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Left—right asymmetry is an important organizing feature of the healthy brain that may be
altered in schizophrenia, but most studies have used relatively small samples and heteroge-
neous approaches, resulting in equivocal findings. We carried out the largest case—control
study of structural brain asymmetries in schizophrenia, with MRI data from 5,080 affected
individuals and 6,015 controls across 46 datasets, using a single image analysis proto-
col. Asymmetry indexes were calculated for global and regional cortical thickness, surface
area, and subcortical volume measures. Differences of asymmetry were calculated between
affected individuals and controls per dataset, and effect sizes were meta-analyzed across
datasets. Small average case—control differences were observed for thickness asymmetries
of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner
left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to
the use of antipsychotic medication and other clinical variables did not show any significant
associations. Assessment of age- and sex-specific effects revealed a stronger average leftward
asymmetry of pallidum volume between older cases and controls. Case—control differences
in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed
that 7% of the variance across all structural asymmetries was explained by case—control
status. Subtle case—control differences of brain macrostructural asymmetry may reflect dif-
ferences at the molecular, cytoarchitectonic, or circuit levels that have functional relevance
for the disorder. Reduced left middle temporal cortical thickness is consistent with altered
left-hemisphere language network organization in schizophrenia.

Schizophrenia | brainimaging | asymmetry | cortical | subcortical

Schizophrenia is a serious mental illness characterized by various combinations of symptoms
that may include delusions, hallucinations, disorganized speech, affective flattening, avolition,
and executive function deficits (1). Left—right asymmetry is an important feature of human
brain organization for diverse cognitive functions—for example, roughly 90% of people
present with a left-hemisphere dominance for language and right-handedness (2-5). A possible

Significance

Schizophrenia has been proposed to
involve altered left-hemispheric
dominance for language in the
brain, but research in limited sample
sizes has not clarified whether
structural asymmetry differs in this
condition. In MRI data from 5,080
affected individuals and 6,015
controls, we found altered
asymmetry of two brain regions
driven by thinner left-hemisphere
cortex in schizophrenia: the rostral
anterior cingulate and middle
temporal gyrus. The latter is a core
region of the left-hemisphere
language network. Effects were very
small in terms of macroanatomical
asymmetry, but might be compatible
with altered lateralized function.
Across all brain regions considered
together, 7% of variance in
asymmetry was linked to case-
control status, indicating a more
diffuse pattern of subtly altered
anatomical asymmetry.

role of altered structural and functional brain asymmetry in schizophrenia has been studied
for several decades (6-10). Theoretical work has especially focused on disrupted laterality for
language in relation to disorganized speech perception and production—the former may
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sometimes result in auditory verbal hallucinations which are a rela-
tively prevalent symptom (11-14). Individuals with schizophrenia
have been reported to show decreased left-lateralized language dom-
inance (15, 16), as well as an absence or even reversal of structural
asymmetries of language-related regions around the Sylvian fissure
(which divides the temporal lobe from the frontal and parietal lobes)
(13, 17-19). Language disturbances such as idiosyncratic semantic
associations or reduced grammatical complexity are also commonly
reported (20). Furthermore, the rate of nonright-handedness in
schizophrenia is elevated compared to that of the general population
(13, 21-25). Interestingly, some genomic loci that influence aspects
of structural brain asymmetry or hand preference overlap with those
associated with schizophrenia (26-29). Thus, there might be an eti-
ological link between altered brain asymmetry and schizophrenia.

However, alterations in structural asymmetry of the cerebral cortex
in schizophrenia have so far only been reported in studies with rel-
atively small samples (13, 17-19, 30-36); to our knowledge, the
largest case—control sample consisted of 167 affected individuals and
159 controls (33). Many of the existing findings are inconsistent
and/or remain unreplicated, which is possibly due to low statistical
power which limits the sensitivity to detect true effects and also
increases the risk of overestimating effect sizes (37-39). The repro-
ducibility of findings may be further affected by the heterogeneity
of clinical and demographic characteristics across studies. Moreover,
varying approaches to process and analyze MRI data limit the pos-
sibility to reproduce results and/or to perform meta-analyses. For
example, in studies targeting specific regions of interest, regions have
been inconsistently defined, while studies that involved cortex-wide
mapping used different image analysis protocols. Studies of subcor-
tical volumetric asymmetries in schizophrenia have generally suffered
from similar issues (40—42), with the notable exception of a study
in 884 affected individuals and 1,680 controls that used a single
image analysis pipeline (43). This study found an increased leftward
asymmetry of the pallidum in schizophrenia (driven by a larger pal-
lidum volume in the left hemisphere) compared to controls, which
was also detectable in adolescents with subclinical psychotic experi-
ences (43, 44).

