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A B S T R A C T   

The need for implementing efficient value-adding tools able to optimise Earth Observation data usage, compels 
the scientific community to find innovative solutions for the downstream of Earth Observation information. In 
this paper we present an unsupervised and automated approach based on Principal Component Analysis (PCA) 
and K-means clustering to detect patterns of natural or anthropogenic ground deformation from Interferometric 
Synthetic Aperture Radar (InSAR) Time Series. For our proof-of-concept, we focus on the Valle d’Aosta region 
(Northwest Italy) where mass wasting processes frequently occurs, interacting with human activities and in
frastructures. The large volumes of Sentinel-1 data produced allows for retrieving horizontal and vertical Time 
Series from multi-geometry data fusion of Line-of-Sight (LOS) InSAR measurements. The added benefit of 
combining ascending/descending InSAR data and interpolating displacements in time at different time steps is 
here explored prior to data dimensionality reduction and feature extraction through PCA. The retrieved principal 
components serve as a continuous solution for cluster membership indicators in the K-means clustering method, 
allowing to define spatially and temporally coherent displacement phenomena. The signal of the ground 
deformation clusters is then deconstructed into the underlying trend and seasonality components to enhance the 
interpretability of the classified satellite InSAR features. Using InSAR Time series data spanning 2014–2020, the 
proposed approach detects several slope movements and anthropogenic deformations with both linear and 
seasonal displacement behaviours. The results demonstrate the potential applicability of our transferable 
approach to the development of automated ground motion analysis systems.   

1. Introduction 

The large volumes of freely accessible Sentinel-1 (S-1) data acquired 
worldwide have fostered the deployment of Time Series Interferometric 
Synthetic Aperture Radar (TS-InSAR) to reliably monitor and detect 
ground deformation. Nowadays, space-borne radars can provide con
sistency in data collection, a short revisit time (up to 6 days before the S- 
1B anomaly dated to December 2021; ESA, 2022) and the Terrain 
Observation of Progressive Scans (TOPS) acquisition mode (De Zan & 
Monti Guarnieri, 2006). Consequently, InSAR techniques have reached a 
remarkable state of maturity enabling the screening of millimetre scale 
deformations over the Earth’s surface (Raspini et al., 2018). Many well- 
established data processing pipelines have been developed in this 
framework. The flourishing of several advanced multi-temporal 

Differential SAR Interferometry (A-DInSAR) techniques such as Perma
nent Scatterers (PSInSAR™; Ferretti et al., 1999), Small baseline subset 
(SBAS; Berardino et al., 2002), SqueeSAR™ (Ferretti et al., 2011), 
coherent pixels technique (CPT; Blanco-Sánchez et al., 2008) and stable 
point network (SPN; Arnaud et al., 2003) have greatly prompted the use 
of space-borne data to gain a better understanding of natural hazards 
and anthropogenic deformations. Specifically, Persistent Scatterer 
Interferometry (PSI) techniques have been deployed for mapping and 
monitoring slow-moving landslides (Intrieri et al., 2018; Zhang et al., 
2020), subsidence due to groundwater exploitation, loading or under
ground mining (Bateson et al., 2015; Ciampalini et al., 2019; Ezquerro 
et al., 2020), volcanic upheaval (de Luca et al., 2022) and multiple 
sources of motion (Festa et al., 2022). 

The automation of large InSAR data post-processing (i.e., the 
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European Ground Motion Service; Crosetto et al., 2020) has become an 
essential task to make ground motion data readily understandable by a 
broad range of nonexpert stakeholders and end-users. So far, most of 
studies aiming to map and characterise ground motion mainly rely on 
the average displacement rate obtained from fitting a linear regression 
model to the entire TS-InSAR data (Festa et al., 2022; Lu et al., 2012; 
Novellino et al., 2019; Tomás et al., 2019). Existing spatial clustering 
methods (Tomás et al., 2019) propose to aggregate ground deforming 
reflectors without providing any information regarding the different 
motion trends coexisting within the same unstable area. Only few 
methods have been tested so far for detecting and classifying deforma
tion signals from individual time series of ground deformation. Some 
approaches address TS-InSAR decomposition (Schlögl et al., 2021; Xiong 
et al., 2021), while others perform either manual (Cigna et al., 2011) or 
automated (Ansari et al., 2021; Berti et al., 2013; Chang & Hanssen, 
2016) TS-InSAR-based methods for retrieving spatial and temporal 
trends in land motion. Cigna et al. (2011) relies on the manual inter
pretation of large A-DInSAR datasets, which is a time-consuming ac
tivity where the results may be affected by subjectivity. Berti et al. 
(2013) and Chang & Hanssen (2016) try to trace back TS-InSAR tem
poral displacement signals to a priori pattern models that would inhibit 
the scalability of the method in classifying unknown temporal patterns 
in large InSAR datasets. Also, the advantage of combining ascending/ 
descending radar data is not addressed by Ansari et al. (2021). The 
above-mentioned gaps, together with the actual need for thoroughly 
managing large amount of InSAR datasets, are tackled within this 
manuscript. 

