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A survey of second-life batteries 
based on techno-economic perspective 
and applications-based analysis
Huma Iqbal*  , Sohail Sarwar, Desen Kirli, Jonathan K. H. Shek and Aristides E. Kiprakis 

Abstract 

The penetration of electrical vehicles (EVs) is exponentially rising to decarbonize the transport sector resulting in 
the research problem regarding the future of their retired batteries. Landfill disposal poses an environmental hazard, 
therefore, recycling or reusing them as second-life batteries (SLBs) are the inevitable options. Reusing the EV batter-
ies with significant remaining useful life in stationary storage applications maximizes the economic benefits while 
extending the useful lifetime before recycling. Following a critical review of the research in SLBs, the key areas were 
identified as accurate State of Health (SOH) estimation, optimization of health indicators, battery life cycle assessment 
including repurposing, End-Of-Life (EOL) extension techniques and significance of first-life degradation data on age-
ing in second-life applications. The inconsistencies found in the reviewed literature showed that the absence of deg-
radation data from first as well as second life, has a serious impact on accurate remaining useful life (RUL) prediction 
and SOH estimation. This review, for the first time, critically surveyed the recent studies in the field of identification, 
selection and control of application-based health indicators in relation to the accurate SOH estimation, offering future 
research directions in this emerging research area. In addition to the technical challenges, this paper also analyzed the 
economic perspective of SLBs, highlighting the impact of accuracy in second-life SOH estimation and RUL extension 
on their projected revenue in stationary storage applications. Lack of standard business model based on future mar-
ket trends of energy and battery pricing and governing policies for SLBs are identified as urgent research gaps.

Keywords Second life batteries, Energy storage system, Battery degradation, State of Health (SOH) estimation

1 Introduction
Electric vehicles (EVs) with zero emissions are consid-
ered to be the best alternative  to combustion engine 
cars reliant on polluting fossil fuels. According to the 
International Energy Agency’s annual report, global EV 
sales surpassed 2.8 million in 2020, bringing the overall 
number of EVs to 10.1 million [1]. By 2060, it is expected 
that this number would reach 1.2 billion [2]. Due to 
reduced capacity of less than 80% of the rated capacity, 

also known as End-of-Life, these batteries cannot be 
used for traction purposes, according to comprehensive 
research [3, 4]. Remaining usable life (RUL) is the capac-
ity of a retired battery that can be evaluated using state-
of-charge (SOC) estimates. To make EVs affordable and 
alleviate End-of-Life anxiety among EV producers and 
customers, the  probable solution in the literature is to 
employ these retired batteries for stationary applications 
[5, 6]. Reuse of these retired batteries provides environ-
mental benefits in addition to economic gains [7]. Hence, 
the term "second life batteries (SLB)" is introduced in the 
literature to describe them.

Various techniques are implied for screening, repur-
posing, and accurate SOH estimation of electrical vehi-
cle retired batteries to enhance the techno-economic 
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benefits in second-life applications. Advanced machine 
learning-based techniques and health indicators for SOH 
estimation are introduced for improving the accuracy 
and speed of the process [8–11]. Assessment of oppor-
tunities, scopes, challenges, and market trends related 
to this new technology of EV battery secondary use is 
gaining hype every passing day and has been reviewed 
by several fellow researchers. Initial review based on this 
specific area includes a critical discussion on the overall 
concept of battery second use. The survey mostly focuses 
on existing R&D projects involving second-life batteries 
and closely judges the environmental as well as economic 
aspects of battery secondary use [12]. Following a review 
in 2019, the authors tried to cover the gap by proposing 
potential solutions to challenges posed by economic and 
environmental adaption of second-life battery reuse [13]. 
Business models, government policies, market strategies, 
environmental benefits from repurposing, SLB’s model-
ling techniques, cost analysis of repurposing and instal-
lation, and impact on overall cost reduction are proposed 
and discussed in detail. In addition to stationary storage 
applications, mobile applications including EV charging 
stations are accessed both technically and economically 
[13]. Another review paper later this year combined the 
economic aspects with social and environmental dimen-
sions hence emphasizing the need for sustainable busi-
ness models for EV battery second use. Existing business 
models are discussed and their comparison is made with 
proposed sustainable models, the results stay uncertain 
due to lack of empirical research data and ambiguity of 
possible stakeholder’s involvement in the battery second 
use market but it opens a new horizon of sustainabil-
ity in future Electrical vehicle battery reuse market [6]. 
Another review paper sheds light on technical, environ-
mental, and market challenges involved with the reuse 
process and proposes data and cloud-based technologies 
to keep a better record of battery historical data and the 
existing state of the health for future reuse reference [14]. 
In [3] second life battery market trends are surveyed and 
challenges faced regarding reuse and recycling of used 
electrical vehicle batteries are accessed globally. There 
is a discussion of environmental impacts and economic 
challenges associated with manufacturing, recycling, 
and wasting different types of batteries on a global level. 
A more recent review on second life batteries covers the 
economic, technical, and environmental aspects of said 
technology. The technical aspects of battery screening 
for reuse are highlighted including degradation studies 
mainly in first use but also after deployment in second-
ary use to a smaller extent. Battery recycling challenges, 
reuse applications and business models are also explored. 
There is an emphasis on further research in this field to 
make second life batteries a part of mainstream market 

[15]. The latest survey reviews specifically the technical 
aspects of the inclusion of second-life batteries in station-
ary storage applications. It covers the literature regarding 
battery repurposing, ageing mechanisms, battery man-
agement systems for battery optimal sizing, and battery 
modelling. This review also points out the lack of deg-
radation studies in second use and precise ageing model 
[16].

Although this review study and the aforementioned 
articles cover some prospects for electrical vehicle sec-
ond-life batteries applications, their main targets are eco-
nomic benefits and market strategies which is no doubt 
need of the hour. However, these benefits are not achiev-
able if technical aspects are not thoroughly surveyed and 
the battery is not fully productive during its second use. A 
discussion about technical prospect of battery reuse after 
degradation in first use is included in [12, 16], however, 
there seems an uncertainty in accessing the future trends 
of this technology in techno-economic point of view. The 
most important reason of this uncertainty is ignorance of 
battery degradation history from first use. There is a need 
to review battery degradation process both in first and 
more importantly in secondary use as the data from first 
use plays an important role in determining battery age-
ing process in secondary use. There is no set methodol-
ogy yet to record battery degradation history in first use 
hence most of the studies are based on assumptions and 
hypothetical data. This predication of remaining useful 
life is more inevitable during second-life so that it could 
be extended to a maximum limit. In this paper we try to 
fill this gap by reviewing the literature focusing on deg-
radation studies of batteries during secondary stationary 
storage applications. The latest developments in SOH 
estimation techniques such as identification of health 
indicators for both battery first and second-life will be 
examined. Existing battery ageing models and state of 
health (SOH) estimation techniques will be reviewed and 
their applicability on battery second-life will be examined 
closely with references from literature. A critical discus-
sion on existing second-life batteries R&D projects will 
be included and suggestions will be made to more realis-
tic approaches.

To perform this survey, a systematic research and 
review method was implemented to analyze the process 
of battery degradation during second-life applications. 
To obtain our required results the keywords “Electrical 
vehicle battery”, “battery degradation” and “SOH estima-
tion” were used in the search engine “Google Scholar”. 
This has an authentic scientific peer-reviewed publica-
tion containing both journal and conference papers. The 
following methodology is shown in the Fig.  1. Filtering 
of literature having above mentioned keywords in their 
abstract, title, and keywords was performed. All research 
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papers were then further screened by focusing on papers 
having all keywords together. This resulted in the final 
list of data used in this literature survey which consists of 
(several) papers.

The organization of the paper is as follows. Section  2 
covers a brief background of the environmental benefits 
of electrical vehicles’ battery second use followed by the 
history of viable business models. Section  3 is a com-
prehensive and critical literature survey on existing and 
ongoing research methodologies for battery second used, 
keeping in view technical, economic, and applications 
aspects more importantly the second-life battery life 
cycle assessment in stationary storage applications. Sec-
tion 4 includes the discussion on the above section using 
a heat map and identifying opportunities and challenges 
in battery second use. Section 5 presents future research 
directions and objectives.

2  Handling Retired EV batteries
It is predicted that an enormous number of EV batter-
ies will be retired in future years [2]. With this growing 
number of EV batteries, the issue of how to dispose of 
retired Lithium-ion batteries is becoming particularly 
crucial. There are no approved recycling facilities for 
these batteries, and discarding them without adequate 
handling can cause greater environmental difficulties 
than fossil fuels, rendering the entire electric vehicle 
transition worthless [17]. On the other hand, the high 

cost of lithium-ion batteries is a key obstacle to the evo-
lution of electric car technology, and it is the reason why 
these batteries should be handles carefully [18]. Disposal, 
recycling, and reuse are the most common current solu-
tions for retired batteries [19]. EVs are expected to travel 
between 120,000 and 240,000  km on average. The most 
commonly used LIBs is expected to last 8–10 years and 
have a useable capacity of 70–80% [12, 20].

2.1  Disposal
The disposal of retired EV batteries is not a very suitable 
option due to many reason, one of them is that an aver-
age battery pack weighs 250  kg, then five million LIBs 
retired from EV waste will weigh 1.25 million tons when 
they reach the end of life [20]. If they are disposed of, 
they generate a lot of trash because recyclable and expen-
sive materials are discarded. Heavy metals and electro-
lytes from these batteries  contaminate soil and water, 
causing irreversible damage to the environment [21, 22]. 
The majority of discarded electric vehicle batteries end 
up in landfills, with a few being transferred to waste-to-
energy facilities for ignition [23]. The lithium salt LiPFe6 
is an example of discarded material that is extremely 
toxic and damaging to the human body, causing dam-
age to the eyes, skin, and lungs in particular [23]. Non-
flammable metals such as nickel and cobalt are collected 
in the bottom of burnt materials with ash and eventually 

Fig. 1 Literature survey methodology
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disposed of in landfills, causing harm in the same way as 
direct landfill disposal does [24].

2.2  Recycling
Recycling is another popular option for retired batteries. 
Using the recycling process, it is possible to recover and 
return the valuable materials of lithium-ion batteries into 
the value chain [20, 25, 26]. It has the potential to provide 
significant economic and environmental benefits. Instead 
of discarding valuable metals, this method can collect 
them for reuse, making the acquisition of raw materials 
easier [22]. Recycling plastic and graphite can also boost 
the economic value of retired lithium-ion batteries [27, 
28]. From an environmental standpoint, disposal is the 
most unaccepted alternative for dealing with end-of-life 
EV batteries [29]. For the recycling of valuable elements 
from end-of-life lithium-ion batteries, standard chemical 
and physical procedures have been used [21, 30]. How-
ever, because battery cathodes are made of a variety of 
materials, developing a low-cost, environment-friendly 
recycling method still remains a difficult and debatable 
issue [29].

2.3  Reusing
On the other hand, Instead of recycling the retired bat-
teries, the smart way is to reuse them to maximize their 
remaining potential life [31]. Reuse of EV batteries can 
be defined as the application/treatment of these retired 
batteries for storing energy in domestic storage systems 
and as a backup in modern grids that are integrated with 
renewable energy sources [32]. Two common meth-
ods of reusing these EV batteries are repurposing and 

remanufacturing [33]. The latter entails repairing or 
renovating used EV battery packs and redeploying them 
in automotive applications, whereas the former entails 
reconfiguration of these EV batteries to deploy them in 
less-demanding secondary applications such as those 
indicated above [20, 34]. However, prior to secondary 
usage, batteries may require additional processing such 
as testing, inspection, disassembly, removal of faulty 
calls, and replacement [35].

