information). Yellow, 

cubic, X-ray quality crystals were grown via vapor diffusion of diethyl ether into a solution of 

DMSO/acetonitrile of the C10 cage. While there was some disorder present, the structure was 

solved in the primitive triclinic space group P1�, with the asymmetric unit comprising four half-

cages (two ligands and one palladium(II) ion) and four DMSO solvent molecules. Each of the four 
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crystallographically independent cages in the unit cell is generated through inversion of a half-

cage. The disorder present was partial occupancy of amino groups in two of the half cages, but 

importantly, in the other two half-cages (and thus in their full cages), there was no partial 

occupancy. In these, the cage was unambiguously the cis-HHTT isomer. Given the presence of a 

single isomer in solution (from NMR spectroscopies), this strongly suggests that the half-cages 

with partial amino occupancy are also the cis isomer. The other parameters of the cage were very 

similar to related [Pd2(L)4]4+ systems,53, 61-62, 66, 70-71, 80, 88, 107-108, 111-113 the Pd-Pd distances ranged 

from 12.302-12.718 Å. The Pd-Npy (range from 2.019-2.100 Å) and Pd-N2aminopy (range from 

2.002-2.100 Å) bond distance were very similar. The cavity of the [Pd2(L10)4]4+ cage contained 

two molecules of DMSO, these were held in place by hydrogen bonding interaction between the 

S=O and the acidic endo α-pyridyl protons of the host, C-H···O=S distances ranged from 3.206 - 

3.299 Å, the H···O=S distances ranged from 2.311 - 2.390 Å (Figure 8 and Supporting 

Information). There were no obvious hydrogen bonding interactions with near linear N-H---N 

bond angles between the adjacent NH2 units. This is presumably because of crystal packing effects 

between the cage within the extended crystal structure. The cages are tightly packed together in 

the unit cell with π-π interactions between the ligand backbones of adjacent cages. These 

interactions lead to a lantern shaped conformation (Figure 8 and Supporting information) of the 

C10 metallo-cage preventing the subtle bond rotations that would allow the formation of the NH2-

--H-NH hydrogen bonding interactions observed in related X-ray structures108 and found in DFT 

calculations (vide infra). The N---N distances between the 2-amino units in the different cages are 

within the range (3.352-3.496 Å) observed for weak hydrogen bonding117 and for the most part the 

observed distances are shorter than what was found in a related [Pd2(L)4]4+ that also featured intra-

molecular hydrogen bonding between amino units.108 This suggests that once dissolved in solution 
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the expected intra-molecular hydrogen bonds could readily form via a small bond rotation. 

Additionally, NCIPlot analysis118 of the crystal data was used to show that there are non-covalent 

interaction between the NH2 units (Supporting Information). So, while the crystallographic data 

confirms the formation of the cis-HHTT isomer of C10 it does not offer strong evidence for the 

expected intra-molecular hydrogen bonding between the adjacent amino units. Therefore DFT 

calculations (BP86 functional, def2-SVP basis set applied to all atoms except the amine groups, 

these were subject to the ma-def2-SVP basis set which is larger and includes diffuse functions to 

account for longer range interactions, DMSO solvent field, Supporting Information) were carried 

out on the cis-HHTT C10 and the other three isomers (Figure 9 and the Supporting Information).115 

The DFT calculation for the cis-HHTT isomer of C10 clearly displays an intra-molecular 

hydrogen bonding interaction (N---N distance 3.17 Å N-H---N distance 2.17 Å and N-H---N angle 

164.55°) between the cis-NH2 units as has been observed both crystallographic and 

computationally in related cage systems. 93, 108 This intra-molecular hydrogen bonding interaction 

is consistent with the large change in the chemical shift (Δδ = 2.04 ppm, d6-DMSO) of the amino 

units observed in the 1H NMR data of the C10 complex relative to L10. However, we cannot 

completely rule out an inter-molecular bifurcated hydrogen bonding interaction between the 

adjacent NH2 unit and either solvent (DMF or DMSO) or counter anions (NO3
- or BF4