‘The Enhancing Neuro Imaging Genetics through Meta-Analysis
(ENIGMA, http://enigma.ini.usc.edu) consortium aims to perform
large-scale analyses by combining imaging data from research groups
across the world, processed with standardized protocols (45, 46).
Previously, this consortium reported large-scale cortical thinning,
smaller surface area, and altered subcortical volume in individuals
with schizophrenia compared to controls (47, 48). However, asym-
metry was not measured in these previous ENIGMA studies, and
no tests were performed to assess whether case—control effects were
different in the two hemispheres. The ENIGMA consortium has
investigated structural brain asymmetries in other disorders (49):
major depressive disorder (50), autism spectrum disorder (ASD)
(51), obsessive compulsive disorder (OCD) (52), and attention defi-
cit/hyperactivity disorder (ADHD) (53). Case—control group-level
effects were small for all of these disorders, with ASD showing the
most widespread asymmetry differences—mostly involving regional
cortical thickness measures—with a maximum Cohen’s & of 0.13
(51). Similar effect sizes may be anticipated for schizophrenia.
Therefore, a large sample size is likely required to detect and accu-
rately measure any effects. Although small group-average differences
of brain macroanatomy are unlikely to have clinical uses by them-
selves, they may help to identify brain regions and networks that
have clinically relevant disruptions at other neurobiological levels—
for example molecular or cytoarchitectonic—which can be investi-
gated in future studies. Of note, the ENIGMA consortium has
recently reported on asymmetry alterations with respect to subcor-

tical shape (2,833 individuals with schizophrenia versus 3,929

20f12 https://doi.org/10.1073/pnas.2213880120

controls), based on an automated approach quantifying local concave
versus convex surface curvature (54), but that study did not address
subcortical volume asymmetries, and omitted the cerebral cortex.

For the current study, we were able to measure both cortical and
subcortical structural asymmetries in schizophrenia using by far the
largest sample to date: 5,080 affected individuals and 6,015 controls,
from 46 separate datasets. The datasets were collected originally as
distinct studies over approximately 25 years, using different recruit-
ment schemes, MRI scanning equipment, and parameters.
Importantly, for the current study, all primary MRI data were pro-
cessed through a single pipeline for cortical atlas-based segmentation/
subcortical parcellation and quality control.

Given previous theoretical and empirical work linking schizophre-
nia to reduced language laterality and function (see above), we had
a particular interest in whether typical structural asymmetries of the
core cerebral cortical language network might be reduced in schizo-
phrenia—this includes asymmetries of lateral temporal cortex and
inferior frontal cortex (55). However, linguistic tasks can also recruit
various other brain regions (56), while disrupted cognition in schiz-
ophrenia affects multiple domains beyond language (1). Our primary
aim was therefore to map potentially altered structural asymmetry
in schizophrenia across all cortical and subcortical regions, for a thor-
ough and unconstrained mapping of brain asymmetry in schizo-
phrenia, supported by our unprecedented sample size. We achieved
this through separate region-by-region testing of case—control group
average differences in asymmetry (followed by false discovery rate
(FDR) correction), where the testing was two tailed, i.e., we allowed
for either reductions, increases, or even reversals of asymmetry in
affected individuals compared to controls. Due to restrictions on
sharing individual-level data for many of the primary datasets, case—
control differences were first tested for each regional asymmetry
index (AI) separately within each dataset, and effects were then com-
bined across datasets using meta-analysis methodology.

We also performed various secondary/exploratory analyses of
the data. We explored possible associations of structural brain
asymmetries with medication use and other disorder-specific
measures: age at onset; duration of illness; as well as total, positive,
and negative symptom scores. In addition, we tested age- and
sex-specific asymmetry differences. Finally, for 14 datasets for
which individual-level data were available, we tested for a multi-
variate association of case—control status simultaneously with
regional Als across the brain.

Together, these analyses aimed to provide insights into the
extent and mapping of structural brain asymmetry alterations in
schizophrenia, and how they relate to key clinical variables.

Methods and Materials

Datasets. Structural MRI data were derived from 46 separate datasets (45 case-
control and one case-only) totaling 11,095 individuals, via researcher participa-
tion in the ENIGMA schizophrenia working group. Of these, 5,080 were affected
with schizophrenia and 6,015 were unaffected controls (S/ Appendix, Table S14).
The datasets came from various countries around the world and were collected
over the last roughly 25 y (S/ Appendix, Fig. S1). For each of the datasets, all
relevant local ethical regulations were complied with, and appropriate informed
consent was obtained for all individuals. The present study was carried out under
approval from the Ethics Committee of the Faculty of Social Sciences of Radboud
University Nijmegen. Sample size-weighted mean age across datasets was 33.3
(range 16.2 to 44.0) years for individuals with schizophrenia and 33.0 (11.8 to
43.6) years for controls. Affected individuals and controls were 67% and 52%
males, respectively. Diagnostic interviews were conducted by registered clini-
cal research staff using different diagnostic criteria (either the Diagnostic and
Statistical Manual of Mental Disorders [DSMI-II, DSM-IV, DSM-5 or International
Classification of Diseases-10) (S Appendix, Table S2). No controls had present or
past indications of schizophrenia.

