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In a class of holographic models for cosmology, the dual theory is given by a massless super-
renormalisable QFT in 3 dimensions. In order to obtain cosmological observables, correlators of
this QFT may be obtained via lattice field theory. Previous work has focused on scalar q4 matrix
theories in the adjoint representation of SU(N). In this work we present preliminary results in the
critical behaviour and phase structure of the theory with an SU(N) scalar field coupled to gauge
fields by utilising the Heatbath-Overrelaxation (HBOR) algorithm in lattice field theory.
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1. Introduction

The 33 SU(N) theory of adjoint scalars coupled to gauge fields is generally of interest due to
being the high-temperature limit of 4d QCD [1], as well as having applications in doped cuprates
[2]. This model has been extensively studied since the seminar work by Polyakov [3, 4], including
[5–8]. For the purposes of the Holographic Cosmology model, however, it is conjectured that a 4d
gravitational theory is dual to the massless regime (i.e. where it acquires a generalised conformal
structure) of a superrenormalisable 3d theory of adjoint scalars and gauge fields. In this model, the
two-point function of the Energy-Momentum Tensor )`a is related to the power spectrum of the
CosmicMicrowave Background (CMB) in the gravitational theory [9, 10]. Perturbative calculations
[11] show that the CMB spectrum predicted by Holographic Cosmology is competitive withΛCDM
for multipoles ; ≥ 30 [12]. However, lower multipoles reside in the nonperturbative region of the
dual QFT and therefore require simulations of lattice QFT.

2. Algorithm

The theories discussed in the upcoming sections were simulated with the Grid library [13],
within which a Heatbath-Overrelaxation (HBOR) algorithm was written, consisting of a HB step
plus = OR steps, i.e. reflections. The updating of scalar fields follows the prescription in [14],
with slight alterations for numerical stability. Gauge links are updated according to [15], and
generalised from SU(2) to SU(N) via the subgroup method [16]. Due to the lack of fermionic
degrees of freedom, the HBOR algorithm is significantly more efficient at generating decorrelated
configurations than the HybridMonte-Carlo [17], which we used for some of our earlier simulations.

3. Adjoint Scalar SU(N) Theory

The simplest candidate dual theory for Holographic Cosmology is a q4 theory of scalars in the
adjoint representation, with large-N lattice action as given below:

( =
#

6
03

∑
G∈Λ3

Tr

{∑̀
[X`q(G)]2 + <2q2(G) + q4(G)

}
, (1)

where X`q(G) = 1
0
(q(G + ˆ̀) − q(G)) and the scalar field is composed of Hermitian # × # matrices

valued in the su(#) algebra. A good observable with which to visualise the phase transition is the
Binder cumulant [18]:

�(<2) = 1 − 1
#

〈tr[(∑G q(G))4]〉
〈tr[(∑G q(G))2]〉2

. (2)

The Binder cumulant is discontinuous at the continuum phase transition, and in the lattice simulation
it is expected to scale next to the continuum critical point as

lim
<2→<2

2

�(<2) ∼ 5
(
(<2 − <2

2) (6!)1/a
)
, (3)

where a is a critical exponent of the phase transition. Apart from finding the exact position of
the continuum critical point, lattice evaluations of this theory allow one to compute its critical
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exponents, which is important to verify in which universality class the theory lies. Massless
superrenormalisable theories like the one at hand tend to be well-behaved in the UV but suffer
from severe perturbative divergences in the IR. Nonetheless, it has been conjectured in [19, 20]
and shown for some specific cases (for example massless scalar 3d QED) that it is possible to
cure such IR divergences and prove IR-finiteness of the theory. Our collaboration has published
compelling evidence [21] that indeed this is the case for the pure scalar theory. Another work
investigated by our collaboration the renormalisation of the Energy-Momentum tensor ()`a), since
this is the observable whose correlator is mapped into the CMB spectrum in the dual gravitational
theory of Holographic Cosmology. Because of the breakdown of translational symmetry in lattice
discretisation, one cannot rely on continuum Ward Identities and the issue of renormalising )`a
becomes nontrivial. Strides have been made by our collaboration in the pure scalar case by applying
the Wilson Flow to )`a renormalisation [22].