For systematic large-scale mapping, the large volume of TS-InSAR 
information enclosed within millions of Measurement Points (MPs) 
calls for efficient data mining approaches to disclose the underlying 
displacement patterns. Therefore, we explore the applicability of an 
automated unsupervised learning approach by applying a statistical 
dimensionality-reduction method which includes a Principal Compo
nent Analysis (PCA; Jolliffe & Cadima, 2016) followed by K-means 
clustering (Wu et al., 2008) to detect non-stationary deforming trends at 
a regional scale. The novelties brought by this work, are the following:  

- The proposed data mining approach is applied to the decomposed 
vertical and horizontal components displacement TS-InSAR rather 
than to the LOS values.  

- The robustness of the clustering approach is evaluated against 
different TS-InSAR interpolation techniques. 

- Every retrieved cluster is further decomposed into trend and sea
sonality components for a complete mapping of the temporal 
displacement behaviour. To the best of our knowledge, this approach 
has not been tested on PSI TS-InSAR before. 

For our proof-of-concept, we focus on the Valle d’Aosta region which 
is among the regions with the highest mortality rate from landslides in 
Italy and where other identified sources of ground motion includes 
subsidence and mining-related displacements (Confuorto et al., 2021). 

2. Study area 

Valle d’Aosta is a region located in the north-western part of the 
Italian Alpine arc and is bordered by Switzerland to the North and by 
France to the West. The 3,262 km2 area encompasses a mostly moun
tainous landscape where almost 50% of its territory has an elevation 
higher than 2,000 m.a.s.l. 

As a result of Alpine orogenesis and Quaternary glaciation, Valle 
d’Aosta is a complex structural-geomorphological context (Dal Piaz 
et al., 2001) where a main central east–west valley oriented is framed by 
several north–south oriented sub-valleys, constituting an ideal scenario 
for the application of the InSAR technique (i.e., ground deformation 
detection along N-S direction it is poorly constrained by the satellite 
geometry). The post-glacial action (Holocene to present) has influenced 

the relief and the ongoing slope dynamics (Carraro & Giardino, 2004). 
Indeed, Valle d’Aosta is extensively characterised by gravitational mass 
movements such as shallow landslides, rockfalls, rock glaciers and deep- 
seated gravitational slope deformation (DSGSD) which sometimes 
involve entire mountain flanks. 

3. Data 

3.1. PSI datasets 

The launch of the C-band S-1 constellation has allowed the acquisi
tion of huge volumes of freely accessible radar images with an unprec
edented temporal sampling over Europe. In this study, 256 and 261 S-1 
scenes covering Valle d’Aosta were exploited from ascending and 
descending acquisition geometries, respectively (Table 1). The stacks of 
images, acquired with the Interferometric Wide (IW) swath mode by 
both S-1A and S-1B and spanning the time interval from 19 October 
2014 to 12 May 2020, were processed by means of the SqueeSAR™ 
algorithm (Ferretti et al., 2011) as part of the Valle d’Aosta S-1 moni
toring service (Crosetto et al., 2020). The type of deformation model 
used to process the InSAR data is linear. Images have been captured 
along satellite track n.88 in ascending orbit and along-track n.66 in 
descending orbit (Fig. 1). The SqueeSAR™ processing chain was able to 
provide 365,384 ascending and 367,263 descending displacement TS- 
InSAR subdivided between point-wise coherent scatterers (PS) and 
partially coherent distributed scatterers (DS), allowing a rather high MP 
density (ca. 56 MP/km2). A coherence threshold of 0.75 has been 
applied to the deployed InSAR data. 