pnas.org
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Image Acquisition, Processing, and Quality Control. T1-weighted structural
brain MRI scans were acquired at each study site. Dataset-specific scanner informa-
tion, field strengths, and image acquisition parameters are provided in S/ Appendiix,
Table S2. For data from all sites, image processing and segmentation were performed
using FreeSurfer (see SI Appendix, Table S2 for software versions) (57). For each indi-
vidual, using the "recon-all" pipeline, cerebral cortical thickness and surface area
measures were derived for 34 bilaterally paired Desikan-Killiany (DK)atlas regions, as
well as whole hemisphere-level average cortical thickness and surface area measures
(58). Volumes for 8 bilaterally paired regions from a neuroanatomical atlas of brain
subcortical structures (59) were derived using the "aseg” segmentation command
in FreeSurfer. A standardized ENIGMA quality control procedure was applied at
each participating site (described in full here: http://enigma.ini.usc.edu/protocols/
imaging-protocols/). Briefly, this included outlier detection in the derived cortical and
subcortical measures and visual inspection of segmentations projected onto the T1-
weighted image of each individual. Predefined guidelines for visual inspection were
followed. Measurements from regions with poor segmentation were excluded, as
well as individuals whose data failed overall quality checks. Data-sharing limitations
did notallow the central analysis group to have access to individual-level data for the
majority of participating study sites. For further processing and analyses of the data, a
script running in R software (R Foundation for Statistical Computing, Vienna, Austria,
www.R-project.org) (60) was prepared and distributed among participating sites, to
ensure coordinated collection of descriptive and summary statistics for subsequent
meta-analysis by the central analysis team.

Asymmetry Index Calculation. For each bilaterally paired brain regional meas-
ure, we used the left (L) and right (R) hemispheric measurements to calculate

Al = ————, where the denominator corrects for automatic scaling of the
L+R /2

index with tﬁe magnitude of the bilateral measure. This formula for Al calcu-
lation has been widely used (2, 52, 61-63). A negative value of the Al reflects
a larger right hemispheric measurement (R > L) and a positive value a larger
left hemispheric measurement (L > R). Left or right measurements equal to 0
were setto missing, as these most likely reflected data entry errors. Furthermore,
when a left or right measurement was missing, the corresponding measurement
in the opposite hemisphere was also set to missing. Calculated Als were used
for additional quality control of image orientation in each dataset (Supporting
Information 1, S/ Appendix, Table S3).

Asymmetry Differences between Individuals with Schizophrenia and
Unaffected Controls. Group differences were examined separately for each
brain regional Al and each case-control dataset, using univariate linear regression
implemented in R. Qur primary analysis model included diagnosis (case-con-
trol status) as the main binary predictor, and sex and age as covariates (model 1 in
Supporting Information 2). For ten datasets where more than one scanner had been
used (S/ Appendix, Table S2), we added n-1 binary dummy covariates (where n is
the number of scanners in a given dataset), to statistically control for scanner effects.
Collinearity between predictor variables was assessed using the R-package usdm
(v1-1.18) (64), and high collinearity (variance inflation factor > 5) was not found for
any dataset. Linear regression analysis for any structural Al was not performed if the
total sample size of a given dataset was lower than ten plus the number of scanner
covariates, or if one of the diagnostic groups had a sample size lower than five. For
each brain regional Al and each case-control dataset, we extracted the t-statistic for
the "diagnosis” term to calculate its corresponding Cohen's d effect size, SE,and 95%Cl,

— 2
sing d = M/sedz\/<n1+nz 1) < 1 ) <1+d_)]’
m\/ﬁ ny+n,—3 ny+n, 8
and 95% Cl = [d—1.96xsey, d+1.96xse4|(65). In these equations, d is
the Cohen's d effect size, tis the t-statistic, se is the SE, n is the number of unaf-
fected controls, n, is the number of individuals with schizophrenia, and dfis the
degrees of freedom in the linear model.

Random-Effects Meta-analysis. For each brain regional Al (S Appendix,
Figs. S2-S4), effect sizes for diagnosis from each case-control dataset were
meta-analyzed in a random-effects model fitted with a restricted maximum like-
lihood estimator, using the function “rma” in the R package metafor (v3.0-2)
(66). The meta-analyzed effect sizes were projected on 3D meshes of inflated
cortical or subcortical models from Brainder (www.brainder.org/research/brain-
for-blender/), using Matlab R2020a (version 9.8.0.1323502; MathWorks, Natick,
MA, USA). We calculated false discovery rate (FDR)-corrected P values using the
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Benjamini-Hochberg method to account for multiple tests (67)(i.e., separately for
testing 35 cortical thickness Als, 35 cortical surface areaAls, and eight subcortical
volume Als). Effects with pepg < 0.05 were considered statistically significant. For
Als that showed significant group differences between cases and controls, the
group differences for the corresponding left and right measurements separately
were also assessed post hoc (again using linear modeling with diagnosis, age,
and sex as predictors), to help describe the asymmetry differences.

Sensitivity and Secondary Analyses. For any Al that showed a significant
case-control group difference in the primary meta-analysis, we carried out var-
ious sensitivity and secondary analyses as detailed in Supporting Information
3.The sensitivity analyses assessed the robustness of effects with respect to: 1)
Individual datasets with "outlier" effects. 2) Heterogeneity of technical, diag-
nostic, or geographic differences between datasets. 3) Handedness, intracranial
volume, or nonlinear age effects. Secondary analyses assessed medication group
differences and correlations of asymmetries with clinical variables (in affected
individuals only). In addition, for all Als in all case-control datasets, we applied
models which were the same as the primary analysis but also included either
diagnosis-by-age or diagnosis-by-sex interaction terms.