4. Scalar+Gauge SU(N) Theory

If we now couple the adjoint scalars from (1) to SU(N) gauge links, we obtain the action

([q,*] = #

6

∑
G∈Λ3

Tr
03 ©«

3∑̀
=1
(Δ`q(G))2 + <2q2(G) + _q4(G)ª®¬ + 1

0

∑̀
<a

Re
[
1 − %`a

] , (4)

where%`a = *` (G)*a (G+0 ˆ̀)*†` (G+â)*†a (G) is the plaquette operator andΔ`q(G) = 0−1(*` (G)q(G+
0 ˆ̀)*†` (G) − q(G)) is the gauge covariant lattice derivative in the adjoint representation. As before,
q(G) is valued in su(#). The weak gauge coupling regime recovers the pure scalar case, whereas
taking _ → ∞ leads to the fixed-length scalar theory. The action given in (4) for # = 2 has
been the subject of theoretical [7] and numerical [8] computations attempting to establish its phase
diagram and the order of its transitions. It is known that, differently than in the pure scalar case, the
symmetric and broken phases of the system are simply connected through a crossover region or are
separated by first-order behaviour. To the authors’ knowledge, so far no evidence of a second-order
transition has been found, and a point (or line) between these two regimes where the continuum
scalar field’s mass is zero remains a conjecture. By perturbatively computing the scalar self-energy
to two loops and setting the lattice spacing 0 = 1, one obtains the mass counterterm [23]

X2
<2→0 = −

Σ6

4c

[
2 + _

(
2 − 3

#2

)]
− 1

16c2

[
262_

(
2 − 3

#2

) (
−X + Σ

2

4

)
+ 62

(
2^1 − ^4 − 4(X + d) + cΣ

(
1
2
− 4

3#2

)
+ 5Σ2

8

)
+

(
262_

(
2 − 3

#2

)
− 18 + 6#2 − #4

) (
Z + log

6
`

) ]
, (5)

which serves as a guide as to where, naïvely, the critical line should lie. The values of the numerical
constants Σ, ^1, ^4, X, d, and Z in (5) are given in [23]. Investigating a region around this critical line
for _ = 1, # = 2 and 06 < 1, we obtain Figure 1, which shows indeed that above the perturbative
critical line, especially for 06 � 1, the expectation value of Tr[q2] increases when one wades deep

3
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into the broken region, whereas below the line it remains close to zero, as would be expected of a
symmetric phase. Nonetheless, this effect all but disappears when 6 is increased, thus suggesting
the existence of crossover behaviour. The same effect is verified when analysing the scalar field’s
susceptibility j across this line, as seen in Figure 2, with

j =
+

03

(
〈(∑G Tr[q2])2〉
〈∑G Tr[q2]〉2

− 1
)
, (6)

where + is the lattice volume. These figures suggest that, as expected, in the deep weak coupling
regime one may recover the pure scalar behaviour. While these diagrams are preliminary, they
point to strategies in finding the critical line where the scalar mass is zero, which is of relevance
to our project on holographic cosmological models. It is believed that such a critical line will be
located where the surface <2

crit(6, _), dividing the broken and symmetric phases through a first-
order phase transition, terminates and crossover behaviour begins. Therefore, by evaluating how
the susceptibility of the scalar field scales in a region of parameter space suspected of containing
critical behaviour, we may distinguish these regimes by noting that, as ! → ∞ and <2 → <2

crit,
we have j ∼ 5

(
|<2 − <2

crit | (6!)−W
)
along the critical line, with W a critical exponent, whereas

j ∼ const in the first-order region and j→ 0 elsewhere.