3.2. Regional inventories 

Considering the historical causes of motion in Valle d’Aosta, the 
datasets used in the validation of our procedure include:  

- landslide inventory from the Italian Landslide Inventory project 
(IFFI; Trigila et al., 2007), where 2,188 landslides and 141 DSGSDs 
have been mapped until 2016 throughout the Valle d’Aosta territory 
(Fig. 2), covering more than 590 km2 (ca. 18% of the entire region).  

- Glaciers database, with 900 rock glaciers marked as active or relict 
landforms (SCT, n.d.). Besides the well know geohazards, other 
sources of land motion have been linked to anthropogenic surface 
displacements, namely subsidence due to groundwater over
exploitation and mining-related activities (Confuorto et al., 2021). 

- Database of areas subject to past/recent quarrying and dump activ
ities (Fig. 2) available online at SCT (n.d.). 

4. Methods 

The workflow of the proposed TS-InSAR data mining approach 
(Fig. 3) is performed through a Python-based code, which is freely 
available on Github at https://github.com/maybedave/InSAR-Time-Se 
ries-Clustering. The code consists of three main steps: 1) Spatial and 
temporal post-processing of PSI dataset to retrieve newly interpolated 

Table 1 
S-1 parameters and PSI results.  

S-1 parameters and PSI results 

SAR satellite S-1A&B S-1A&B 
Satellite geometry Ascending Descending 
Track 88 66 
Sensor mode IW IW 
LOS angle 38.59◦ 43.12◦

Azimuth angle 8.87◦ 10.49◦

No. of scenes 256 261 
No. of MPs 365,384 367,263 
Time spans 04–11-2014 to 12–05-2020 10–10-2014 to 11–05-2020  
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vertical and horizontal displacement TS-InSAR; 2) PCA-based dimen
sionality reduction and features retrieval; 3) Unsupervised K-Means 
learning for TS-InSAR automated clustering and decomposition of 
cluster’s centroids. 

4.1. TS-InSAR post-processing 

Multi-geometry InSAR data fusion aims to reproject and estimate the 
LOS observed displacement signal along vertical and horizontal di
rections based on the combination of measurements acquired from two 

or more different SAR satellite orbit acquisitions. Independent InSAR 
datasets can be merged on the (i) spatial and (ii) temporal level if LOS 
measurements are referred to the same location and period. 

The accomplishment of the (i) spatial interpolation is performed by 
merging sparse MPs from overlapping geometries into spatially coherent 
domains. We propose a squared gridding of point-like data consisting of 
an adaptive scaling process able to enclose at least one MP from 
ascending and descending geometries. The process starts by assessing 
the extent of the InSAR datasets to produce each individual grid cell as a 
geometric polygon. The optimal size of the grid cell is automatically 
assessed as follows: considering an interval n = [10..1000] the totality of 
cells Cn produced at the n grid size is evaluated against Cadn =

Can ∪ Cdn, where Can and Cdn are the number of cells with at least one 
MP from the ascending and descending geometry, respectively. The 
optimal size of the grid cell corresponds to the smallest grid size (so to 
capture motion at higher resolution using more cells – Cn) but large 
enough to contain at least one ascending and descending MP. This size is 
evaluated by plotting the results of Cn/Cadn against the n range of size 
values and by identifying the point of maximum curvature (Fig. 4) 
through the Kneed algorithm (Satopaa et al., 2011). Empty grid cells 
resulting from the absence of simultaneous data from both geometries 
are automatically deleted. 