-). Indeed, 

it may be that both types hydrogen bonding interaction are present and help lead to the cis-HHTT 

isomer of C10. Having said that, the inter-molecular bifurcated hydrogen bonding interaction is 

entropically less likely. Additionally, it would be expected that the amino units in the related C11 

system could also engage in inter-molecular bifurcated hydrogen bonding interactions with the 

solvent and counter anions. Thus, if this was an important factor in the controlling the isomer 

distribution some selectivity should be observed in the C11 cage formation. However, the 1H NMR 
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data are not consistent with that postulate (Figure 7 and Supporting Information) suggesting the 

inter-molecular bifurcated hydrogen bonding interactions are not the major driving force for the 

formation of the cis-HHTT isomer of C10. 

 

 

 
Figure 8: Tube representation of the cis-HHTT of the [Pd2(L10)4]4+ cage (C10) obtained via X-

ray crystallography. Colours: Grey = carbon, red = oxygen, blue = nitrogen, yellow = sulfur and 

magenta = palladium.  
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Figure 9: The calculated structure of the C10 HHTT isomer: a) Ball-and-stick model (side view); 

b) Ball-and-stick model (top view); c) Space-filling model (side view). There are two hydrogen 

bonding interactions between the NH2 units of the cage. The top hydrogen bonding interaction has 

an N···N (N···H-N) distance of 3.185 (2.194) Å, the bottom hydrogen bonding interaction has an 

N···N (N···H-N) distance of 3.170 (2.170) Å. 

The energies of the four isomers of C10 and C11 were also evaluated using DFT calculations 

(Figure 9 and Supporting Information).115 The energies for the four isomers of the C11 cage were 

all very similar, the most stable isomer was found to be the HHHT system but there was only 2.22 

kJ/mol difference between that isomer and the least stable trans-HTHT system (Supporting 

Information), consistent with the 1H NMR data of C11. Additionally, none of the C11 isomers 

displayed any intra-molecular hydrogen bonding interactions. 

Intriguingly, the calculations on C10 suggested that the HHHH complex had the lowest energy, 

with the HHHT isomer (7.77 kJ/mol higher in energy) as the second lowest energy species. The 

experimentally observed cis-HHTT isomer (8.04 kJ/mol higher in energy than the HHHH isomer) 
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and the trans-HTHT isomer was the least stable (14.19 kJ/mol higher in energy than the HHHH 

system, Supporting Information). Thus, the calculations confirm that the cis-HHTT isomer is more 

stable that the trans-HTHT isomer, but suggest that the HHHH system should be the 

thermodynamic product of the reaction.119-124 This is consistent with chemical intuition, the HHHH 

isomer features as cyclic arrangement of four intra-molecular hydrogen bonds (N---N (N---H-N) 

distances 3.092 (2.061), 3.081 (2.050), 3.084 (2.052) and 3.090 (2.058) Å) whereas the cis-HHTT 

isomer features only two (N---N (N---H-N) distances, 3.185 (2.194) and 3.170 (2.170) Å, 

Supporting Information). 

This is clearly not what is observed experimentally, but it was consistent with our previous results 

with the heteroleptic cis-[Pd2(tripy)2(2A-tripy)2]4+ cage.93  In that case DFT calculations showed 

that the cis-[Pd2(tripy)2(2A-tripy)2]4+ cage was more stable than the trans-[Pd2(tripy)2(2A-

tripy)2]4+ isomer, but also revealed that the homoleptic [Pd2(2A-tripy)4]4+ cage was more stable 

than either of the heteroleptic systems, similar to what we have observed here. The isolation of the 

heteroleptic cis-[Pd2(tripy)2(2A-tripy)2]4+ cage instead of the energetically favored homoleptic 

[Pd2(2A-tripy)4]4+ in that case was attributed to a combination of steric and hydrogen bonding 

effects which lead to a large energy barrier which prevented the formation of the homoleptic cage 

from the heteroleptic system. Thus, the heteroleptic cis-[Pd2(tripy)2(2A-tripy)2]4+ cage was a 

kinetically metastable (very) long lived intermediate rather than the thermodynamic product of the 

reaction. We presume, based on the DFT calculations, that similar behavior is manifest here. The 

experimentally observed cis-HHTT isomer of C10 is a kinetically metastable long lived 

intermediate rather than the thermodynamically preferred isomer of C10. We have probed that 

postulate using 1H NMR experiments (Supporting Information). The cis-HHTT isomer of C10 was 

kept at 298 K in d6-DMSO for a period of 58 days. Over that time no changes were observed 
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suggesting that once formed the cis-HHTT isomer is robust at RT over a period of months.  