Figure 2 depicts the complete life cycle process at the 
end of the transportation life of the EV battery. This 
include battery screening for capacity dispersion among 
cells, refurbishment and then these repurposed batteries 
should be implied in storage applications.

There have been numerous studies in the literature that 
support the reuse of electric vehicle batteries, these are 
discussed here. In the United States, a cost-effective and 
carbon emission  analysis of installing SLBs against new 
LIBs for three energy storage applications: (1) domestic 
energy storage with rooftop PV, (2) utility-level PV firm-
ing, and (3) utility-level peak-shaving is conducted [36]. 
In comparison to new LIBs, SLBs reduced the levelized 
cost of power by 12–57 percent and carbon emissions 
by 7–31 per cent. When compared to rooftop PV alone 
at the residential level, SLBs  lower  the levelized cost by 
15–25 percent and  carbon emissions by 22–51 percent, 
making SLBs attractive to residential users as well [36].

When these three methods of handling retired EV bat-
teries are compared, it is obvious that discarding them 
after their initial usage is not an acceptable alterna-
tive from both an economic and environmental stand-
point. While it is self-evident that reused batteries will 

Fig. 2 Electrical vehicle battery at the end of first-life
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eventually be recycled, the only practical choice for 
maximizing financial advantage and optimizing environ-
mental benefit is to reuse them in static applications. It 
will also facilitate the intermittent renewable electricity 
supply in the future by implying a controlled life cycle 
analysis of reused batteries in these stationary storage 
applications [37].

However, there are still significant obstacles in reusing 
EV batteries, particularly in terms of estimating remain-
ing life, life cycle evaluation, screening process, regroup-
ing, and, most importantly, safety management of wasted 
batteries for secondary use [29]. According to [37] repur-
posing old EV batteries into stationary storage systems 
can improve the overall environmental sustainability of 
EVs and residential storage. The environmental implica-
tions, in particular, are reduced by a percentage ranging 
from roughly 4% (in cumulative energy usage) to 17% 
(in abiotic depletion potential). This will help kick-start 
the transition towards a low-carbon economy. Accord-
ing to this research, more research is needed to improve 
the environmental sustainability assessment of used bat-
teries’ second lives [37]. The lack of primary data on key 
energy model factors that affect environmental impact 
assessments, such as charge/ discharge efficiency, bat-
tery capacity degradation, and battery lifetime, as well as 
methodological assumptions (e.g., allocation strategy), is 
a major concern in this sector. Introducing proper busi-
ness models for retired battery use in post-vehicle mar-
kets can assist lower the upfront cost of an electric car, 
producing money, and making them more accessible 
to the general public, increasing EV penetration in the 
transportation sector.

3  Second‑life battery degradation studies 
in stationary storage applications

The use of second-life batteries in stationary storage 
applications has proven to be a better alternative to dis-
posal and recycling [20, 31]. Hence, an accurate estima-
tion of the battery’s useful capacity and remaining life in 
second-life applications should be assessed with utmost 
attention. There are various variables used for accessing 
the parameters responsible for battery ageing [38–40]. 
Battery state-of-health (SOH) is the parameter defining 
the battery’s useful capacity, it is the most widely used 
notion in battery ageing studies [38, 41]. If it is not meas-
ured and predicted precisely this can lead to a miscon-
ception about the battery’s operational capacity, misjudge 
any fault condition of the battery as well as can pose seri-
ous safety hazards [42, 43].

3.1  Battery SOH estimation and ageing models
Battery SOH is generally predicted by its internal 
resistance data and capacity fade [44]. Hence, battery 

degradation/ageing studies play a crucial role in pre-
dicting the health of the battery both during first and 
second-life applications. There are several ageing models 
proposed for battery SOH estimation but still, the preci-
sion is compromised due to factors summarized below.

1. SOH being an internal battery parameter is hard to 
be sensed directly. It is usually obtained from the 
integration of other measurable parameters such as 
current, voltage etc. [45].

2. Using off-line data sets for most prediction methods 
in the literature, Also, the SOH of a battery depends 
on environmental factors as well as multiple internal 
parameters that are strongly dependent on time [45].

3. Due to the high involvement of various internal and 
external factors, the battery degradation curve is very 
non-linear which makes SOH predication methods 
unreliable [45].

Currently, SOH estimation algorithms are based on 
model-based methods, data-driven methods and the 
combination of model-based and data-driven methods 
[46]. There are studies initiated for optimal accurate pre-
diction of the capability of second-life batteries in sta-
tionary storage applications by accessing cycle life and 
estimating battery SOH. The assessment of useful life-
time of a battery in specific applications require practical 
data, which is not very common practice yet [47, 48]. Fig-
ure 3 shows conventional and advanced methods of SOH 
estimation.

The choice of an appropriate battery ageing model is 
very important for battery SOH estimation. As SOH is 
considered an indicator of battery ageing there are vari-
ous techniques in the literature to estimate battery SOH. 
In an ageing study for an Electric vehicle battery, an elec-
trical equivalent circuit is used to represent battery per-
formance and ageing in different second-life applications 
[49]. Some ageing parameters are indicated but there 
are no demonstrations on how they are involved in con-
trolling battery life. This [50] equivalent circuit model is 
combined with a reliability model to check stress levels 
from the battery ageing model to more accurately esti-
mate the remaining useful lifespan of the battery. The 
battery model is used to calculate SOC and DOD from 
the battery current and capacity. The reliability of a Li-
ion battery on second-life stationary energy storage mis-
sions can be assessed using this model. The conventional 
coulomb counting method compares estimated capac-
ity with rated capacity by continuously measuring cur-
rent, [51] is a simple technique but has the disadvantage 
of requiring a complete battery cycle of 100% which is 
practically not true [52]. A data-driven SOH estimation 
technique in [53] using autoregressive integrated moving 
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average (ARIMA) uses a forecasting algorithm to pre-
dict second-life battery remaining useful life in station-
ary applications with less than 3% error. This technique 
works by initializing a model order and starting a time 
series model constructed on the past cycle’s training data. 
The combination of this approach with other forecast-
ing algorithms for example neural networks is proposed 
to handle the non-linearity in components estimating 
SOH [10]. Another innovative lithium-ion battery age-
ing model in [54] is based on open circuit voltage analysis 
using incremental capacity curves. Following these, a bi-
stage segmented non-linear regression technique is used 
here to fit the curves as per peak value. This approach 
presents a better degree of accuracy to a vast application 
area of lithium-ion batteries, possibly extendable to sec-
ond-life applications as well.

In [55] a forecasting model to predict battery capac-
ity estimation both for ageing and regeneration phe-
nomenon is presented. However, this study does not use 
data from an actual electrical vehicle battery so in the 
future proposed model can be applied to real-life bat-
tery data from different compositions and manufactur-
ers. Table 1 entails a comprehensive survey of literature 
on degradation studies on second-life batteries including 

economic analysis and technical aspects like ageing stud-
ies method, ageing parameters, control of ageing parame-
ters, health indicators identification, capacity dispersion, 
specific second-life application and effect of temperature.

3.2  Health indicators for SOH estimation
Recently, the identification of health indicators (HI) for 
extension of the useful life of these EV batteries in their 
secondary applications is gaining popularity. It makes 
SOH estimation more accessible by parameterizing. The 
internal resistance rise, which is evaluated practically 
using impedance spectroscopy, capacity fade, which is 
determined by incremental capacity analysis, as well as 
current and voltage measurement, are the commonly uti-
lized battery health indicators for SOH estimation [20, 
25, 26]. New classes of HIs are being identified and clas-
sified based on accuracy under specific second-life appli-
cations. This study, in addition to previously stated HIs, 
identifies two novel indicators of Cpk (Capacitance peak) 
and Vpk (Voltage at peak Capacitance) for specific bat-
tery chemistry (lithium iron phosphate LFP). This tech-
nique uses a simple conventional estimation algorithm to 
obtain an average accuracy for RUL predication (above 
97%) and high accuracy capacity prediction (error less 

Fig. 3 Battery SOH estimation methods
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than 1%) [8]. It is also suggested to investigate their appli-
cability to other battery compositions.

As data-driven ageing models based on HIs are get-
ting famous, an innovative combined machine learning 
approach for accurate estimation that is also faster than 
standard processes. This scheme is verified on 200 cells of 
different compositions and under varying operating cir-
cumstances [9]. It uses  SOHC (battery current maximum 
capacity) and  SOHE (battery current maximum energy) 
as novel initial health indicators. The proposed method 
is efficient and widely applicable based on a limited data 
set of measured voltage and current only. Moreover, this 
study has ranked the data-driven machine learning-based 
model in [9] as an efficient technique for battery accu-
rate and fast state of health estimation for second-life 
allocation.

Six health indicators (collectively called multiple health 
indicators MHIs) are identified and used in [10], com-
bined with a lifetime degradation model (based on a neu-
ral network approach) to reduce the dispersion among 
different battery cells from first-life to be reconfigured 
for second-life use under different duty cycles. Three of 
them are based on impedance studies from the battery 
equivalent circuit model, two from the battery OCV 
curve and the last one is from the incremental capacity 
curve. At least 22.9% more accurate results are claimed to 
be achieved from this MHIs-based system as compared 
to single HI-based techniques.

The health indicators’ identification for degradation 
studies of batteries suggests that this is the main strat-
egy for cost reduction of second-life batteries both in the 
repurposing stage and during second-life applications. 
The authors in [11] have taken a step ahead and identi-
fied 58 HIs from different battery internal parameters 
such as internal resistance, ICA, charging/discharging 

studies and current /voltage measurements etc. Compar-
ative analysis of these HIs for-battery degradation studies 
reveals the best HI for both repurposing and second-life 
use cases. Then using an estimation algorithm battery 
SOH is predicted based on chosen HI. Table 2 briefs the 
above description for better and quick understanding.

3.3  Degradation data from first use
Battery degradation history from first use can play a cru-
cial role in determining its ageing trends in second-life. 
However, there is not much development in this regard 
to keep a track of the battery’s complete history during 
first use. An initiative has been taken in this aspect and 
an innovative cloud-connected battery management sys-
tem is suggested [75]. This system keeps a track of battery 
data in electrical-thermal from first use continuously on 
a back-end server. Then a combination of this data and 
an empirical ageing model is proposed for the correct 
prediction of battery remaining useful life. The crucial 
part of this model is the extraordinary requirement of the 
degree of precision of the electrical and thermal model to 
compute stress factors for ageing estimation of different 
cells. The merits of this proposed method above related 
techniques in literature are economical and reliable state 
estimation at the end of first-life and remaining useful 
life during secondary use as well. However, in a real life 
scenario, there is a requirement for an appropriate age-
ing model for identical electrochemical cell types and 
ideally the same cell type for each battery. Brings another 
parameter into consideration which is battery repurpos-
ing which can be an expensive process if not handled and 
planned according to the existing health conditions and 
homogeneity among battery cells. Repurposing has a sig-
nificant effect on battery degradation properties in the 
second-life in the context of both cost and efficiency [64].