Multivariate Analysis of Case-Control Asymmetry Differences. 10 exam-
ine case-control group differences across all brain regional Als simultaneously in
one model, we conducted a multivariate analysis based on 14 datasets for which
individual-level data were available to the central analysis team. For this analysis, we
only retained individuals with complete data for all bilateral measures of cortical and
subcortical structures, which were 935 individuals affected with schizophrenia and
1,095 unaffected controls (SIAppendix, Table S1C). We separately adjusted the leftand
right measurements using ComBat harmonization (an empirical Bayesian method) to
remove dataset effects (68), where each dataset (and each scanner within multiscan-
ner datasets) was treated as a distinct “batch.” Diagnosis, age, and sex were used as
covariates when finding the data harmonization parameters in ComBat. After ComBat
adjustment, one additional control individual was removed due to being assigned a
negative corrected right hemisphere lateral ventricle volume (S/Appendix, Fig. S5). Als
for cortical and subcortical measures were then calculated using the same formulaas
above, and collinearity between Als was assessed by calculating a correlation matrix.
Als did not show higher pair-wise correlations than 0.5 (S/Appendix, Figs. S6 and S7).
A multivariate analysis of covariance (MANCOVA) using the "manova” function in
R was applied, testing all 76 regional structural brain Als simultaneously against
case-control status, with age and sex as covariates. We ran one million label-swapping
permutations of case-control labels and calculated a permutation p-value by assess-
ing the number of times the F-statistic of an analysis with permuted data was equal to
or larger than the F-statistic of the analysis with real data, divided by the total number
of permutations. When permuting case-control labels, we conserved case-control
numbers within each dataset (and within scanner for multiscanner datasets). To help
interpret the MANCOVA results, we also derived univariate case-control association
statistics for each separate structural Al from the multivariate association analysis out-
put, using univariate analysis of covariance (ANCOVA) ("summary.aov” function in R).

Results

Asymmetry Differences between Individuals with Schizophrenia
and Unaffected Controls. In our primary analysis (model 1), total
hemispheric average cortical thickness asymmetry (& = -0.053, z =
-1.92, P=0.055) and surface area asymmetry (4 = 0.027, z = 1.23,
P=0.22) did not significantly differ between affected individuals and
controls. At a regional level (Fig. 1 and S/ Appendix, Figs. S2-S4 and
Table S4), there was a small but significant case—control difference
in cortical thickness asymmetry of the rostral anterior cingulate
cortex (d = -0.083, z=-3.21, P= 1.3 x 107, pppy = 0.047, reversal
from leftward average asymmetry in controls to rightward average
asymmetry in cases), and also in cortical thickness asymmetry of the
middle temporal gyrus (d = -0.074, z = -2.99, P= 2.8 x 10, pppp
= 0.048, increased average rightward asymmetry in cases) (Fig. 2
and ST Appendix, Figs. S8 and S9 and Table S5). Post hoc analysis
of unilateral effects showed that both of these regional asymmetry
differences were driven primarily by thinner left than right cortex in
individuals with schizophrenia compared to controls (Table 1 and
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Average structural asymmetries of the brain in individuals with schizophrenia and unaffected controls. For each bilaterally paired structural measure,

the mean asymmetry index (Al) across datasets, weighted by sample size, is shown for individuals with schizophrenia (purple) and unaffected controls (green).
A positive Al indicates left > right asymmetry, whereas a negative Al indicates right > left asymmetry. Error bars show pooled SDs. Figure was generated in R

using package ggplot2 (69).

SI Appendix, Table S6). The middle temporal cortex is a core language
network region (56), and left-hemisphere thinning is compatible with
disrupted leftward laterality of brain organization for language in
schizophrenia (10, 11). Nominally significant regional case—control
associations (i.e., which did not survive multiple testing correction)
were found for the Als of inferior parietal cortex thickness, cuneus
surface area, parahippocampal gyrus surface area, and nucleus
accumbens volume (Fig. 2 and ST Appendix, Table S5).

Sensitivity Analyses. For rostral anterior cingulate thickness
asymmetry, there were three datasets in the primary meta-analysis
which had outlier case—control effect sizes when compared to the
meta-analyzed effect. After excluding these datasets and repeating
the meta-analysis for this Al, the case—control difference remained,
with the same directionality (¢ = -0.073, z = -3.51, P = 4.5 x
1074 (81 Appendix, Table S7). For middle temporal gyrus thickness
asymmetry, the exclusion of two outlier datasets also yielded a similar
result compared to the primary analysis (4 = -0.079, z = -3.44,
P=59x 107, again with the same directionality (S Appendix,
Table S7).

Meta-regression analysis did not identify any significant mod-
erators (no Cochran’s Q omnibus test Pvalues < 0.05) (S Appendix,
Figs. $10-S23), i.c., Cohen’s 4 effect sizes reflecting asymmetry
differences between individuals with schizophrenia and unaffected
controls were not significantly influenced by scanner strength,
scanner manufacturer, use of a single scanner versus multiple scan-
ners, image slice orientation, FreeSurfer version, diagnostic tool,
or the geographic origin of datasets.

In models that included either handedness, ICV, both handed-
ness and ICV, or alge2 as additional covariates (models 2 to 5), the
case—control differences for both of these regional Als remained
nominally significant, with similar directions and magnitudes of
effect compared to the case—control differences found in the pri-
mary analysis (S Appendix, Table S8), despite differences in
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sample sizes resulting from limited availability of some of these
variables.