Additionally, 4:2 mixtures of L10 and either Pd(NO3)2·2H2O or [Pd(CH3CN)4](BF4)2 were 

dissolved in polar solvents (either d7-DMF or d6-DMSO) and heated at 50 °C. The reactions were 

monitored using 1H NMR spectrometry over 2-3 weeks. In each case a mixture of isomers was 

initially (after 6 hours) generated which more slowly converted into the cis-HHTT isomer of C10. 

In every case cis-HHTT isomer of C10 became the dominant species in solution (>95%); for d6-

DMSO and Pd(NO3)2·2H2O cis-HHTT isomer was the major species after 1 day. For the d7-DMF 

solution with Pd(NO3)2·2H2O and the d7-DMF and d6-DMSO solutions with [Pd(CH3CN)4](BF4)2 

formation of the cis-HHTT isomer of C10 was slower; the isomer became the dominant species 

(>95%) species in solution after 3-4 days. The conversion to the cis-HHTT isomer was never 

quantative; there was always a series of small peaks (<5%) associated with another cage isomer. 

This was confirmed using HPLC analysis (Supporting Information) where a large peak, due to the 

C10 cis-HHTT isomer, was flanked by two very small peaks which are presumably the minor 

isomer observed in the NMR spectra. Continued heating (50 °C) of the d7-

DMF/L10/[Pd(CH3CN)4](BF4)2 solution led to no further changes indicating that under those 

conditions the cis-HHTT isomer of C10 is robust. During prolonged heating of the d6-DMSO/ 

L10/[Pd(CH3CN)4](BF4)2 solution the resonances associated with the cis-HHTT isomer of C10 

began to decrease in intensity and a new series of peaks appeared. After 15 days, the peaks from 

the cis-HHTT isomer have disappeared and a series of new resonances from one or more new 

species have grown. It was postulated that the new species could be the HHHH isomer. However, 

the collected 1H NMR, ESI-MS and HPLC data show that that is not the case. The HHHH isomer 

should show 11 resonances in the 1H NMR spectrum, whereas the spectrum obtained after 15 day 

of heating features at least 16 resonances (Supporting Information, Figure S69). The HPLC data 
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obtained on the mixture shows that there is no cage present only free ligand L10 and two additional 

broad peaks (Supporting Information, Figure S69). ESI-MS data obtained after 16 days of heating 

only displayed a peak consistent with L10, no ions due to the C10 cage or any other Pd(II) 

containing species could be identified. When combined, the NMR, HPLC and ESI-MS results 

indicate that, rather than forming the HHHH C10 isomer, as the cage is heated it is slowly 

decomposing (similar results are obtained in other solvent vide infra). We postulate that the C10 

cage has lost a Pd(II) generating a mixture of isomeric Pd(II)-L10 complexes that have different 

NMR spectra compared free L10 and C10. Those Pd(II)-L10 complexes then decompose further 

under the conditions of the HPLC and ESI-MS experiments leading to the observation of only free 

L10.      

Carrying out the reaction of [Pd(CH3CN)4](BF4)2  and L10 in d6-DMSO at a higher temperature 

(60 and 80 °C, respectively) led to the more rapid formation of the cis-HHTT isomer but prolonged 

heating led to color changes from yellow to black and precipitation. Additionally, the resonances 

due to the cis-HHTT isomer disappeared and the NMR spectra progressively became broad and 

uninterpretable suggesting that the higher temperatures are simply providing more rapid access to 

the decomposition pathways rather than giving access to the thermodynamically preferred (from 

calculations) HHHH isomer. Similar results were also obtained with Pd(NO3)2·2H2O in d7-DMF 

and d6-DMSO solutions. With prolonged heating (50 °C) the resonances of the cis-HHTT isomer 

decreased in intensity and the NMR spectra became broad and difficult to interpret. These changes 

are accompanied by color changes from yellow to brown/black and precipitation (Supporting 

Information). 