Table 2 Health indicators identification for SOH estimation

Ref [8] [9] [10] [11]

Health indicators Two novel HIs (Cpk and Vpk) 2 Novel HIs (SOHC, SOHE) 6 HIs (R0, Rp and Cp in the 
ECM, capacity from ICA, two 
OCV-based HIs)

58 HIs ( from ICA, PCM, CC 
and CV charge stages, and DC 
internal resistance
Measurements)

Estimation Algorithm Combination of regular-
ized logistic regression 
(RLR), multivariable linear 
regression (MLR), multilayer 
perceptron
(MLP)

Combined Machine learning The Back Propagation Neural 
Network (BPNN)

Combined machine learning

RUL prediction accuracy More than 97% N/A Error less than 1.31% N/A

Capacity estimation 
accuracy

Error less than 1% N/A Error less than 1.31% 0.2% root mean square error 
in the repurposing stage and 
2% in second life

Second-life Application Low-capacity applications N/A Low-capacity applications Repurposing and second-life 
application
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3.4  Second-life Batteries Screening and Repurposing
So there is another highlighted problem is the handling 
of end-of-life batteries of EVs to repurpose them as sta-
tionary energy storage devices. Accelerated cyclic test-
ing is performed in [65] on six cells extracted from the 
Nissan Leaf battery after reaching end-of-first-life to see 
whether they might be reused in a stationary applica-
tion that required low performance. An end-of-life age-
ing knee is determined for battery second use by using 
capacity fade and internal resistance rise during cell age-
ing testing. In a related study in [56], five NMC battery 
cells, with different states of health for four of them, were 
tested for their performance from the first end of life. It 
was concluded that these batteries can be involved in 
stationary storage applications with relatively lower per-
formance requirement such as frequency services. A low 
charge/discharge current rate can extend their useful life 
in second applications. This study was extrapolated to 
Electrochemical Impedance Spectroscopy (EIS) analysis 
in [76] for different chemical properties of batteries and 
their SOH estimation. The influence of ageing on the bat-
teries has been investigated with the parametrization of 
the battery impedance circuit model.

However, handling EOL batteries and repurpos-
ing them may become costly if the capacity dispersion 
among cells is not taken into account [17]. An intra-mod-
ular and inter-module capacity dispersion of battery cells 
are performed on 10 first-life modules and 32 s-life mod-
ules for comparison before repurposing [82]. A proposed 
method in [60] suggests two-step characterization; initial 
scanning based on external physical parameters and then 
sorting the scanned batteries based on their remaining 
effective capacity. A sophisticated workbench is used 
for testing the battery in this proposed method. A Smart 
Batching Management modelling tool is proposed as a 
cost solution to perform capacity test to find SOH of all 
used cells on field, this will also ease quick sorting of used 
cells [17]. Testing of batteries in practical application is 
postponed for future work and the life cycle of second-
life batteries is proposed to be described as a function of 
energy storage system application. An experiment-based 
sorting technique categorizes six battery samples for grid 
connecting applications is proposed in [83]. However, no 
attention was given to battery degradation and heteroge-
neity among cells.

To handle heterogeneity among cells, a general energy 
management system (GEMS) is proposed in [78] to regu-
late and distribute load demands between varying capac-
ity second-life battery modules under various operating 
conditions (load profiles, disturbances). Experimental 
verification of this scheme shows that it successfully 
manages the performance differences between second-
life battery modules of varying sizes, capacities and 

chemistries in the same application at the same time. 
However, the initial age of the battery cells should also be 
taken into account. An automated testing device is built 
and tested in [84] to handle second-life lithium-ion bat-
teries. For future scenarios, this device can be used to 
perform multiple accelerated charge/discharge life cycle 
tests on the batteries and provide real-time data. This 
data will be helpful in the determination of the feasibil-
ity of batteries integrated with grid-tied energy systems. 
But this testing has been intended for future work and no 
real-time result/data is available from it to date. There is 
another retired electrical vehicle batteries repurposing 
technique presented in [58] for a renewable integrated 
high-scale battery energy storage system. A hybrid tech-
nique to extend the battery ageing process called “Multi-
Level Interlaced Pulse Charging (MLIPC)” is developed 
from two processes, 1. Pulsed charge management and 
2. Battery interlacing. This combination allows a single 
battery pack operated by simultaneous multiple inter-
laced PWM pulse trains so if applied to multiple bat-
teries can contribute to charge exchange between the 
cells. This helps in avoiding an unbalance stress on one 
battery unit/cell. However, no comprehensive economic 
study was conducted. Further research into the length of 
the battery’s pulse period is needed to optimize the per-
formance of the system. In another related study with 
unknown battery history, sorting and prediction studies 
are conducted to categorize and repurpose batteries for 
secondary storage applications [59]. The techniques used 
are called Hybrid Pulse Power Characterization (HPPC), 
EIS analysis and incremental capacity analysis. Three 
LMO battery models were tested for SOH estimation 
of end-of-first-life sorting using all three different tech-
niques. The results are based on comparisons showing 
that each method has its own merits of looking into spe-
cific aspects of degradation studies of batteries.

3.5  Life cycle assessment
The efficient modelling of complete life cycle assessment 
of second-life batteries in energy storage systems also 
plays an important role in optimal utilization of second-
life batteries in stationary applications hence it is an inev-
itable part of battery second-life degradation studies. A 
parametric life cycle system model has been developed 
and applied to integrate second-life batteries to facilitate 
the renewable electricity supply and to access the poten-
tial of these batteries to be used in second-life applica-
tions in California in the future [85]. Different techniques 
of battery testing to estimate battery SOH has been used 
in the literature. These include incremental capacity 
analysis, EIS (Electrochemical Impedance Spectroscopy) 
and estimation algorithms based on machine learning. 
The method of EIS in [67] along with half-cell testing is 



Page 13 of 28Iqbal et al. Carbon Neutrality             (2023) 2:8  

used to study the degradation of two different cells under 
two grid applications of frequency regulation and energy 
arbitrage services. Suggestions are made for appropri-
ate cell types in a particular grid service with maximum 
economic benefits. This poses an opportunity for grid 
operators and also researchers to manage the life span of 
second-life batteries by using them under particular con-
ditions and operational time. Nevertheless, the cell com-
positions cannot be disregarded on the basis of type of 
application as it can cause instabilities in assessment of 
life cycle and cost estimations.

A novel method to link SOH with EIS of new and used 
lead-acid batteries in [71] provides a better and reliable 
way to predict battery SOH for all values with less than 
10% of error and is valid for possible SOC range from 80 
to 20 percent. The drawback is an extremely costly work-
bench for battery testing. The methods of incremental 
capacity analysis and probability density function are 
used and compared for battery SOH modelling in [72] 
for a constant power operating condition. Whether it 
is the cell or the module, the variation in SOH between 
different batteries in the BESS is significant. The relative 
degree of ageing degree for a battery can be determined 
by grading the HI value on ICA or PDF curves based on 
actual charging voltage data in the case of an unknown 
SOH. This study’s methodology and findings add to the 
adoption of online SOH battery evaluation in real-world 
energy storage systems. The above-mentioned techniques 
are combined with another method for battery ageing 
studies called average Frechet distance of battery age-
ing, and introduced in [73]. The offline SOH is predicted 
using internal resistance as a health indicator. However, 
the results drawn here cannot be applied generally to all 
battery types because this testing has been performed 
under specific conditions.

As data-driven based SOH estimation techniques are 
gaining attention due to their robustness and accuracy. 
A SOH estimation for battery degradation studies uses 
linear regression with incremental capacity analysis to 
estimate the remaining useful lifespan in second-life 
storage applications. Life cycle tests are performed on 
six lithium-ion battery cells to demonstrate the bat-
tery’s ageing characteristics for three typical load pro-
files. Then a quantitative incremental capacity analysis 
is performed to access ageing mechanisms followed by 
another systematic ageing analysis to find the similari-
ties and differences under different load conditions. The 
suggestion is to use a combination of ridge and linear 
regression with a correlation-based feature to counter 
the estimation variance with so many inputs [63]. There 
are some discontinuities in results possibly due to dif-
ferences in the ageing patterns in EV first operations. As 
part of the European Second-life battery energy storage 

system, a novel algorithm called a mixed least square 
estimator ramp rate compliant (MLSERRC), based 
generic method is used in [57] to determine the opti-
mal rating of SLBs, power exchange and battery state 
of charge profiles for an entire operational year. The 
driver for using SL batteries is the possibility of reduc-
ing costs and minimizing the environmental impact 
by using aged batteries closer to their lower operation 
performance. The authors claim that the power profiles 
obtained from this study can later be used for SLB test-
ing, which will allow analyzing the performance capa-
bilities of such batteries, and their ageing.

As previously emphasized, historical data from bat-
tery first use can be a game-changer in optimizing the 
useful life of second-life batteries, this study in [79] aims 
for total life span prediction of batteries starting from 
cycle life in first use, second-life application life and then 
remaining capacity of retired batteries. There is also an 
investigation of ageing process and SOH estimation for 
the said life span of batteries. First-life data of a new bat-
tery is used to train the second-life battery to predict 
the interdependence of both. Being a beginner research 
area, a few deficiencies are also observed in this study, 
one of them is an online estimation of impedance [74], 
as impedance is an important deciding factor in SOH 
estimation, it should be estimated precisely and online. 
Moreover, as batteries in each stage have different capac-
ity fade ratings, it can result in inconsistent battery sys-
tem overall ageing behavior hence more investigation is 
recommended in this regard.

A summary of key research issues in the deployment 
of lithium-ion batteries includes the estimation of actual 
capacity, sorting of battery modules based on capacity 
dispersion, remaining useful life, battery circuit model 
and SOH algorithms. New methods and models for sort-
ing retired batteries and estimating SOC and RUL of 
these batteries are put forward [4], which improve the 
consistency, decrease the degradation and prolong the 
battery cycle life. In future, these methods should be veri-
fied by experiments to attain benefits from them.

4  Economic Assessment considering battery 
ageing

There is a lot of ongoing research on this emerging sec-
ond battery reuse technology. There are some techno-
economic studies presented that undertake battery 
degradation aspects into account for second-use applica-
tions, but most of them are based on approximations of 
battery capacity, efficiency and lack of first-use data [3, 
13]. The economic models are either specific for battery 
type, chemistry or type of application under specific con-
ditions so no generic techno-economic tool is present to 
date [61, 86]. This topic undertakes all the progress made 
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in battery secondary use degradation studies from the 
prospect of economic benefits.

Several projects and research works are reviewed in 
[87] to understand the developments related to second-
life batteries. The technical feasibility, economics, and 
environmental impact of using second-life batteries are 
also investigated under different applications. The world’s 
first battery energy storage system comprising second-
life batteries from BMW i3 sets a cornerstone for future 
reliable energy storage systems [88]. A combination of 
estimation techniques for battery SOH and cost analysis 
tools is required for a comprehensive techno-economic 
assessment that would also keep in sight the concept of 
useful lifetime extension of second-life batteries. A real-
life case study in [62] considering two different scenarios 
in Spain analyses the feasibility of second-life battery 
energy storage but with approximations. An economic 
model built in MATLAB is later analyzed for expected 
results using a system called SMEs (small and medium 
enterprises). Electricity tariff reduction is proposed in an 
energy storage system with data from market and suit-
able battery ageing model. A leading electrical vehicle 
manufacturing company has recently devised a mixed 
research methodology for said purpose [89]. An applica-
tion-based analysis of second-use batteries is conducted, 
and a comparison is made for economic feasibility them-
selves. The economic evaluation is performed for three 
different applications of battery repurposing with equally 
dispersed capacities, refurbishing for use again in elec-
trical vehicles and finally reuse in secondary storage 
applications. The reuse of batteries in secondary storage 
applications without any categorization, refurbishing and 
repurposing is the most economical process of all. There 
is a need for detailed economic analysis for all three con-
cepts to strengthen the idea of economic gain from the 
reusing process instead of recycling.