Also, (ii) interpolation in time is required to retrieve vertical and 
horizontal TS-InSAR since the image acquisition dates are usually 
different in each viewing geometry. The proposed rationale performs the 
fusion of LOS TS-InSAR data on a cell-by-cell basis on the interpolated 
grid, thus resulting in unique ascending and descending TS-InSAR for 
each grid squared polygon. After aggregating and averaging the 
displacement values per time step, the approach pipeline follows with 
the selection of the ascending and descending overlapping time window 
(oTw) as the new temporal frame for TS-InSAR resampling. Then, the 
new frequency conversion nf (1) is automatically computed as: 

nf = oTw/(Sasc + Sdesc) (1) 

where oTw unit is days, while Sasc and Sdesc are the total numbers of 
ascending and descending geometry scenes. The interpolation of LOS 
velocities (Vasc;Vdesc) to a new frequency enables the computation of 

Fig. 1. S-1 satellite tracks along which the deployed radar images 
were captured. 

Fig. 2. Geomorphologic setting of the Valle d’Aosta region, with landslide types, slope processes and anthropogenic moving areas outlined according to the IFFI 
catalogue and to the regional databases (SCT, n.d.). 

D. Festa et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 118 (2023) 103276

4

vertical (VV) and horizontal (VH) (2) TS-InSAR on each time step by 
solving the following set of equations: 
(

Vasc

Vdesc

)

=

(
− sinθasccosαasc cosθasc

− sinθdesccosαdesc cosθdesc

)(
VH

VV

)

(2) 

where θ and α are the satellite incidence and azimuth angle, 
respectively. 

The vertical and horizontal components of motion are here retrieved 
assuming the N component of motion negligible. 

The TS-InSAR temporal interpolation is performed by testing linear, 
quadratic and cubic methods. The objective is to find out the most ac
curate model able to fill data gaps in the new frequency, given that the 
aim is to preserve as much as possible the original non-stationary TS- 
InSAR data. To achieve that, we randomly select 100 time series from 
the dataset, eliminate every 2nd displacement measurement (i.e., the 
time steps with even index), interpolate the missing values, and evaluate 
the Root Mean Square Error (RMSE) (3) between the observed and 
forecasted values: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(fi − oi)

2

√

(3) 

where f is the forecasted value, o is the observed value and n is the 
total sample size. RMSE can be defined as the standard deviation of the 
residuals, therefore lower average values are associated to a better 
average model prediction. The lower mean RMSE value retrieved for 
100 time series interpolated via linear, quadratic, and cubic methods is 
here considered as a proxy for choosing an individual fitting model. 

4.2. Principal component analysis (PCA) 

Given the large quantity of temporal displacement data embedded 
within TS-InSAR datasets, here we use PCA, a statistical technique which 
consists of data dimensionality reduction by balancing between infor
mation loss and optimal number of dimensions to retain (Jolliffe & 
Cadima, 2016; Prentice, 1982). In our case, we retrieve the Principal 
Components (PCs) variables accounting for the maximum amount of 
variance to characterise temporally and spatially changing deformation 
patterns from any TS-InSAR dataset without a priori constraints 
(Chaussard & Farr, 2019). Prior assuming that the sources are uncor
related, the decomposition of a mixed deformation signal through the 
PCA results in a unique solution (Ebmeier, 2016). 

The here performed PCA procedure (Pedregosa et al., 2011) is 
applied to multiple univariate time series (i.e., the TS-InSAR dataset) 
and can be divided into (i) data standardisation, (ii) data dimensionality 
reduction into PCs, (iii) automated assessment of the optimal number of 
PCs to retain. The aim of (i) is to standardise all the TS-InSAR to a 
comparable scale by removing the mean and scaling to unit variance, so 

Fig. 3. Workflow of the proposed approach.  

Fig. 4. Procedure for the identification of the optimal size of the grid for the 
spatial interpolation of MPs from the two LOS satellite geometries of 
acquisition. 
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that each feature is equally considered and that PCA will not result in 
biased estimations. The second step (ii) involves linear dimensionality 
reduction using Singular Value Decomposition (Halko et al., 2011) of 
the data to project it to orthogonal components explaining a maximum 
amount of the variance. To achieve (iii), we adopt the Scree-plot crite
rion, where the eigenvalues are plotted against the number of compo
nents, and the optimal number of PCs is retrieved by looking for the 
“elbow” in the curve (section 4.1). This is done by automatically 
selecting the optimal number of PCs able to explain much of the vari
ability of the TS-InSAR dataset. 