Medication Group Differences. Rostral anterior cingulate
thickness asymmetry did not differ between affected individuals
across medication groups (model 6) (87 Appendix, Table S9). For
the middle temporal gyrus, there was a nominally significant
increase in average rightward asymmetry in affected individuals
taking first-generation versus second-generation antipsychotics at
the time of scanning (4 = -0.21, z = -2.56, P = 0.011, pppg =
0.13), i.e., this was not significant after multiple testing correction

(SI Appendix, Table S9).

Correlations of Asymmetries with Clinical Variables. We
found nominally significant correlations between rostral
anterior cingulate thickness asymmetry and negative symptom
severity measured with the Scale for the Assessment of Negative
Symptoms (SANS) (r = 0.049, z = 2.08, P = 0.038, pppy = 0.32,
decreased rightward asymmetry with higher negative symptom
rate) (SI Appendix, Table S104) and between middle temporal
gyrus thickness asymmetry and duration of illness (» = -0.048,
z=-1.97, P=0.049, pppg = 0.32, increased rightward asymmetry
with longer duration of illness) (S Appendix, Table S10B), but
these correlations did not remain significant when correcting for
multiple testing. No correlations with chlorpromazine-equivalent
medication dose, age at onset, Positive and Negative Syndrome
Scale (PANSS) scores (total or positive and negative subscales), or
Scale for the Assessment of Positive Symptoms (SAPS) scores were
found for either the rostral anterior cingulate thickness asymmetry
or middle temporal gyrus thickness asymmetry (SI Appendix,
Table S10).

Age- and Sex-Specific Effects. In secondary analyses across all
Als using models with interaction terms, we found a significant
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Fig. 2. Map of cortical and subcortical asymmetry differences between individuals with schizophrenia and unaffected controls. Cohen’s d effect sizes from
random-effects meta-analysis are projected on inflated left hemisphere cortical surface models (for cortical thickness and surface area) or subcortical structures
(for subcortical volumes). Positive effects are shown in red shades (larger leftward or smaller rightward asymmetry in cases versus controls), while negative
effects are shown in blue shades (smaller leftward or larger rightward asymmetry in cases versus controls). Gray shades indicate masked out structures. See

also Fig. 1 and S/ Appendix, Table S4 for directions of effects. Regions significant at pgpg < 0.05 are labeled and marked with asterisks.

diagnosis-by-age interaction (model 8) for pallidum volume
asymmetry (4 = 0.081, z = 3.26, P = 1.1 x 107, pppg = 9.0 x
107, stronger leftward asymmetry with higher age in cases)
(SI Appendix, Fig. S24 and Tables S11 and S124). This association
was driven by a significantly decreased average leftward asymmetry
with increasing age in controls (r = -0.077, P = 1.1 x 107) that
was not present in affected individuals (S Appendix, Fig. S25 and
Table S12B). In terms of the corresponding unilateral effects,
left and right pallidum volume decreased with increasing age in
individuals with schizophrenia (L: 7 = =0.17, P = 4.7 x 107;
R: 7 =-0.20, P =4.7 x 107*") and unaffected controls (L: 7 =
-0.27, P =21 x 1074 R: 7= -0.24, p = 6.2 x 10™), but the
two groups differed with respect to the side showing the stronger

effect (S Appendix, Table S12B). No significant diagnosis-by-sex
interactions were found (model 9) (87 Appendix, Table S13).

Multivariate Analysis of Case-Control Asymmetry Differences.
Considering all 76 regional structural brain Als simultaneously in a
multivariate model, applied to the 14 datasets for which individual-
level data were available to the central analysis team (935 affected
individuals and 1,094 controls), there was a significant multivariate
structural brain asymmetry difference between cases and controls
that accounted for roughly 7% of the variance considered across
all 76 Als (Wilks' A = 0.932, approximate /76, 1950) = 1.87,
P =125 x 107). Only three of the Fostatistics resulting from one
million label-swapping permutations were larger than the F-statistic

Table 1. Significant brain regional thickness asymmetry differences between individuals with schizophrenia and

unaffected controls

Sample size(N) Mean Al(SD) Cohen’s d effect size[95% Cl] Average asymmetry

Region CTR Sz CTR Sz Left Right Al CTR Sz

Rostral anterior 5811 4,851 0.012 -0.0035 -0.20 -0094  -0083  Leftward Reversedto

cingulate cortex (0.086) (0.092) [-0.28, [-0.15, [-0.13, rightward
-0.11] -0.036] -0.032]

Middle temporal 5673 4684  -0.0080 -0.015 0.4 -0.36 -0.074  Rightward  Increased

gyrus (0.048) (0.048) [-0.50, [-0.44, [-0.12, rightward
-0.32] -0.27] -0.026]

Mean Al = weighted mean asymmetry index across datasets. SD = pooled SD across datasets (positive mean indicates average leftward asymmetry; negative mean indicates average
rightward asymmetry). Cohen'’s d effect sizes are shown from separate meta-analysis of left-hemisphere, right-hemisphere, and asymmetry index differences between cases (SZ) and con-
trols (CTR). No regional measures of cortical surface area asymmetry or subcortical volume asymmetry showed significant case-control differences after false discovery rate correction.
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Table 2. Multivariate analysis of case-control brain asymmetry differences between 935 individuals with schizo-
phrenia and 1,094 controls for which individual-level data were available (14 datasets)