It is also recommended to analyze second-life bat-
teries use in residential systems with solar PV as ini-
tial studies. Levelized cost of electricity LCOE is used 
as an economic analysis tool for a residential energy 
storage system comprising of PV array and second-life 
batteries. Carbon emissions are also compared for an 
added environmental benefit. A research study in [36] 
suggests grid level scenario as most favorable in terms 
of total cost reduction if compared on basis of spe-
cific application. Results are based on 41 cases includ-
ing residential rooftop PV using energy storage, PV 
firming and peak shaving at the grid level. The use of 
second-life batteries in the residential system in com-
bination with renewable generation reduced the LCOE 
by 12.57%. This is further investigated in another resi-
dential prosumer’s storage system in [69] consisting of 
second-life batteries and solar PV. Sensitivity analysis 

is used to access the said system in terms of techno-
economical aspects second-life battery changing mar-
ket prices in California. The second-life batteries have 
variable battery SOH and variable PV generation pen-
etrations. There are supporting results about economic 
revenue from battery operation hence encouraging the 
consumers to adopt second-life batteries as a viable 
option for energy storage.

In a case study in [90], used batteries are deployed in 
different grid applications including supporting the grid 
in fast EV charging stations, self-consumption, trans-
mission deferral and area regulation. Great reliability is 
predicted for a renewable generation as self-consump-
tion results show the endurance of close to 12  years. 
The economic and environmental evaluation is not very 
feasible if used batteries are connected to the grid with-
out renewable support. This is verified when a typical 
rooftop PV in the combination of second-life batteries 
is evaluated for technical, economic and environmental 
benefits in the US [91], it predicts a clear cost reduc-
tion when the excess electricity from solar arrays is not 
sold to the main grid. It can be said that the use of net-
metering strategies can increase the cost of electricity 
from PV arrays. There is a need to devise policies for 
use of second-life batteries in residential energy stor-
age systems and net metering to consider both the eco-
nomic and environmental benefits. It is further studied 
in [61], another case of second-life batteries and solar 
energy-based storage systems, a project in California. 
A data-driven battery ageing model is included to esti-
mate ageing phenomenon and results are compared 
with another project with a new battery. A certain con-
trol policy is used to minimize battery cycle ageing with 
different SOC values and the life of the proposed sys-
tem is calculated. Under these specific conditions, this 
project has been more long-lasting and economically 
favourable for use of a second-life battery in place of a 
new battery with cost benefits. The results presented 
here are for specific battery types and specific circum-
stances and loading conditions. Also, with the current 
battery prices, there remains uncertainty about the 
proposed economic benefits of this system. More rig-
orous analysis is required to generalize the presented 
results. Another research in [92] investigates an analy-
sis of energy exchange between a residential PV array, 
second-life battery energy storage system and a grid in 
Southern Europe. The results are presented for 10 years 
of operation and technical benefits from batteries are 
confirmed. As far as economic benefits are concerned, 
large and small repurposed batteries were compared 
and conclusions verify the payback time of large batter-
ies was greater than smaller but both batteries can pro-
vide technical benefits for an evaluated period of ten 
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years. The policymakers should consider these results 
as a benchmark for future second-life battery projects. 
The accurate economic assessment is also useful to 
justify the motive of wide EV-market adoption as well 
as the use of EV batteries in residential energy storage 
applications. Table 3 includes studies undertaking bat-
tery degradation use into account while performing a 
techno-economic assessment of second-life batteries-
based energy storage systems. The degradation meth-
ods are listed along with the type of application and 
conclusions drawn from surveyed literature.

However, there is no consideration of uncertainty 
related to battery first use in the determination of its 
value in second use and for optimal sizing in storage 
applications yet. A stochastic optimization method 
should be adopted to counter degradation uncertainties 
associated with battery and sizing of second-life batter-
ies in the second-life application [97]. This has been pro-
posed in [94] for optimal sizing of second-life batteries in 
a real-life PV power plant based on a mixed least-squares 
estimator ramp-rate compliant (MLSERRC) algorithm. 
A one-year power profile is obtained and applied to sec-
ond-life batteries in the laboratory for testing and age-
ing studies. An economic analysis is then performed for 
the optimal size of SLBs, this applies to other cases too. 
Another appropriate sizing technique for the battery is 
presented in [70] based on an updated model of Present 
Value of Throughput (PVT) estimation. This advanced 
PVT model also takes care of battery disposal prices. It 
is based on a case study in Europe but in future could be 
generalized to different market scenarios.

In [66], another novel techno-economic analysis tool 
is given for the sizing of PV, second-life Li-Ion battery 
and power consumers integrated micro-gird as a compo-
nent of the main grid. This tool is highly conditional and 
based on many assumptions but works fine for the given 
scenario by optimal sizing of PV and energy storage sys-
tem based on the Net Present Value criterion. Results are 
shown for both cases with and without ageing involved. 
A cost comparison is done using economic indicators 
with a case where only the main grid is present. It pre-
dicts a microgrid with storage is way more economical 
than without a storage system. However, Calendar age-
ing is ignored in this analysis. There is a lot of room for 
improvement in this tool for the future such as consider-
ing power electronic components losses, more optimized 
battery ageing model during second use, more complex 
energy management models, battery life cycle assessment 
due to capacity dispersion among cells in calendar age-
ing, SOH and resistance values at end of first use depend-
ing upon first-life use and also uncertainty in market 
trends and price inflation impact on economic analysis 
over long periods.

It is stressed that degradation history at the end of first 
use can be of great importance in accurate estimation of 
the used battery’s remaining life span hence making eco-
nomic evaluations more reliable. This economic model 
in [80] regarding grid-able EVs and second-life batter-
ies undertakes both vehicle and second-life degradation 
phenomena. It encourages EV owners to decide when to 
start second life for their EV battery depending on their 
requirement of revenue margin. Battery degradation is 
allowed up to 70% in first-life and up to 30% in second-life 
use and it is concluded that around 19.56% of a battery’s 
upfront cost can be compensated by using this proposed 
model of degradation considered in both uses. It is sug-
gested that the battery continues to generate revenue for 
both lives and the vehicle owner can decide about the 
amount of cost saving by starting the battery’s second life 
and also selling the electricity in addition to the battery’s 
second-life use. A techno-economic evaluation using 
software called SimSES in [96] investigates the revenues 
generated by deploying second-life batteries of varying 
capacities under different applications. This model looks 
quite detailed taking into account battery characteristics, 
ageing and operating conditions. However, some limita-
tions seen in the model are neglecting non-linearity in an 
ageing phenomenon, battery cell unpredictable failures 
or any unseen technical circumstances.

4.1  Business models and policies
The secondary usage of retired batteries and the creation 
of new business models in these fields have advanced sig-
nificantly. However, rather than the environmental and 
social aspects of this new developing technology, the 
emphasis is on its commercial advantages. Several car 
firms have started programs to demonstrate this field in 
collaboration with energy companies and governments. 
To evaluate the key players in the battery second use 
industry and their impact on the development of envi-
ronmental ecosystems, case study in [98] featuring nota-
ble participants in the market must be carefully analyzed. 
An operational optimization model has been presented 
in [68] to examine all the conditions in which second-
life battery use in stationary energy storage systems is 
beneficial in China. It is said that if battery initial costs 
are not considered in future the profit margins will sig-
nificantly decrease during their use in secondary storage 
applications.

In an attempt to quantify the importance of policies 
and business models, rooftop photovoltaics with SLBs 
in five US cities were analyzed in [91]. The cost of elec-
tricity was reduced, hence, excess electricity from pho-
tovoltaics was stored in SLBs rather than exporting to 
the grid. Another study [99] explored sustainable busi-
ness models (SBMs) evolution for SLBs to create a new 



Page 16 of 28Iqbal et al. Carbon Neutrality             (2023) 2:8 

Ta
bl

e 
3 

Su
m

m
ar

y 
of

 e
co

no
m

ic
 a

ss
es

sm
en

ts
 o

f s
ec

on
d-

lif
e 

ba
tt

er
ie

s 
in

co
rp

or
at

in
g 

de
gr

ad
at

io
n 

st
ud

ie
s

Re
f

Ec
on

om
ic

 a
na

ly
si

s 
to

ol
D

eg
ra

da
tio

n 
m

ec
ha

ni
sm

Se
co

nd
-li

fe
 A

pp
lic

at
io

n
Re

su
lts

G
en

er
al

 C
om

m
en

ts

[6
2]

A
nn

ua
l C

os
t i

nv
es

tm
en

t, 
re

tu
rn

 o
f 

In
ve

st
m

en
t (

RO
I)

M
at

he
m

at
ic

al
 a

ge
in

g 
m

od
el

En
er

gy
 A

rb
itr

ag
e

Pe
ak

 lo
ad

 s
ha

vi
ng

RO
I:1

1.
33

, 1
8.

21
 y

ea
rs

Ce
ll 

ag
ei

ng
 1

2.
5,

 1
3 

ye
ar

s
Ba

tt
er

y 
de

gr
ad

at
io

n 
pl

ay
s 

a 
cr

uc
ia

l r
ol

e 
in

 e
co

no
m

ic
 re

su
lts

[8
9]

To
ta

l c
os

t c
al

cu
la

tio
n 

of
 in

ve
st

m
en

t, 
pa

yb
ac

k 
ye

ar
s, 

re
tu

rn
 ra

te
 (R

R)
 a

nd
 

pr
ofi

t f
ac

to
rs

 u
si

ng
 m

at
he

m
at

ic
al

 
fo

rm
ul

as

Ba
se

d 
on

 li
te

ra
tu

re
Re

pu
rp

os
in

g,
 re

fu
rb

is
hi

ng
 fo

r E
V,

 
Re

us
in

g 
in

 s
to

ra
ge

 a
pp

lic
at

io
n

Re
m

an
uf

ac
tu

rin
g 

ha
s 

th
e 

be
st

 R
R 

w
hi

le
 E

SS
 h

as
 th

e 
sh

or
te

st
 p

ay
ba

ck
 

tim
e 

an
d 

hi
gh

es
t p

ro
fit

Re
us

in
g 

En
er

gy
 s

to
ra

ge
 s

ys
te

m
s 

w
ith

ou
t r

ep
ur

po
si

ng
 th

em
 is

 th
e 

be
st

 
ec

on
om

ic
 s

ce
na

rio

[9
0]

Ba
se

d 
on

 li
te

ra
tu

re
Eq

ui
va

le
nt

 e
le

ct
ric

 b
at

te
ry

-a
ge

in
g 

m
od

el
Fa

st
 c

ha
rg

in
g 

EV
s, 

Se
lf-

co
ns

um
pt

io
n,

 
tr

an
sm

is
si

on
 d

ef
er

ra
l a

nd
 a

re
a 

re
gu

la
tio

n

se
lf-

co
ns

um
pt

io
n 

re
su

lts
 s

ho
w

 th
e 

en
du

ra
nc

e 
of

 c
lo

se
 to

 1
2 

ye
ar

s
U

se
d 

ba
tt

er
ie

s 
an

d 
re

ne
w

ab
le

s 
sh

ou
ld

 
go

 h
an

d 
in

 h
an

d 
fo

r m
ax

 e
co

no
m

ic
 

pr
ofi

ts

[9
3]

Th
e 

an
nu

al
 c

os
t o

f e
le

ct
ric

ity
 A

CO
E 

us
in

g 
ne

t p
re

se
nt

 v
al

ue
 (N

PV
)

Re
si

du
al

 c
yc

le
s 

an
d 

av
ai

la
bl

e 
ca

pa
c-

ity
 re

du
ct

io
n

Fa
st

 E
V 

ch
ar

gi
ng

 a
nd

 s
ec

on
d-

lif
e 

ba
tt

er
y 

en
er

gy
 s

to
ra

ge
 s

ys
te

m
C

lu
st

er
ed

 C
Ss

 a
re

 c
he

ap
, A

CO
E 

va
lu

e 
is

 le
ss

 th
an

 th
e 

13
%

 a
ve

ra
ge

 v
al

ue
 o

f 
th

e 
de

di
ca

te
d 

C
S 

so
lu

tio
n.