4.3. TS-InSAR clustering and decomposition 

The K-means algorithm is an inductive and unsupervised clustering 
method that is here adopted in the form of the standard Euclidean 
version to cluster unlabelled sparse TS-InSAR data into groups with 
similar characteristics (Pedregosa et al., 2011). Given two time series, 
Q = q1⋯qn and C = c1⋯cn, their Euclidean distance D (4) is defined as: 

D(Q,C) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(qi − ci)

2

√

(4) 

K-means aims to separate n samples x in k clusters (c) of equal var
iances, each described by the mean μi (i.e., the centroid) of the TS 
samples in the cluster. The final clustering algorithm objective is to 
perform the minimisation of centroids inertia (5): 

∑n

i=0μi∈c

min(||xi − μi||
2
) (5) 

Inertia can be defined as a metric expressing how internally coherent 
clusters are, where lower values represent better model convergence. 

K-means is a scalable approach towards very large samples and needs 
only a parameter to be initialised, namely the number of clusters, which 
is in our case automatically defined by the optimal number of PCs. 
Running PCA before k-means clustering has multiple advantages: it is 
the continuous solution of the cluster membership indicators in K-means 
clustering (Ding & He, 2004), it can reduce the problem of inflation of 
Euclidean spaces and boost the computations. 

Every MP is grouped into a cluster of similar patterns. These patterns 
are retrieved by considering the barycentre (i.e., centroid) of the average 
shape of the grouped time series. To enhance the readability of the TS- 
InSAR clusters, the cluster centroid is further analysed to decompose 
the signal into trend and seasonality, where the first can be defined as 
the general direction of the overall data, while the seasonality is the 
repeating short-term cyclic component in the series. Finally:  

- A least squares Linear Regression technique is applied to fit a linear 
model by minimising the residual sum of squares between the 
observed targets in the time series and the targets predicted by the 
linear approximation to retrieve the trend.  

- The basic Fast Fourier Transform (FFT) is applied by computing the 
power spectrum (Priestley, 1981) to retrieve the seasonality. By 
looking at the frequencies corresponding to the peaks of spectral 
power with the highest magnitude, it is possible to assess the peri
odicity of a time-related series. 

5. Results 

5.1. Parameters calibration 

Several fishnet configurations based on a range of selected grid size 
have been evaluated. The best grid size is automatically found at a value 
of 48 m, corresponding to a total of 2,480,665 cells subdividing a rect
angular area of ca. 80 × 40 km enclosing the study area. Note that the 
grid size value results from the peculiar characteristics of the analysed 

TS-InSAR datasets (see section 4.1). On the other hand, Cad, namely the 
number of cells retaining both ascending and descending TS-InSAR, 
results in 93,385 cells, which constitutes the final number of features. 

Due to the inherent temporal mismatch between the ascending and 
descending TS-InSAR datasets (256 and 261 scenes respectively), the 
proposed approach resamples the LOS measurements from the two 
different geometries into a new temporal frequency (nf), thus enabling 
LOS reprojection into vertical and horizontal components. The nf , 
computed as shown in section 4.1, is equal to 4 days considering the 
deployed test datasets, bringing the number of vertical and horizontal 
scenes to 504. Interpolation methods were tested by evaluating the 
prediction performance obtained with 100 random time series interpo
lated with linear, quadratic and cubic methods. Lower RMSE values are 
associated to a better average model prediction. In our case (Fig. 5), the 
linear interpolation method is preferred since it carries a mean RMSE 
value of 3.32, which is lower compared to the mean RMSE obtained by 
both quadratic and cubic interpolations (3.76 and 3.83 respectively). 
This result is indicative of the deployed data used within this work and it 
may differ based on different TS-InSAR datasets used as inputs. 

The optimal number of PCs to retain is automatically selected 
through the Scree plot criterion, by plotting the eigenvalues on the y- 
axis and the number of factors on the x-axis. It always displays a 
downward curve, since the first component explains much of the vari
ability, while the next components explain lower fractions of the overall 
variability. Finding the “elbow” in that curve relates to the number of 
factors retaining much of the TS-InSAR dataset information since they 
will constitute the cluster membership indicators in the K-means clus
tering. In our case, after performing the PCA analysis over the vertical 
and horizontal TS-InSAR datasets, the Kneedle algorithm selected 4 
components to retain. 