Structural asymmetry Approximate F P

Multivariate test (all regional cortical and subcortical asymmetries) 1.87 Nominal P =1.25x 107
Permutation P=3.0 x 107°

Most significant univariate effects F P

Pallidum (volume asymmetry) 29.1 7.8x1078

Nucleus accumbens (volume asymmetry) 9.3 23x107

Rostral middle frontal gyrus (surface area asymmetry) 7.7 55x107°

Parahippocampal gyrus (surface area asymmetry) 7.2 7.4x107

Parahippocampal gyrus (thickness asymmetry) 5.5 0.019

Transverse temporal gyrus (thickness asymmetry) 5.4 0.021

Cuneus (surface area asymmetry) 5.4 0.021

Banks of superior temporal sulcus (surface area asymmetry) 4.9 0.027

Insula (surface area asymmetry) 4.6 0.031

Medial orbitofrontal cortex (thickness asymmetry) 3.9 0.048

Results are shown for the multivariate MANCOVA over all asymmetries, and the specific asymmetries with nominal significance (P < 0.05) in the corresponding univariate ANCOVAs, with

their F statistics (F) and P values (P).

from the true analysis, resulting in a permutation P = 3.0 x 10,
We also derived univariate (ANCOVA) association statistics from
the multivariate model to understand which Als contributed most
to the significant multivariate association. The structural Als that
showed nominally significant, univariate case—control differences
in the 14 datasets available for this analysis were those for pallidum
volume, nucleus accumbens volume, and eight regional surface area
or thickness measures distributed widely over the cerebral cortex
(Table 2). These did not include the two cortical regional Als that
showed significant case—control differences in the meta-analysis over
all the 45 case—control datasets, but did include Als of other language-
related regions of the temporal lobe: superior temporal sulcus surface
area asymmetry and transverse temporal gyrus thickness asymmetry
(Table 2). The large differences in overall sample size and contributing
datasets between the multivariate analysis and main meta-analysis
are a likely cause of these somewhat different results.

Discussion

In this study, we investigated group differences in structural brain
asymmetries between individuals with schizophrenia and unaffected
controls, in the largest sample to date. The large sample size offered
unprecedented statistical power to identify group differences based
on the clinical diagnosis of schizophrenia, and to measure their effect
sizes (37-39). Subtle differences of regional asymmetry were found
for rostral anterior cingulate thickness, middle temporal gyrus thick-
ness, and pallidum volume (the latter in older individuals). The
Cohen’s d effect sizes were less than 0.1; i.e., very small (70). In light
of previous large-scale analyses of bilateral cortical and subcortical
alterations in schizophrenia (47, 48), our results suggest that mor-
phometric alterations in this disorder are largely the same for the left
and right hemispheres, involving only subtle asymmetrical effects at
the group average level. This suggests that effect sizes of brain asym-
metry differences in schizophrenia reported in earlier, much smaller
studies (see Introduction) are likely to have been overestimated.
Nonetheless, in a multivariate context, 7% of the total variance across
all regional asymmetries was explained by case—control status, indi-
cating a diffuse and subde alteration of brain asymmetry in
schizophrenia.

Subtle group differences of asymmetry in terms of macroana-
tomic features, such as those studied here, may reflect effects at
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other neurobiological levels that have functional relevance for
disorder symptoms—for example molecular, cytoarchitectonic,
and/or circuit levels (71-73). For example, cortical thickness meas-
ures can correlate with the degree of myelination (74), such that
quantitative neuroimaging methods that are more sensitive to
microstructural tissue content may reveal alterations in the regions
implicated by this study. Neurite orientation dispersion and den-
sity imaging can be used to study cortical microstructural asym-
metries (73), or the ratio of T1w and T2w images in gray matter
can indicate cortical myelin content (75). We suggest that future
studies using such techniques can be focused on the regions iden-
tified in this study. In addition, postmortem studies of hemispheric
differences in gene expression in schizophrenia are motivated.

The middle temporal gyrus is prominently involved in the
brain’s language network (56), so that our finding of lower
left-sided cortical thickness in schizophrenia in this region is
broadly consistent with a prominent theory in the literature: That
left-hemisphere language dominance may be reduced in this dis-
order (10, 11). Cortical thinning of the left-hemispheric middle
temporal gyrus has been associated with auditory verbal halluci-
nations in schizophrenia (76), and is reported in individuals with
first-episode schizophrenia and high familial risk for the disorder
(77, 78). In terms of gray matter volume, an opposite pattern
(reduced right, increased left) has been reported for the middle
temporal gyrus in putatively at-risk children compared to typically
developing children (79). However, volume measures confound
cortical thickness and surface area, and since these two aspects of
cortical anatomy are known to vary substantially independently
(28, 80, 81), it is unclear how these earlier volume-based findings
may relate to the present findings based on cortical thickness asym-
metry. Again, earlier findings in smaller samples may have been
false positives or had over-estimated effect sizes.