 A
CO

E 
of

 
II-

Li
fe

 a
nd

 I-
Li

fe
 E

SS
s 

ar
e 

co
m

pa
re

d 
to

 id
en

tif
y 

a 
co

m
pe

tit
iv

e 
pr

ic
e 

of
 

II-
Li

fe
 b

at
te

ry
 m

od
ul

es

Th
e 

nu
m

be
r o

f C
Ss

 in
 a

 c
lu

st
er

 w
ith

 
sh

ar
ed

 E
SS

 c
ou

ld
 b

e 
op

tim
iz

ed
 

ac
co

rd
in

g 
to

 th
e 

si
ze

 o
f a

 g
iv

en
 E

V 
ba

t-
te

ry
 p

ac
k.

 S
ec

on
d-

lif
e 

ba
tt

er
y 

ca
n 

be
 

an
 e

co
no

m
ic

al
 c

ho
ic

e

[7
7]

M
ul

ti-
ob

je
ct

iv
e 

op
tim

iz
at

io
n 

pr
ob

-
le

m
, m

in
im

iz
in

g 
co

st
M

at
he

m
at

ic
al

 b
at

te
ry

 m
od

el
Ce

nt
ra

liz
ed

 c
ha

rg
in

g 
st

at
io

n 
w

ith
 

Ec
he

lo
n 

ba
tt

er
y 

sy
st

em
Th

e 
en

er
gy

 p
ur

ch
as

e 
co

st
 o

f t
he

 
CC

S-
PV

-E
BS

 is
 re

du
ce

d 
in

 a
ll 

ca
se

s. 
Co

nt
ro

lli
ng

 c
ha

rg
in

g 
in

st
an

ce
s 

re
su

lts
 in

 re
du

ce
d 

de
pr

ec
ia

tio
n 

co
st

En
er

gy
 p

ur
ch

as
e 

co
st

s 
ca

n 
be

 
de

cr
ea

se
d 

by
 d

ep
lo

yi
ng

 re
tir

ed
 b

at
-

te
rie

s, 
an

d 
op

tim
iz

at
io

n 
of

 c
ha

rg
e/

di
sc

ha
rg

e 
cy

cl
es

 c
an

 re
su

lt 
in

 c
ap

ac
ity

 
en

ha
nc

em
en

t a
nd

 e
xt

en
de

d 
lif

et
im

e

[8
1]

M
od

el
 p

re
di

ct
iv

e 
co

nt
ro

l
D

yn
am

ic
 d

eg
ra

da
tio

n 
m

od
el

Se
co

nd
-li

fe
 b

at
te

rie
s-

ba
se

d 
en

er
gy

 
st

or
ag

e 
sy

st
em

 w
ith

 a
 p

ra
ct

ic
al

 W
in

d 
fa

rm

N
ot

 v
er

y 
be

ne
fic

ia
l w

ith
 c

ur
re

nt
 b

at
-

te
ry

 a
nd

 w
in

d 
fa

rm
 p

ric
es

Th
e 

se
co

nd
-li

fe
 b

at
te

ry
 re

fu
rb

is
h-

m
en

t c
os

t m
ak

es
 it

 e
xp

en
si

ve

If 
w

in
d 

fa
rm

 p
ric

es
 d

ec
re

as
e 

at
 a

 q
ui

ck
 

ra
te

 th
an

 s
ec

on
d-

lif
e 

ba
tt

er
ie

s 
th

en
 

co
m

bi
na

tio
n 

m
ay

 b
e 

ec
on

om
ic

al
ly

 
fe

as
ib

le
 in

 fu
tu

re

[6
9]

Se
ns

iti
vi

ty
 a

na
ly

si
s 

ba
se

d 
on

 T
im

e 
of

 
U

se
 (T

oU
)

A
na

ly
tic

al
-e

m
pi

ric
al

 c
al

en
da

r a
nd

 
cy

cl
ic

 a
ge

in
g 

m
od

el
A

 re
si

de
nt

ia
l P

V 
ge

ne
ra

tio
n 

an
d 

st
or

-
ag

e 
sy

st
em

Fa
vo

ra
bl

e 
re

su
lts

 w
he

n 
so

la
r h

as
 th

e 
hi

gh
es

t p
en

et
ra

tio
n,

 fo
r a

 c
er

ta
in

 
hi

gh
 s

ol
ar

 o
ut

pu
t, 

ba
tt

er
y 

op
tim

al
 

va
lu

e 
re

ac
he

s 
a 

sa
tu

ra
tio

n 
po

in
t

Th
e 

co
m

bi
na

tio
n 

of
 h

ig
he

r P
V 

ou
tp

ut
 

an
d 

lo
w

-c
ap

ac
ity

 in
st

al
le

d 
ba

tt
er

y 
re

su
lts

 in
 re

du
ci

ng
 th

e 
ov

er
al

l l
ife

sp
an

 
of

 th
e 

se
co

nd
-li

fe
 b

at
te

rie
s-

ba
se

d 
st

or
ag

e 
sy

st
em

[9
1]

Le
ve

liz
ed

 c
os

t o
f e

le
ct

ric
ity

 L
CO

E 
us

in
g 

ne
t p

re
se

nt
 v

al
ue

Em
pi

ric
al

 m
od

el
A

 re
si

de
nt

ia
l P

V 
ge

ne
ra

tio
n 

an
d 

st
or

-
ag

e 
sy

st
em

Re
tir

ed
 b

at
te

rie
s 

pr
od

uc
e 

a 
re

du
c-

tio
n 

in
 L

CO
E 

fo
r a

ll 
gi

ve
n 

ca
se

s. 
Ca

rb
on

 fo
ot

pr
in

t i
s 

de
cr

ea
se

d.
 G

rid
-

le
ve

l a
pp

lic
at

io
ns

 s
ho

w
 th

e 
m

os
t 

fa
vo

ra
bl

e 
re

su
lts

Re
su

lts
 c

an
 b

e 
co

m
bi

ne
d 

w
ith

 m
ar

ke
t 

tr
en

ds
, t

he
 p

ot
en

tia
l a

va
ila

bi
lit

y 
of

 S
LB

 
an

d 
co

ns
um

er
 a

cc
ep

ta
nc

e 
to

 e
ns

ur
e 

th
e 

de
pl

oy
m

en
t o

f s
ec

on
d-

lif
e 

ba
tt

er
-

ie
s 

m
or

e 
su

cc
es

sf
ul

ly
.

[6
6]

N
PV

 b
as

ed
 o

n 
th

e 
re

tu
rn

-o
n-

in
ve

st
-

m
en

t t
im

e 
(R

O
IT

) a
nd

 th
e 

pr
ofi

ta
bi

l-
ity

 in
de

x 
(P

I)

Ex
ch

an
ge

ab
le

 e
ne

rg
y 

ag
ei

ng
 m

od
el

PV
-s

ec
on

d-
lif

e 
ba

tt
er

y 
co

nn
ec

te
d 

m
ic

ro
gr

id
Se

co
nd

-li
fe

 b
at

te
ry

 in
 a

 m
ic

ro
gr

id
 

re
du

ce
s 

gr
id

 in
te

rf
er

en
ce

 a
nd

 h
as

 
co

st
 b

en
efi

ts
. S

om
e 

pa
ra

m
et

er
s 

aff
ec

tin
g 

N
PV

 in
fla

tio
n 

ra
te

, d
is

co
un

t 
ra

te
 a

nd
 p

ur
ch

as
e 

pr
ic

e 
of

 e
ne

rg
y 

fro
m

 th
e 

gr
id

 u
si

ng
 s

en
si

tiv
ity

 
an

al
ys

is

Ba
tt

er
y 

de
gr

ad
at

io
n 

sh
ou

ld
 b

e 
ta

ke
n 

in
to

 a
cc

ou
nt

 fo
r a

 p
ro

fo
un

d 
an

d 
ac

cu
-

ra
te

 te
ch

no
-e

co
no

m
ic

 a
na

ly
si

s



Page 17 of 28Iqbal et al. Carbon Neutrality             (2023) 2:8  

Ta
bl

e 
3 

(c
on

tin
ue

d)

Re
f

Ec
on

om
ic

 a
na

ly
si

s 
to

ol
D

eg
ra

da
tio

n 
m

ec
ha

ni
sm

Se
co

nd
-li

fe
 A

pp
lic

at
io

n
Re

su
lts

G
en

er
al

 C
om

m
en

ts

[8
0]

To
ta

l R
ev

en
ue

 c
al

cu
la

tio
n 

ba
se

d 
on

 
th

e 
op

tim
iz

at
io

n 
pr

ob
le

m
Cy

cl
ic

 a
nd

 c
al

en
da

r a
ge

in
g 

in
 

ch
ar

ge
/d

is
ch

ar
ge

 c
yc

le
s 

bo
th

 fi
rs

t 
an

d 
se

co
nd

-li
fe

SL
Bs

 o
f G

rid
-a

bl
e 

ve
hi

cl
es

 in
 s

m
ar

t 
gr

id
In

iti
al

 b
at

te
ry

 p
ur

ch
as

e 
co

st
 c

an
 b

e 
co

m
pe

ns
at

ed
 b

y1
9.