5.2. Automated TS-InSAR data mining 

5.2.1. PCA-based K-means clustering 
The standardised PCA scores for the reprocessed vertical and hori

zontal TS-InSAR dataset (Fig. 6) depict the underlying data structure. 
The two successive sets of the selected 4 orthogonal components 
explaining the maximum amount of the two datasets variance exhibit 
similar characteristics. The eigenvectors of the first PC (PC1) show that 
the direction of maximum variance (i.e., the eigenvector) is stretched 
parallel to the x-axis direction (representing the satellite acquisitions) 
showing a mostly stable and steady behaviour with displacement values 
slightly fluctuating around zero. PC1 (Table 2) demonstrates that most 
of the TS-InSAR signals covering the Valle d’Aosta region are stable 
(explained amount of variance stands at 76.55% and 74.14% for the 
horizontal and vertical dataset, respectively), which corresponds to an 
expected scenario when looking at a regional PSI dataset. PC2, PC3 and 
PC4 show a strong periodic fluctuation of the displacement signals 
which follows a clear yearly seasonal cycle. Regarding the horizontal 
dataset, PC2 accounts for 8.22% of the total variance (Table 2) and 
displays a seasonal deformation with a positive trend (i.e., the relative 
movement towards east). Concerning the vertical dataset, PC2 accounts 
for 7.91% of the total variance while displaying an overall negative 
trend, which translates into a downward displacement. PC3 and PC4 are 
indicative of displacement signals with similar amplitudes and similar 
trends oscillating around zero, however, they are out of phase over time 
in both analysed TS-InSAR datasets. 

Accounting for the variance, the K-means clustering resulted in the 
classification of the analysed TS-InSAR dataset into 4 different types of 
clusters. The spatial distribution of the classified features, along with the 
representation of the centroid series (within the 10th and 90th percen
tiles) of each (i) horizontal and (ii) vertical TS-InSAR cluster and their 
relative percentage distributions are shown in Fig. 7. 

Concerning (i) clusters, around 54% of the classified features belong 
to Cluster1h (stable westward; Fig. 7b). They show an overall uncorre
lated behaviour, with random fluctuations of displacements around zero 
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indicating stable conditions and a barely noticeable average movement 
toward west. On the other hand, Cluster3h represents around 43% of 
features, denoting again a noisy series of displacement which however 
shows a general slightly positive trend, indicative of a relative eastward 
movement (stable eastward). Cluster2h and Cluster4h (only 1.8% and 
1.6% of the overall features, respectively) can be assimilated if looking 
at the linear pattern and at the high rate of displacement (Fig. 7b), even 

though they show opposite motion directions: while Cluster2h exhibits a 
decisive negative trend (i.e., linear westward), Cluster4h exhibits a 
positive trend indicative of an eastward motion (i.e., linear eastward). 
The geographical distribution of both Cluster 1 h and Cluster3h appears 
uncorrelated, while Cluster2h and Cluster4h tends to be spatially 
aggregated on slopes with specific slope orientation, hence denoting a 
common process influencing the temporal behaviour of displacement of 
the ground, such as an active landslide. 

By looking at (ii) clustering results, 50.5% and 39.8% of features are 
classified as Cluster1v (stable downward) and Cluster3v (stable up
ward), respectively (Fig. 7f). These two show several similarities with 
the previously exposed Cluster1h and Cluster3h, both in terms of series 
shape (Fig. 7e) and geographical distribution (Fig. 7d): they show mostly 
uncorrelated and noisy behaviour, with almost null displacement rates 
(within ± 5 mm), while they tend to be spatially scattered throughout 
the test area. On the other hand, Cluster2v (subsiding primary) and 
Cluster4v (subsiding secondary) are both less frequent within the clas
sified features (0.8% and 8.9%, respectively): they exhibit a decisive 
negative trend (with Cluster2v holding higher rates of displacement) 

Fig. 5. Adopted procedure for the assessment of the interpolation method which best approximates the observed values, in the framework of TS-InSAR frequency up- 
sampling. The original time series (i.e., from the SqueeSAR dataset) are reprojected into new time series via linear, quadratic and cubic interpolation methods. We 
evaluate the mean RMSE of every method by interpolating 100 random time series from the ascending and descending datasets. 