Overall the collected experimental and computational results are consistent with the postulate that 

the cis-HHTT isomer of C10 is a kinetically metastable (very) long lived intermediate rather than 
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the thermodynamic product of the reaction. However, once the cis-HHTT isomer of C10 is formed 

the combination of hydrogen bonding and steric effects put in place a large energic barrier and we 

have not been able to isolate the HHHH isomer that was calculated to be the thermodynamic 

product from the reaction. All efforts to generate the HHHH isomer by heating the reaction mixture 

have ultimately led to cage decomposition. That behavior is similar to what was observed with the 

cis-[Pd2(tripy)2(2A-tripy)2]4+ cage which was also a kinetically metastable long lived intermediate 

rather than the thermodynamic product.93   

Conclusions 

Methods to controllably form reduced-symmetry, single isomer cages have been developed using 

sterics or geometric complementarity, but supramolecular interactions have not yet been 

extensively employed to achieve structural control. Here, we synthesized a family of reduced 

symmetry tripyridyl ligands (L1-L11) and examined if supramolecular interactions could be 

exploited to control the isomer distribution of the [Pd2(L)4]4+ cages formed when the ligands were 

treated with Pd(II) ions. Inspired by the work of Stang and co-workers,109 who had showed that 

dispersion forces and solvo-phobic/philic effects could be used to generate ordered 

metallomacrocyclic structures, we initially used a series of tripyridyl ligands (L1-L9) that feature 

either solvophobic alkyl chains, solvophilic polyether substituents or both groups. 

Disappointingly, NMR, HPLC data and DFT calculations showed that no control of the isomer 

distribution was afforded by the combination of dispersion forces and solvo-phobic/philic effects, 

the cages (C1-C9) were all mixtures of each of the four possible cages isomers (HHHH, HHHT, 

cis-HHTT or trans-HTHT). While dispersion forces and solvo-phobic/philic effects did not 

provide any control over the isomer distribution of the cages, hydrogen bonding proved more 

successful. We examined two further ligands systems (L10 and L11) which feature 2- and 3-
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aminopyridine units with the potential to engage in hydrogen bonding.93 NMR data and DFT 

calculations showed the C11 cage, assembled from the 3-aminopridine ligand L11, was a mixture 

of the four possible isomers. However, the C10 cage (generated from the 2-aminopyridine ligand 

L10) was found to cleanly generate one single isomeric form. NMR data was consistent with the 

formation of either the cis-HHTT or trans-HTHT isomers of C10. X-ray crystallographic data 

confirmed that the cis-HHTT C10 isomer was obtained. The combination of steric effects and 

hydrogen bonding between the amino units of the L10 ligands drives the formation of the cis-

HHTT. Lewis96 had previously exploited steric effects and demonstrated the clean formation of a 

trans-HTHT [Pd2(L)4]4+ cage when using a related dipyridyl ligand that featured a methyl unit in 

the 2 position of one of the terminal pyridyl groups. Therefore, by exploiting both steric and 

hydrogen bonding effects, this work provides a complementary method for the generation of the 

cis-HHTT cage isomer and adds to a growing range of approaches to reduced symmetry [Pd2(L)4]4+ 

cages102 which could in the future lead to enhanced catalytic77-80 or molecular recognition 

properties.12, 53-75 
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Efforts to use supramolecular (dispersion and hydrogen bonding) forces and solvophobic effects 

to generate isomerically pure [Pd2(L)4]4+ cage architectures from a family of new reduced 

symmetry ditopic tripyridyl ligands are reported. Dispersion forces and solvophobic effects 

provided no isomer selectivity. However, the combination of hydrogen bonding interactions and 

steric effects enabled the quantative formation of the cis-HHTT cage architecture.  

 

 