56
%

 c
on

si
de

rin
g 

de
gr

ad
at

io
n 

in
 b

ot
h 

th
e 

fir
st

 a
nd

 
se

co
nd

-li
fe

, t
he

 c
yc

le
’s 

nu
m

be
r s

ho
w

 
th

at
 th

e 
ba

tt
er

y 
co

nt
in

ue
s 

to
 e

ar
n 

re
ve

nu
e 

in
 b

ot
h 

liv
es

Th
is

 is
 th

e 
be

st
 p

la
tfo

rm
 fo

r E
V 

ow
ne

rs
 

to
 c

ho
os

e 
w

he
n 

to
 s

ta
rt

 th
ei

r b
at

te
ry

’s 
se

co
nd

-li
fe

 b
as

ed
 o

n 
th

e 
re

qu
ire

d 
re

ve
nu

e.
 E

ne
rg

y 
ca

n 
al

so
 b

e 
so

ld
 in

 
ad

di
tio

n 
to

 s
ec

on
d-

lif
e 

us
e 

to
 in

cr
ea

se
 

th
e 

ra
ng

e 
of

 re
ve

nu
e

[6
1]

Be
ne

fit
–c

os
t r

at
io

 c
al

cu
la

tio
n

se
m

i-e
m

pi
ric

al
 d

at
a-

ba
se

d 
de

gr
ad

a-
tio

n 
m

od
el

PV
-s

ec
on

d-
lif

e 
ba

tt
er

y 
co

nn
ec

te
d 

to
 

th
e 

ut
ili

ty
 g

rid
By

 c
on

tr
ol

lin
g 

ba
tt

er
y 

cy
cl

ic
 d

eg
ra

-
da

tio
n,

 a
 s

ec
on

d-
lif

e 
ba

tt
er

y-
ba

se
d 

st
or

ag
e 

sy
st

em
 lo

ok
s 

ec
on

om
ic

al
ly

 
fe

as
ib

le
 a

nd
 th

e 
pr

oj
ec

t l
ife

 s
pa

n 
is

 
in

cr
ea

se
d 

by
 1

6 
ye

ar
s 

if 
SO

C
 is

 k
ep

t 
in

 th
e 

ra
ng

e 
of

 1
5–

65
%

. C
os

ts
 a

re
 

al
so

 re
du

ce
d 

to
 le

ss
 th

an
 8

0%
 a

s 
co

m
pa

re
d 

to
 n

ew
 b

at
te

rie
s

W
ith

 th
e 

cu
rr

en
t b

at
te

ry
 p

ric
es

, t
he

re
 

re
m

ai
ns

 u
nc

er
ta

in
ty

 a
bo

ut
 p

ro
po

se
d 

ec
on

om
ic

 b
en

efi
ts

. M
or

e 
rig

or
ou

s 
an

al
ys

is
 is

 re
qu

ire
d 

to
 g

en
er

al
iz

e 
ec

o-
no

m
ic

 b
en

efi
ts

 fr
om

 th
e 

de
pl

oy
m

en
t 

of
 s

ec
on

d-
lif

e 
ba

tt
er

ie
s

[9
4]

O
pt

im
iz

at
io

n 
te

ch
ni

qu
e

M
at

he
m

at
ic

al
 a

ge
in

g 
m

od
el

PV
 p

ow
er

 p
la

nt
A

nn
ua

l p
ow

er
 p

ro
fil

e 
ob

ta
in

ed
 u

si
ng

 
a 

m
ix

ed
 le

as
t-

sq
ua

re
s 

es
tim

at
or

 
ra

m
p-

ra
te

 c
om

pl
ia

nt
 (M

LS
ER

RC
) 

al
go

rit
hm

 a
nd

 te
st

in
g 

of
 S

L 
ba

tt
er

ie
s 

in
 fo

r a
ge

in
g 

an
d 

si
zi

ng
 s

tu
di

es
 

al
on

g 
w

ith
 c

os
t c

al
cu

la
tio

ns

Se
co

nd
-li

fe
 b

at
te

ry
 a

na
ly

si
s 

is
 im

po
r-

ta
nt

 fo
r l

oo
ki

ng
 in

to
 th

ei
r p

er
fo

rm
an

ce
 

an
d 

w
ill

 fa
ci

lit
at

e 
de

gr
ad

at
io

n 
st

ud
ie

s 
ev

al
ua

tio
n 

w
he

n 
us

ed
 w

ith
 in

te
gr

at
ed

 
re

ne
w

ab
le

s 
sm

oo
th

in
g 

ap
pl

ic
at

io
ns

[9
2]

Ti
m

e-
of

-U
se

 ta
riff

, N
PV

 a
nd

 p
ay

ba
ck

 
pe

rio
d

D
eg

ra
da

tio
n 

m
od

el
 in

 M
AT

LA
B-

Si
m

ul
in

k
Re

si
de

nt
ia

l b
ui

ld
in

g 
w

ith
 a

 p
ho

to
-

vo
lta

ic
 s

ys
te

m
Bo

th
 s

m
al

l a
nd

 la
rg

e 
ba

tt
er

ie
s 

st
ay

 te
ch

ni
ca

lly
 fe

as
ib

le
 e

ve
n 

af
te

r 
10

 y
ea

rs
 o

f o
pe

ra
tio

n.
 T

he
 p

ay
ba

ck
 

pe
rio

d 
of

 a
 la

rg
e 

ba
tt

er
y 

is
 9

.5
3 

ye
ar

s 
hi

gh
er

 th
an

 a
 s

m
al

l r
at

in
g 

ba
tt

er
y

Th
is

 ty
pe

 o
f s

tu
dy

 c
ou

ld
 o

ffe
r r

es
ul

ts
 

as
 a

 b
en

ch
m

ar
k 

fo
r p

ol
ic

ym
ak

er
s 

fo
r 

fu
tu

re
 s

ec
on

d-
lif

e 
ba

tt
er

y 
pr

oj
ec

ts

[3
6]

Li
fe

 c
yc

le
 c

os
t a

ss
es

sm
en

t u
si

ng
 

Le
ve

liz
ed

 c
os

t o
f e

le
ct

ric
ity

 (H
om

er
 

Pr
o 

an
d 

Si
m

aP
ro

 s
of

tw
ar

e)

N
ot

 c
on

si
de

re
d

G
rid

, S
LB

, a
nd

 P
V

Th
e 

lif
es

pa
n 

of
 th

e 
se

co
nd

-li
fe

 
ba

tt
er

y 
fo

un
d 

sh
or

te
r t

ha
n 

a 
ne

w
 

ba
tt

er
y 

an
d 

re
pl

ac
em

en
t i

s 
ne

ed
ed

 
af

te
r 1

0 
ye

ar
s. 

SL
Bs

 re
du

ce
 th

e 
co

st
 

an
d 

ca
rb

on
 e

m
is

si
on

s

Th
er

e 
is

 a
 s

tr
on

g 
ne

ed
 fo

r n
ew

 a
nd

 
fa

st
er

-c
ha

rg
in

g 
in

fra
st

ru
ct

ur
e 

w
hi

ch
 

ca
n 

in
cr

ea
se

 g
rid

 p
ow

er
 d

em
an

d

[7
0]

Pr
es

en
t V

al
ue

 o
f T

hr
ou

gh
pu

t (
PV

T)
 

es
tim

at
io

n
Ca

pa
ci

ty
 fa

de
SL

BE
SS

A
 b

us
in

es
s 

pl
an

 c
an

 b
e 

se
t i

f c
om

-
pa

ny
 c

os
ts

 a
nd

 y
ea

rly
 re

ve
nu

e 
is

 
co

ns
id

er
ed

 a
lo

ng
 w

ith
 p

re
se

nt
 v

al
ue

 
of

 th
ro

ug
hp

ut
 o

f b
at

te
rie

s 
pl

us
 b

at
-

te
ry

 re
pu

rp
os

in
g 

ex
pe

ns
es

Su
ch

 k
in

d 
of

 a
na

ly
si

s 
co

ul
d 

be
 g

en
-

er
al

iz
ed

 a
nd

 p
ro

vi
de

 g
oo

d 
st

ra
te

gi
es

 
fo

r t
hi

s 
po

te
nt

ia
lly

 g
ro

w
in

g 
m

ar
ke

t o
f 

se
co

nd
-li

fe
 b

at
te

rie
s.

[9
5]

N
PV

, f
ee

d-
in

 T
ar

iff
-

D
iff

er
en

t p
os

si
bl

e 
fu

tu
re

 s
ec

on
d-

lif
e 

ba
tt

er
y 

in
ve

st
m

en
ts

Se
co

nd
-li

fe
 b

at
te

ry
 h

as
 a

 c
os

t 
ad

va
nt

ag
e 

ov
er

 th
e 

ne
w

 b
at

te
ry

 if
 

its
 fu

tu
re

 p
ric

e 
is

 c
on

si
de

re
d 

a 
lo

t 
le

ss
. G

er
m

an
y,

 a
t p

re
se

nt
, s

ee
m

s 
m

os
t e

co
no

m
ic

al
ly

 fa
vo

ur
ab

le
 fo

r 
th

es
e 

in
ve

st
m

en
ts

 b
ut

 p
ro

fit
s 

ca
n 

be
 

ex
te

nd
ed

 to
 o

th
er

 c
ou

nt
rie

s 
in

 fu
tu

re

Th
is

 e
co

no
m

ic
 a

na
ly

si
s 

ba
se

d 
on

 
el

ec
tr

ic
ity

 p
ric

es
 a

nd
 F

ee
d-

In
 T

ar
iff

 
sc

he
m

es
 c

an
 p

ro
vi

de
 a

 li
st

 o
f e

co
-

no
m

ic
 c

ha
lle

ng
es

 a
nd

 fa
ci

lit
at

or
s 

to
 

se
co

nd
-li

fe
 b

at
te

ry
 fu

tu
re

 in
ve

st
m

en
ts



Page 18 of 28Iqbal et al. Carbon Neutrality             (2023) 2:8 

Ta
bl

e 
3 

(c
on

tin
ue

d)

Re
f

Ec
on

om
ic

 a
na

ly
si

s 
to

ol
D

eg
ra

da
tio

n 
m

ec
ha

ni
sm

Se
co

nd
-li

fe
 A

pp
lic

at
io

n
Re

su
lts

G
en

er
al

 C
om

m
en

ts

[9
6]

Si
m

SE
S

Em
pi

ric
al

 a
ge

in
g 

m
od

el
Ph

ot
ov

ol
ta

ic
 (P

V
) h

om
e 

st
or

ag
e,

 
in

tr
ad

ay
 m

ar
ke

t (
ID

M
) a

nd
 p

rim
ar

y 
co

nt
ro

l r
es

er
ve

 (P
C

R)

Co
m

bi
ne

d 
ap

pl
ic

at
io

ns
 c

as
e 

is
 

m
os

t e
co

no
m

ic
al

 b
ut

 te
ch

ni
ca

lly
 

le
as

t f
av

ou
ra

bl
e 

du
e 

to
 th

e 
hi

gh
es

t 
de

gr
ad

at
io

n.
 T

he
 S

O
H

 s
ho

ul
d 

be
 

m
or

e 
th

an
 a

 m
in

im
um

 v
al

ue
 o

f 
50

%
 o

th
er

w
is

e 
th

es
e 

ba
tt

er
y 

pa
ck

s 
sh

ou
ld

 b
e 

re
pl

ac
ed

A
 c

om
pr

eh
en

si
ve

 te
ch

no
-e

co
no

m
ic

 
an

al
ys

is
 s

ho
ul

d 
be

 d
on

e 
be

fo
re

 
de

pl
oy

in
g 

va
ry

in
g 

ca
pa

ci
tie

s 
of

 
se

co
nd

-li
fe

 b
at

te
rie

s 
in

 a
ny

 s
pe

ci
fic

 
ap

pl
ic

at
io

n



Page 19 of 28Iqbal et al. Carbon Neutrality             (2023) 2:8  

concept of business models for sustainability in the EV 
B2U market. In [100] a sustainable innovation busi-
ness model (SIBM) framework for the EV B2U indus-
try is proposed that includes shared sustainable value 
creations which in turn drive forward business per-
formance and sustainability at the same time. These 
findings show that if a second-life market can be suc-
cessfully formed, EV adoption rates can be enhanced. 
The energy storage systems developed using the SLBs, 
their applications, and impacts require business strate-
gies and policies. Current barriers to this technology 
such as smart grid flexibility and demand-side manage-
ment and their potential solution of energy storage for 
future power systems required to make SLB businesses 
sustainable are discussed in [13]. Additionally, multiple 
concerns such as economic ambiguity about B2U being 
a cost-effective solution for customers; liability associ-
ated with SLBs; and a lack of data on the effectiveness 
of batteries in their first and second lives create road-
blocks that obstruct the usage of retired batteries [101]. 
Tax rebates and other financial incentives for SLBs can 
help to attract additional private investors to help prove 
and realize the concept. The government’s policies will 
have a significant impact on the implementation of SLBs 
and their determination can drive policymakers and 
automakers to create a new B2U business model that 
will benefit both [102].