Fig. 6. Plots of the eigenvectors resulting from the standardised PCA conducted for the reprocessed a) horizontal and b) vertical TS-InSAR datasets.  

Table 2 
Eigenvalues scores resulting from the standardised PCA of the horizontal and 
vertical TS-InSAR datasets.   

Horizontal TS-InSAR dataset Vertical TS-InSAR dataset 

PCs 
eigenvalues 

Explained 
variance 

% of total 
variance 

Explained 
variance 

% of total 
variance 

PC1  385.07  76.55%  372.94  74.14% 
PC2  41.35  8.22%  39.78  7.91% 
PC3  12.59  2.50%  21.94  4.36% 
PC4  3.74  0.74%  4.08  0.81%  
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Fig. 7. Map of the geographical distribution of the a) horizontal and d) vertical features classified according to the K-mean clustering analysis, where the relative (b, 
e) clusters series are depicted by plotting the 10th, 90th percentile (grey series) and the centroid (red series). The cluster percentage distributions related to the 
horizontal and vertical TS-InSAR datasets are shown as (c, f) pie charts. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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and tend to be mostly present on slopes. What is noticeable about the 
latter, is the repeating seasonal cycle markedly affecting the series. 

Trend and seasonality component analysis of the retrieved cluster 
series are addressed more specifically in the next section (5.2.2). 

5.2.2. Cluster centroids series decomposition 
The last step of proposed approach concerns the decomposition of 

the clusters’ series barycentre. Each centroid is fitted to a linear model to 
evaluate the underlying increasing or decreasing trend, while the po
tential seasonal component is obtained by converting the centroid into 
frequency domain. The outcomes of the twofold analysis are presented 
as follows: the visual plots of the horizontal and vertical centroid 
decomposition are depicted in Fig. 8 and Fig. 9 respectively, while the 
components are addressed quantitatively in Table 3. The spectral peaks 
obtained through the FFT are shown by plotting the x-axis covering the 
frequencies from zero to the Nyquist frequency (half the sampling rate), 
while the y-axis indicates the spectral power. Peaks corresponding to 
frequencies holding the largest power (amplitude) are shown in the 
tabular form, while with P0 we indicate the peak with the lowest fre
quency (f0) and with P1 the peak carrying a greater frequency (f1). The 
existence of an annual periodicity (i.e., seasonality) is eventually wit
nessed by the main peak approximating a frequency of f 365 days− 1, 
while a peak associated to lower frequencies typically corresponds to the 
fundamental frequency (no predominant seasonality). 

Among the horizontal TS-InSAR clusters, the centroid marked as 1 h 

(Fig. 8) is the one depicting an overall stable trend (with the linear 
segment with the best fit holding a slope of approximately zero). 3 h and 
4 h (i.e., stable eastward and linear eastward, respectively) carry a 
similarly positive trend, however, 4 h has a higher slope (i.e., higher 
deformation rate). Instead, 2 h (linear westward) carries a negative 
linear trend but with a slope magnitude comprised between the latter. 
The periodicity analysis highlighted that only 1 h and 3 h have a small 
trace of seasonality within their signals, since they both resulted in 
having P1 corresponding to a frequency of 336 days− 1. 

Regarding the vertical TS-InSAR clusters, centroids 1v and 3v depict 
trend with very low deformation rates (Fig. 9), the first being slightly 
negative (stable downward) and the second being slightly positive 
(stable upward; see slope values in Table 3). 2v holds a decisive negative 
linear trend (subsiding primary), with slope value of two orders greater 
than 1v and 3v. Centroid 4v (subsiding secondary) has still a negative 
trend but less pronounced than 2v. The periodicity analysis of the ver
tical clusters’ centroids allows the retrieval of interesting results: 1v and 
3v centroids have their main spectral peaks set to an annual cycle (P0 
corresponding to a frequency of 336 days− 1). 2v shows no seasonality at 
all (both P0 and P1 relate to lower frequencies), instead, centroid 4v 
holds a trace of seasonality having the peak P1 set to an annual fre
quency (Table 3). 