The rostral anterior cingulate cortex is an important hub in
emotional and cognitive control (82), both of which are often
affected in schizophrenia. In this region, we observed a thinner
left-sided cortex in affected individuals than controls on average,
which was more pronounced than on the right side. This may be
consistent with a previous study where adolescent/young adult
relatives of individuals with schizophrenia showed a longitudinal
decline of gray matter volume in the left rostral anterior cingulate
cortex compared to controls (83). It is therefore possible that
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asymmetrical differences in this region emerge before schizophre-
nia onset, although the previous study included only 23 relatives,
so its reported effects remain equivocal, and it used volume rather
than thickness measures. In the present study, we saw no evidence
for an age*diagnosis interaction effect for this regional thickness
asymmetry, which is consistent with a preonset alteration that
subsequently remains stable through adulthood.

Multivariate analysis in 14 of the datasets, for which individual-level
data were available, resulted in a highly significant case—control dif-
ference. Various regional asymmetries contributed to this multivar-
fate association, with pallidum volume asymmetry showing the
largest individual contribution. Pallidum volume asymmetry was
especially associated with schizophrenia in older individuals, as
observed in secondary testing of univariate interaction models across
all the 45 case—control datasets. Larger pallidum volume in schizo-
phrenia compared to controls—with a stronger effect in the left
hemisphere—has been reported before (43, 44, 48, 84), although
some datasets in our analysis partly overlapped with three of these
studies (43, 44, 48). An age-dependent relationship between familial
risk for schizophrenia and larger left pallidum volume has also been
described in a small study of young adults (85)—this suggested that
alterations of pallidum asymmetry might already be present in a
prodromal stage of the disease. However, in the present study, the
group difference in pallidum volume was absent in younger individ-
uals and became more apparent in older adults. This also explains
why the association was not significant in the primary univariate
meta-analysis of all datasets together, i.c., it was driven by a subset
of datasets that included older individuals, and that were also avail-
able for multivariate analysis (S Appendix, Fig. S25). The pallidum
is prominently involved in reward and motivation (86), and impaired
reward anticipation and a loss of motivation are well-known negative
symptoms of schizophrenia (87). However, how pallidum structural
asymmetry may telate to functional disorder-relevant changes
remains unknown.

Various brain regional asymmetries have shown significant her-
itability in a recent genome-wide analysis of general population
data (28), including rostral anterior cingulate thickness asymmetry
and pallidum volume asymmetry (but not middle temporal gyrus
thickness asymmetry). When polygenic risk for schizophrenia was
assessed with respect to these heritable asymmetries in a multivar-
iate analysis (29), one of the strongest associations was with rostral
anterior cingulate thickness asymmetry. The direction of that effect
was consistent with the present study, i.e., a rightward shift of
asymmetry with increased polygenic risk for schizophrenia. In
contrast, pallidum volume asymmetry showed little relation to
schizophrenia polygenic risk (29), suggesting nonheritable con-
tributions to this association. These genetic findings were estab-
lished with adult general population data (UK Biobank) (29), but
together with the current case—control findings, they indicate that
altered rostral anterior cingulate thickness asymmetry may be a
link between genetic susceptibility and disorder presentation.
Left—right asymmetry of the brain originates during development
in utero (71, 88-93), and specific genomic loci that affect brain
asymmetry have recently been identified (28, 94). Some of the
implicated genes may be involved in patterning the left—right axis
of the embryonic or fetal brain, and genes expressed at different
levels on the left and right sides of the embryonic central nervous
system were found to be particularly likely to affect schizophrenia
susceptibility (88). However, other genes may affect brain asym-
metry as it changes throughout the lifespan (2, 95) and therefore
may affect susceptibility to asymmetry-associated disorders later
in life.

The magnitudes of effects in this study were in line with those
reported in recent large-scale studies of brain asymmetry in other
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psychiatric disorders carried out through the ENIGMA consor-
tium (50-53). In ASD, a similar decreased leftward asymmetry
of rostral anterior cingulate thickness was reported (51)—this
region is important in cognitive control which can be impaired
in both schizophrenia and ASD. For ADHD, a nominally signif-
icant increase in rightward asymmetry of middle temporal gyrus
thickness was reported, while in adults specifically, less leftward
asymmetry of pallidum volume was found (53). The former find-
ing is consistent in its direction of effect with the present study,
while the latter is opposite. For OCD, the pallidum was found to
be less left lateralized in cases versus controls in a pediatric dataset
and this effect was again opposite to our current findings in older
individuals with schizophrenia (52). These cross-disorder compar-
isons suggest that clinical and etiological similarities and differ-
ences between schizophrenia and other psychiatric disorders might
be partly reflected in asymmetry alterations involving some of the
same brain regions. For further discussion of brain asymmetry
alterations across multiple psychiatric traits, see Mundorf et al.
(96).

Schizophrenia is a highly heterogeneous disorder covering a
range of possible symptoms, which may correspond to differing
underlying disease mechanisms. Our primary analysis only con-
sidered case—control group average differences based on the overall
diagnosis of schizophrenia, and in secondary analyses, we did not
find significant correlations of asymmetries with major clinical
variables within cases after adjusting for multiple testing—includ-
ing age at onset, duration of illness, and symptom scores. However,
data for several variables were only available from a limited number
of study sites (medication, handedness, clinical variables), reducing
the sample size and thus statistical power in these secondary anal-
yses. More detailed clinical data would be useful to gather in future
large-scale studies of structural asymmetries. For example, a future
study could investigate middle temporal gyrus thickness asymme-
try in relation to the presence and severity of auditory verbal
hallucinations (note that PANSS question 3 does not distinguish
between auditory, visual, olfactory, or somatic types of hallucina-
tion, so a more targeted clinical assessment would be required).