The global market for second-life batteries is evolv-
ing rapidly. There is a need for general regulations, busi-
ness strategies and policies. A survey of possible battery 
future investments is accessed economically in [95] using 
Net Present Value to look for challenges posed to the 
second-life battery market. The projects are residential 
level PV-battery systems or only battery, industrial PV-
battery systems and primary reserve battery systems. 
Currently, these used battery projects seem to be eco-
nomically favorable in countries like Germany but hope 
to see them grow in other countries as well. This only 
seems true if future prices of used batteries are way less 
than new batteries. The second-life battery reuse is also 
gaining popularity in developing countries. A case study 
of rural electrification is accessed in [103] economically 
for reusing second-life components in an energy storage 
system. All components of energy storage systems are 
retired including battery units (lead-acid battery) and 
solar PV arrays. There are economic and environmental 
benefits reported by reusing components, especially bat-
teries according to sensitivity analysis results. In future, 
lithium-ion batteries should be considered in place of 
previously used lead-acid batteries.

Another factor considered in the deployment of used 
batteries in secondary storage applications is charging 
infrastructure and renewable integrated micro-grids. 

There is a strong need to design an infrastructure for an 
electricity grid based on fast charging stations for EVs 
and second-life battery energy storage systems for boost-
ing economic benefits. Both issues are addressed in the 
proposed energy storage system in [104] using second-
life battery energy for EV fast-charging systems. Life 
cycle cost and carbon emission assessment are compared 
for new and second-life battery-based systems in five U.S 
cities. Second-life batteries seem more favorable for fast 
charging stations reducing the levelized cost of electricity 
(LCOE) by 12 − 41%. The addition of renewable like solar 
can increase these cost benefits. However, the number 
of retired batteries can be affected as fast charging can 
cause fast degradation of an EV battery. Hence under-
standing of battery degradation is recommended during 
fast charging techniques adoption. [105] An economic 
assessment of the solution to this problem is using clus-
tered charging stations for the sizing of energy storage 
systems comprising second-life batteries [93].

Degradation studies based on residual cycles and 
capacity fade are adding reliability to this assessment. A 
comparison of new and second-life batteries for proposed 
ESS is also done, so this could be a reasonable alternative 
to conventional charging stations as the proposed model 
shows 13% less annual cost of electricity when accessed 
economically using net present value. However, the siz-
ing of the second-life battery for a given number of CSs 
(Charging Stations) remains ambiguous. A centralized 
charging station (CCS) can be another solution when 
used integrated with second-life batteries-based energy 
storage system (Echelon battery system) and PV arrays 
[77]. A multi objective based optimization problem is 
solved using rolling horizon strategy for calculating bat-
tery demand values. Integration of retired batteries 
results in lowering the energy prices and if charging/dis-
charging cycles are optimal, the capacity of these SLBs 
can be enhanced resulting in life extension. There are 
certain approximations in this evaluation such as ignor-
ing second-life battery previous data and keeping battery 
degradation a linear function.

A dynamic battery degradation model with different 
battery SOH, variable temperature etc. could be another 
option when it comes to comparing the cost benefits of 
using new or second-life batteries in practical system. 
A model predictive approach in [81] is used to optimize 
maximum economic value of this wind farm considering 
two real life case studies in USA and Denmark. The opti-
mal sizing of fresh and second-life batteries is performed 
considering battery degradation under various operating 
conditions. The findings are not very convincing at pre-
sent due to high cost of wind farms, refurbishment cost 
of retired battery and high upfront cost of new battery. 
However if future cost reductions are expected, a quicker 
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cut for wind farm as compared to SL batteries can be 
favorable to proposed system.

5  Critical outlook
This review examines the various techniques used for sec-
ond-life batteries. Figure 4 below quantifies the percent-
age of the articles according to different approaches. It is 
clear that the most intensively explored topics in this area 
is the selection of ageing parameters and ageing model 
development. The applicability of these characteristics/
methods is called into question because the same models 
were used in the second-life applications. The retired bat-
teries form EVs usually do not have any degradation data 
from its first use which is significantly important in ana-
lyzing the repurposing for reuse of EV batteries. Also, the 
ageing parameters data can help in extension of end of 
life for these batteries in stationary storage applications. 
This review reveals that despite their significance in 
determining the future of second-life batteries, these two 
objectives (lack of first use data and ageing parameters 
control) are the least studied. Another significant find-
ing from this research is that none of these goals stand 

alone in determining the future of these retired batteries. 
Consequently, it may be suggested that the best frame-
work for implementing these batteries in stationary stor-
age applications should be a multi-objective procedure 
that simultaneously considers all the elements/objectives 
in the figure below. In an ideal scenario, the proposed 
framework should have the following attributes;

• A practical ageing model that incorporates the accu-
rate SOH estimation during online operation based 
on specific applications.

• It should optimize the application based selection of 
ageing parameters/health indicators to extend the 
remaining useful life.

• It should also be economically feasible and the pro-
posed solution may need to compensate between 
cost optimization and degradation control.

• The proposed ageing model can adopt to its best per-
formance by incorporating the degradation data from 
its first use, as multiple reports [53, 75] proposed a 
cloud based data storage during primary application 
in EVs.

Fig. 4 Categorization of the reviewed application areas in the field of SLBs
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5.1  Discussion
The integration of renewables into utility grids has 
become increasingly important, and energy storage sys-
tems are the key solution to this challenge. Hence, the use 
of second-life batteries in stationary storage applications 
has evolved as an emerging market, but it faces various 
technical, economic, and social challenges [4, 6, 12, 13, 
15]. Despite the fact that the idea of integrating these bat-
teries into the electrical grid and storage applications are 
receiving attention at a global scale, there are still barri-
ers that prevent the adoption of EVs and their retired bat-
teries, especially in developing countries. Some of these 
problems include lack of infrastructure in existing power 
system [106, 107], lack of smart energy management sys-
tems for retired batteries [14], lack of user incentives and 
business policies [3, 12], lack of charging stations, and 
accurate SOH estimation [12, 16, 31]. Fast charging sta-
tions with auxiliary batteries are one potential solution 
to the lack of charging stations, as described in [105], but 
the expensive cost of these batteries and charging sta-
tions is a significant problem.

The analysis of reviewed literature reveals that accu-
rate estimate of the battery’s functional capacity and 
remaining useful life in second-life applications is a pri-
mary concern. Lack of first-use data and efficient ageing 
parameter control during these applications contrib-
ute to the problem’s ambiguity. As shown in [Fig. 5], the 

accuracy of SOH estimation of second-life batteries is the 
most researched topic. A thorough review of both tradi-
tional SOH estimation methodologies and cutting-edge 
data-driven methods using machine learning algorithms 
is presented in Fig.  3. The majority of the literature on 
battery ageing in second-life applications focuses on first-
use in EVs [7, 32, 37, 49, 50, 56, 57, 61–63, 65, 66, 68–70, 
74, 78], which is why it is still a relatively new issue. Only 
a small number of studies [36, 61, 80, 81, 89, 95, 96] have 
specifically looked at battery ageing during primary and 
secondary usage, also, almost all of these studies employ 
the same ageing models created for first-use. The ability 
to accurately conduct battery health estimation during 
second-life applications, which is essential for extending 
the battery’s usable life, is currently lacking.

Estimating battery state of health (SOH) is a crucial 
problem for the battery management in second-life, 
because it affects the technical performance and lifespan 
of batteries. Several techniques, including the traditional 
coulomb counting approach [51, 52], HPPC, EIS [59, 
67, 73, 74, 76, 79], incremental capacity analysis [54, 59, 
63, 71] and empirical or semi-empirical battery ageing 
models [49, 50, 56, 57, 61] have been proposed in recent 
years for the calculation of battery SOH. EIS method is 
considered most common after coulomb counting but it 
is still unreliable due to requirement of excessive experi-
mental data. ICA method has been used in combination 

Fig. 5 Research gaps and corresponding shortcomings in existing literature on SLBs
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with other techniques [73] for online SOH estimation but 
results are subjected to battery compositions and work-
ing conditions. These techniques do have some draw-
backs, though, including lengthy experimental times, 
uncertainty brought on by accelerated ageing testing, and 
presumptions regarding the internal resistance of the bat-
tery at the beginning of a second use. Furthermore, these 
techniques’ dependability is in question since they fail to 
account for the battery degradation curves’ extreme non-
linearity. It can be seen from this review that researchers 
have now developed data-driven methods using machine 
learning algorithms including neural networks [9, 38, 
79], advanced forecasting algorithms [8, 9, 53, 55] and 
also, linear and non-linear regression techniques [54, 79] 
for handling this non-linearity. The bi-staged non-linear 
regression technique [54] seems to give approximately 
accurate results but this study only discussed a battery 
with above 80% SOH, the results are not applicable to 
second-life battery. Although these methods alone and in 
combination with model based conventional techniques 
such as EIS, HPPC and ICA can produce more accurate 
results, they still have limitations such as needing practi-
cal battery test data [9, 38, 54, 79], heavy calculations [8, 
9] and applicability on second-life batteries.

The identification of battery ageing factors, which 
serve as health indicators, is another critical component 
of battery’s accurate SOH estimation. The initial age-
ing parameters considered were capacity fade [44] and 
battery internal resistance growth [38–40]. The most 
recent developments in the subject, however, have led to 
the introduction of different health indicators and their 
classification according to particular uses. These health 
indicators are combined with robust estimate and RUL 
prediction algorithms in data-driven model-based tech-
niques [7–10] for more precise and effective battery SOH 
estimation under particular operating conditions. The 
latest advancement in this area is the meticulous iden-
tification of health indicators for battery ageing studies 
that are evaluated for their precision and impact on SOH 
calculation. There is a limited applicability of these health 
indicators on second-life batteries as well [7, 9, 10], but 
in the proposed methods their accuracy is compromised 
due to dependence on available information, specific cell 
characteristics and ignoring the effect of temperature and 
current. Still, it could be a good starting point for this 
emerging technique of multiple health indicators and can 
act as a future of SOH estimation during battery second 
use.

Limited availability of degradation data from its first 
use adds to the ambiguity in determining the degradation 
and hence SOH in second life. Cloud connected tech-
nology to store degradation data in primary application 
(reported in [75]) can help in increasing the precision 

and accuracy in selecting the optimal parameters for 
SOH estimation. Hence, this review suggests that, there 
is a critical need of data storage techniques to keep a 
record of the complete ageing profile of batteries from 
transportation to end-of-life.

Battery repurposing is another significant component 
in understanding battery degradation and efficiency 
throughout its second-life uses. The development of this 
technology, while still in its infancy, depends on the avail-
ability of used batteries and consumer demand [108]. 
The market for recycling used electrical car batteries is 
anticipated to have a big impact on the world’s transpor-
tation sector and help the world reach its goal of having 
no greenhouse gas emissions [87, 90, 109]. In contrast 
to fresh batteries, used battery packs have a tendency to 
have a more distributed and inconsistent capacity, which 
presents a number of difficulties in accurately describ-
ing them in addition to cost effectiveness of these used 
batteries [109]. To access the capacity dispersion of each 
cell inside a module, measurements of internal param-
eters such temperature rise [54], capacity fading [60, 63, 
83], and internal resistance rise [58, 60, 63] are necessary. 
Only a few studies to date have used battery interlacing 
[58] and pulse power characterization [54] techniques 
to calculate capacity dispersion. The multi-level inter-
laced pulse charging system [58] is capable of repurpos-
ing retired batteries too but the bi-directional power 
electronics used in this technique needs further insight 
to be completely applicable. These studies have further 
limitations, such as the low number of cells that can be 
characterized [82, 83] and the very high cost of experi-
mental workbenches [17]. An optimal battery energy 
management system in its first use could also help iden-
tify heterogeneity among cells in battery modules and 
the repurposing cost needs to be carefully controlled for 
increasing interest in used EV batteries.