Figure 1: Expectation values of Tr[q2] across the perturbative critical line with # = 2 and _ = 1 on a 643

lattice for various values of 6 and <2. The red line indicates where critical behaviour should occur according
to 1-loop lattice perturbation theory. As expected, deeper into the broken region (in this case the bottom left
corner), the expectation value of Tr[q2] increases, whereas in the symmetric region it stays close to zero.

4
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Figure 2: Expectation values of j across the perturbative critical line with # = 2 and _ = 1 on a 643 lattice
for various values of 6 and <2. The grey bounding box indicates where, perturbatively to 1 loop, the broken
phase lies. Across the suspected phase transition, the value of j peaks and falls back to zero elsewhere.
Scaling analysis will indicate whether this line corresponds to a first-order transition or crossover behaviour.

5. GPU Porting

Given the commissioning of the new DiRAC Tursa machine in Edinburgh, fitted with NVIDIA
A100 GPUs, it became critical to port the previously CPU-based Holographic cosmology code to
GPU. This was done by focusing on the main bottleneck CPU routines:

• Lattice-wide operations, like sum, matrix products, exponentiation, etc. Most of these
operations are handled by low-level Grid routines which had already been ported to GPU,
therefore optimising them amounted to porting to GPU code around them, so as to minimise
memory transfer overhead.

• Pick- and SetCheckerboard, the former of which selects the odd or even checkerboard of
the lattice and transfers that to a so-called “Red-Black" lattice with half the linear size. The
latter does the inverse process. This was accelerated by creating a new Grid kernel which
can translate lattice site and SIMD indices into lattice cartesian coordinates on the device.
Formerly, these were methods of a host class.

• Nearest-Neighbour interactions, which on Grid can be performed either by Circular Shift
(also known as Cshift) or stencil routines. Cshift has been recently accelerated by the Grid
development team, whereas for this project stencil GPU kernels have been used and tested.
The Halo Exchange part of the stencil routine is able to produce bandwidth close to 600GB/s,

5
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which is the theoretical bandwidth of NVLink connections which are used between GPUs
within the same node on Tursa.

• RNG, the last bottleneck routine running on host code, which is still in the process of being
accelerated via device code. This requires creating an RNG class based on curand which
can save and restore RNG states, as well as pass statistical tests of random number quality.
Regarding random number quality, the CURAND_RNG_PSEUDO_PHILOX4_32_10 RNG type
on curand passes the BigCrush battery of statistical quality tests [24].

With the accelerated routines described above, the following improvements were verified in each
of the HBOR update steps for a 2563 lattice (Figures 3 to 6). NB these results do not yet include
RNG acceleration, which can be seen from the fact that the RNG becomes, in some cases, the main
time bottleneck.

Figure 3: Scalar HB GPU acceleration

Figure 4: Scalar OR GPU acceleration

Figure 5: Gauge HB GPU acceleration

Figure 6: Gauge OR GPU acceleration

In a realistic run, however, these routines would not all hold the same weight, since the
overrelaxation step needs to be performed many more times than the heatbath one. Supposing a
run where we choose to have 16 OR steps for each HB, the total GPU acceleration, considering as
well the time taken to save configurations and observables, is given on Figure 7. In total, for such
a run, the acceleration verified is of about 87%. It must be noted that this figure is still expected to
improve once the RNG acceleration has been introduced, as the GPU RNG is about one order of
magnitude faster than its host counterpart.

6
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Figure 7: GPU acceleration for full HB+16OR sweep

6. Discussion

The preliminary results in this document support previous findings which demonstrate that the
3d Scalar+Gauge SU(2) theory with adjoint scalars contains regions of crossover and first-order
behaviour. Furthermore, it has been established that using the Grid library, significant speedups
can be achieved by using GPUs, with a realistic potential for further acceleration, once the RNG
operations are also performed on the device. Future developments in this project will attempt to
establish the precise line where the critical behaviour lies, and analyse the IR limit in this regime,
with the aim of confirming nonperturbative IR-finiteness for the theory of interest.
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