This was the largest study of structural brain asymmetries in
schizophrenia to date, and made use of a single image processing
and analysis pipeline to support analysis across multiple datasets.
The fact that we used data from a range of imaging equipment,
diagnostic tools, and regions of the world ensures generalizability
of our findings, as they pertain to the diverse manner in which
schizophrenia is diagnosed and studied internationally. Therefore,
a major strength of our approach is in showing consensus effects
across intersite variations in techniques and samples. Unlike in a
highly selected, single-site or single-equipment study, the broad
and generalizable total dataset made it unlikely that any single
factor confounded our findings. We used a meta-analytic approach
after testing for effects separately within each dataset, where cases
and controls were matched for technical and demographic factors
within each dataset. This allowed us to assume and control for
variations between datasets in our main analysis. In addition,
meta-regression analyses indicated that between-dataset variability
in technical, diagnostic, or geographic aspects had no significant
impact on the associations between schizophrenia and regional
brain asymmetries identified in this study. It is also worth noting
that several findings from the ENIGMA-Schizophrenia working
group (not related to asymmetry) have been replicated by The
Cognitive Genetics Collaborative Research Organization in a
sample collected in Japan (97), supporting generalization of find-
ings across populations.

We used cross-sectional datasets, limiting the possible interpre-
tation with respect to cause—effect relations, longitudinal changes
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in asymmetry, or medication effects on asymmetry. Many of the
individuals with schizophrenia were likely to be past or current
users of medication, although data on medication were only avail-
able for a subset of datasets and were also limited to medication
use at the time of scanning. We found no evidence that the asym-
metries of rostral anterior cingulate thickness or middle temporal
gyrus thickness were different in affected individuals using med-
ication versus those not using medication, which may indicate
that the case—control differences of asymmetry that we detected
had a developmental origin, rather than reflecting medication use.
Indeed, medication effects on cortical thickness may be predom-
inantly bilateral, without necessarily affecting asymmetry. We are
not aware of any comparably sized prospective/randomized study
in which medication effects could be disentangled from case—con-
trol effects.

We found a tentative difference of middle temporal gyrus thick-
ness asymmetry between individuals who were taking
first-generation versus second-generation antipsychotics. In prin-
ciple, this finding might reflect a change of asymmetry in response
to first-generation medication in particular, or else clinical differ-
ences of disorder presentation linked to asymmetry which then
affect treatment choices. We saw nominally significant evidence
that this same regional asymmetry relates to illness duration.
However, the medication subgroup analyses were limited by rel-
atively small sample sizes compared to the primary case—control
analysis, and this particular association did not survive multiple
testing correction. Also, medication status did not include infor-
mation on previously used antipsychotics. This association there-
fore remains uncertain until replicated.

We used macroanatomical brain atlases for both the cortical
and subcortical structures, which is the most feasible approach for
large-scale analysis across multiple datasets, but limits spatial res-
olution. With higher resolution mapping, regions that showed
negative results in our study may harbor more focal case—control
asymmetry differences, which could be revealed for example
through vertex-wise cortical mapping (63, 94, 98), or subcortical
partitioning into subfields or nuclei.

This study focused on group average differences, but
individual-level deviations in affected individuals may be highly
heterogeneous and not well captured by group-average approaches
(99). Future studies may investigate individual or patient subgroup
asymmetry deviations from a normative range or structural pat-
tern, which may deliver clinical utility, for example through con-
tributing to diagnosis or prognosis. This concept has shown
promising results in recent studies even in smaller samples (99,
100). The small group-average effects that we identified in the
present study are unlikely to have clinical utility when considered
in isolation, although they may contribute to multivariate predic-
tion models in future research, for example when considering
brain features across multiple imaging modalities.

In summary, we performed the largest study of asymmetry dif-
ferences between individuals with schizophrenia and unaffected
controls to date. Effect sizes were small, but several regional case—
control asymmetry differences in cortical thickness and subcortical
volume were suggested, and multivariate analysis indicated that
7% of variation across all regional asymmetries could be explained
by the case—control group difference. Our findings therefore sup-
port a long-standing theory that the brain’s asymmetry can be
different in schizophrenia (10, 11), even if earlier studies in smaller
samples were likely to have overestimated the effect sizes in relation
to structural asymmetry. Altered asymmetry in schizophrenia may
conceivably occur during development through disruption of a
genetically regulated program of asymmetrical brain development,
and/or through different trajectories of lifespan-related changes
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in brain asymmetries. The specific regions implicated here provide
targets for future research on the molecular and cellular basis of
altered lateralized cognitive functions in schizophrenia, which may
ultimately help to identify pathophysiological mechanisms.

Data, Materials, and Software Availability. This study made use of 46 sepa-
rate data sets collected around the world, under a variety of different consent pro-
cedures and regulatory bodies, during recent decades. Requests to access the data
sets will be considered in relation to the relevant consents, rules and regulations,
and can be made via the schizophrenia working group of the ENIGMA consortium:
http://enigma.ini.usc.edu/ongoing/enigma-schizophrenia-working-group/.
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