The technical and economic viability of these batter-
ies is highly dependent on battery degradation studies 
and the availability of data. This review suggests that, the 
majority of economic or techno-economic studies ignore 
the capacity dispersion among repurposed second-life 
battery cells. Additionally, fast and uncontrolled bat-
tery degradation in secondary use presents hazards to 
environmental benefits [110, 111]. As, the environmen-
tal benefit of postponing battery recycling and disposal 
is the prime motivation of employing used batteries in 
stationary storage applications, these issues of lack of 
policies and cost-incentive for repurposing and refur-
bishment of used battery packs should be addressed. The 
effective use of this technology requires a roadmap for 
future research, standards, and regulatory services.

As discussed earlier, global zero and cost effectiveness 
are main objectives of incorporating second-life batteries. 
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Energy storage technologies are the key to overcoming 
the difficulty of integrating renewable energy sources 
(to achieve global zero) into utility networks [109, 112, 
113]. Hence, it is crucial to conduct accurate and relia-
ble assessments of their economic benefits incorporating 
a full process of repurposing and reusing, for stationary 
storage applications in real-life scenarios. It is recom-
mended that researchers and stakeholders conduct cost 
analysis of battery screening, refurbishment, and repur-
posing for specific applications. There have been various 
techno-economic tools reported in the literature, such 
as Return on Investment [62, 66, 96], Return Rate on 
annual basis [89], Levelized Cost of Energy [36, 91] and 
Levelized annual Cost of Energy using Net Present Value 
[93, 95], Benefit–cost Ratio [61], and cost-optimization 
algorithms [77, 80, 94] for economic analysis, but these 
are based on several assumptions and are applicable only 
for specific battery compositions and controlled grid-
connected applications [61, 66, 80, 90]. These economic 
studies have mostly confirmed the cost benefits of sec-
ond-life batteries over new batteries in terms of decrease 
in LCOE [91, 93], increased annual revenue [36, 61, 70, 
92] and operating as well as payback years [89, 90, 92] 
but it should be noted that these results cannot be gen-
eralized. There are many uncertainties like unpredictable 
battery prices [92, 96] and application based benefits and 
controlled conditions [61, 69, 89, 90, 93]. It is recom-
mended to take into account future battery and energy 
prices inflation for more reliable results. The importance 
of first-life degradation data and control of particular 
health indicators/ageing parameters has not been ade-
quately discussed in previous review papers on second-
life batteries in stationary storage applications. Further 
research is needed to conduct an up-to-date economic 
assessment [114] along with accurate battery capacity 
management for optimal and feasible control of station-
ary energy storage systems.

There are only a few comprehensive studies of EV bat-
tery secondary usage (B2U) as a new market apart from 
some initiatives [3]. This new market is distinctive in 
that it is the first of its kind to bring together significant 
stakeholders from diverse industries on a single platform, 
including energy firms, the automotive industry, and gov-
ernment. The use of batteries as a storage component 
in addition to renewable energy sources has the ability 
to simultaneously eliminate significant obstacles in the 
transportation, energy, and waste management sectors 
[87]. Battery reuse conserves resources and lowers the 
amount of waste produced in the environment by slowing 
down the recycling process. It is also suggested to over-
view the second-life battery market prices and policies to 
attain a notable adoption of electrical vehicles. This dem-
onstrates an opportunity to improvise the policy making 

on domestic energy storage [115] and net metering rules 
by considering both economic and environmental ben-
efits. These regulations for the SLB market are intended 
to look into the various aspects of using second-hand 
batteries, particularly concerning renewable energy sys-
tems, such as economic, environmental, and regulatory 
factors. The recommended approaches will be useful in 
delivering smart grid flexibility and improved demand-
side management, as energy storage is a game changer for 
future power systems.

Multiple concerns have been raised about policymak-
ers’ ability to approve legislation and business models for 
SLBs [115]. Improved and broader analyses of the finan-
cial benefits of SLBs will eliminate economic uncertainty. 
More funding for second-life battery demonstration pro-
jects, as well as lowering administrative barriers to execu-
tion of the aforementioned, will help to execute this plan 
quickly. To assist them in overcoming the obstacles to 
B2U market spread, this review offers the following rec-
ommendations for B2U ecosystem players:

• Collaboration with battery manufacturers to avoid 
new battery competition

• A creative business model to minimize customer 
risks

• Collaborative efforts by regulators, key OEMs, and 
research institutes to set standards, demonstrations, 
and education for customers.

Based on the analysis presented in this review, Fig.  5 
highlights the inconsistencies that exist within the litera-
ture concerning second-life battery applications and their 
degradation. Battery ageing modelling, optimizing aging 
parameters, and accurate State of Health (SOH) estima-
tion are the most researched areas as depicted in Fig. 4. 
However, this review identifies the significant short-
comings in these areas, such as the application of bat-
tery first-life ageing models on second-life batteries, the 
absence of an accurate and online SOH estimation mech-
anism in secondary applications. The inability to accu-
rately optimize aging parameters for useful life extension, 
and assumptions regarding battery first-life data are also 
lacking in this field. Approximately 65% of battery sec-
ond-life studies as shown in Fig. 4 focus on degradation 
studies, including aging models, SOH estimation tech-
niques, and health indicators/aging parameters. How-
ever, only 4% of the total studies address the control of 
these aging parameters and the impact of first-life data 
on battery degradation, highlighting another significant 
research gap. It is also identified that in comparison to 
the rising number of retired batteries, repurposing before 
reuse is falling behind significantly. This is primarily due 
to unavailability of the primary use data and high cost of 
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refurbishment and repurposing of these used batteries. 
The economic aspect of second-life batteries has a major 
saying in the future of this technique. However, only 8% 
of second-life battery studies have performed cost analy-
sis, and even fewer have taken into account the impact 
of battery degradation and battery future market prices. 
Additionally, no universal economic model for second-
life batteries could be found in the literature, revealing a 
significant inconsistency (gap)  in studies on the techno-
economics of second-life batteries.

5.2  Future research directions 2
The extensive review of recently developed approaches 
for the said purpose reveals that future research in 
the area of battery SOH estimate has a lot of potential, 
including the creation of cutting-edge estimation algo-
rithms for RUL estimation and battery cell characteriza-
tion using cutting-edge health indicators. To maximize 
environmental benefits and to establish a future direction 
for selecting and assessing reliable health indicators for 
battery ageing research under various operating condi-
tions, it is advised to  incorporate the suggested param-
eters into practical repurposing and reusing applications. 
While the traditional approaches only produce approxi-
mations, data-driven strategies based on machine learn-
ing algorithms have the potential to produce outcomes 
that are more precise. A list of future research directions 
is included below:

• Technical challenges: Battery screening and repur-
posing and the need for a smart energy storage 
and management system during reuse applications 
still prevail as technical challenges. There is a lot of 
research scope in battery capacity dispersion studies 
and repurposing field.

• Accurate SOH estimation: There is still uncertainty 
in estimating the SOH of batteries during second-life 
applications, and researchers should work on devel-
oping accurate estimation techniques combining 
conventional and advanced machine learning meth-
ods.

• Economic and business model: There is ambiguity in 
quantifying the revenue/benefits available to custom-
ers and electrical vehicle manufacturers from battery 
second use. The existing economic models are mostly 
based on assumptions and specific applications/
regions. A standard economic model is required that 
considers net present value, future battery prices, 
inflation, and the impact of first-use degradation his-
tory and health indicators.

• Identification and control of ageing parameters/
health indicators: Health indicators/ageing param-
eters affecting battery ageing during second-life are 

being identified, and there is a need for more insight 
into controlling these health indicators for maximum 
techno-economic benefits. There are latest develop-
ments in this regard in [11], this can be used a base-
line for future work.

• Impact of first-use data on second-life degradation 
and EOL extension: The impact of battery first-use 
degradation history on second life is a commonly 
overlooked research area that requires attention. 
Methods to record this data during vehicle life should 
be researched to determine its impact on battery age-
ing during second life. The initiative has been taken 
in [75].

• Policy making for second-life battery stationary stor-
age applications: There are no governing rules for 
battery reuse in stationary storage applications, and 
researchers should explore consumer and environ-
mentally-friendly policies in collaboration with other 
stakeholders, such as the government and EV battery 
manufacturers.

6  Conclusion
Due to the global increase in the penetration of EVs in 
transportation sector, the number of retired batteries is 
going to increase abruptly in the coming years. Hence, 
the research on reuse of these batteries for other storage 
applications has gained popularity. There are still many 
technical and economic challenges to adaptability of this 
reuse technology into stationery storage applications. 
In this paper an extensive review of second life battery 
degradation studies in stationary storage applications is 
carried out focusing on technical, economic, business 
models and policy recommendations prospects. The key 
technical areas like SOH estimation techniques, battery 
life cycle assessment including repurposing and methods 
for End-Of-Life extension of these batteries are analyzed 
in detail.

This paper critically examined the identification, selec-
tion and control of battery health indicators for specific 
applications and their impact on battery accurate age-
ing studies. The lack of battery first-life degradation his-
tory has a serious impact on useful lifetime estimation 
of these batteries in stationary storage applications. The 
cloud connected based storage technologies are recom-
mended for keeping a track of battery ageing during com-
plete life cycle. The conventional model based and data 
driven SOH estimation techniques are also thoroughly 
reviewed. This review reveals that absence of a second 
life battery aging model (adopting first-life ageing model; 
a common practice) results in uncertainties for accurate 
SOH estimation. Moreover, an ideal second life ageing 
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model is also recommended based on this review which 
should be capable of controlling the aging parameters /
health indicators for accurate SOH estimation. This ideal 
model should also be capable of balancing between tech-
nical and economic perspectives of second life batteries 
and can also accommodate battery first-life data, end of 
life extension.

Critical analysis of economic studies related to applica-
tion of second life batteries in stationery storage appli-
cations reveals that multiple ambiguities exist in the 
available economic models. Cost effectiveness of these 
batteries (compared to new ones), price inflation over 
long time periods and lack of a generic business model 
are the major hurdles highlighted in this article. There-
fore, it is suggested that the future price inflation, accu-
rate battery market prices and net-metering rates should 
be paid attention for a generic economic model devel-
opment. This review also reflects that only a limited 
number of studies have considered the impact of bat-
tery’s degradation on battery economic studies. Battery 
degradation studies incorporating a complete life cycle 
analysis (including first and second life) is of immense 
importance for optimal techno-economic evaluation. 
Also, lack of incentives and policies for users and stake-
holders like electric cars and battery manufacturers has 
caused hindrances to adopt this technology. Introduction 
of government policies regarding market scenarios such 
as low cost of second life battery in comparison to new 
battery, attractive net metering rates for second life bat-
teries’ users and controlled inflation in second life battery 
prices are suggested. As stated previously, the combined 
techno-economic benefits like projected future business 
revenues and RUL extension by accurate SOH estimation 
methods are expected to tackle the growing number of 
retired batteries from EVs by increasing the feasibility of 
their reuse in stationary storage applications.
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