Fig. 8. Horizontal TS-InSAR cluster centroid decomposition into a trend (Linear Regression) and seasonality (power spectrum) components.  
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5.3. Comparison of clustering results with regional inventories 

The spatial distribution of the retrieved clusters is compared to the 
regional inventories listed in Section 3.2. It should be highlighted that 
the presented unsupervised approach intends to disclose hidden patterns 

within InSAR data, while instability-prone areas cannot be regarded as 
reliable ground truth labels, given the unknown state of activity. Clus
ter2h and Cluster4h (i.e., linear westward and linear eastward) features 
tends to aggregate within mapped landslides (38.2% and 24.6% of total 
features, respectively) and within mapped DSGSDs (55% and 70.2%, 

Fig. 9. Vertical TS-InSAR cluster centroid decomposition into trend (Linear Regression) and seasonality (power spectrum) components.  

Table 3 
Clusters centroids components obtained from the Ordinary least squares Linear Regression and Discrete Fourier Transform analysis. RMSE indicates the Root Mean 
Square Error estimated for the linear model. P0 and P1 denote the two main spectral peaks encountered, with P0 being the peak with the highest spectral power.   

Linear Regression Discrete Fourier Transform 

Cluster centroids Slope Intercept RMSE Spectral peaks Amplitude Frequency Period (days) 

1h − 0.08e-2 − 1.72 0.67 P0  88.92 0.24e-2 403 
P1  81.18 0.30e-2 336 

2h − 0.80e-1 − 1.52 0.61 P0  1637.68 0.99e-3 1008 
P1  1126.94 0.15e-2 672 

3h 0.64e-2 0.97 0.64 P0  173.15 0.99e-3 1008 
P1  91.13 0.30e-2 336 

4h 0.69e-1 − 0.8e-1 0.84 P0  1458.41 0.99e-3 1008 
P1  940.21 0.15e-2 672 

1v − 0.39e-2 − 1.94 1.03 P0  242.59 0.30e-2 336 
P1  126.21 0.24e-2 403 

2v − 0.11 − 2.81 1.61 P0  2143.65 0.99e-3 1008 
P1  1443.22 0.15e-2 672 

3v 0.13e-2 0.49 0.76 P0  132.62 0.30e-2 336 
P1  69.78 0.20e-2 504 

4v − 0.02 − 3.08 1.18 P0  465.70 0.99e-3 1008 
P1  391.62 0.30e-2 336  
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Fig. 10. Sankey diagram for the spatial comparison between the classified features of the horizontal and vertical TS-InSAR datasets and the pre-existing regional 
inventories relatable to possibly active source of ground motion. 

Fig. 11. Different temporal displacement behaviours are noticeable within a DSGSD phenomenon according to different types of (a) ascending geometry TS-InSAR 
clusters. The (b) cluster plots and the spatial distribution of the relative features allow an insightful understanding of the kinematic behaviour of the DSGSD. 
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respectively; Fig. 10). Comparable numbers are obtained for the same 
inventories when considering Cluster2v and Cluster4v (i.e., subsiding 
primary and subsiding secondary, respectively): they show the highest 
rates of displacement between the retrieved vertical TS-InSAR clusters. 
In general, it can be stated that both vertical and horizontal motions can 
be equally recognised within DSGSDs. 

The mining/quarrying extraction sites alongside the rock glacier 
inventory have generally low grade of spatial intersection with the 
classified features. This can be linked to their relatively low areal 
extension, if compared to landslides and DSGSDs, which are higher in 
number (2,329 landslides and DSGSDs vs 86 extraction sites and 941 
rock glaciers) and cover a greater areal extension throughout Valle 
d’Aosta (591 km2 vs 71 km2). For the same reason, the density of fea
tures is low for landslides and DSGSDs and higher for mining and 
quarrying sites. However, it is evident a relative higher intersection of 
Cluster2v with the rock glacier inventory: this can be regarded as evi
dence of the active state of movement of some of this kind of phenomena 
within Valle d’Aosta. 

The presented approach can detect and characterise different motion 
patterns when looking at local unstable areas. As proof of the above, in 
Fig. 11 we report the clustering results applied to the ascending TS- 
InSAR dataset covering the extent of a DSGSD near the town of Quart. 
The spatial segregation of different motion patterns is coherent with 
respect to the downhill slope direction and the main morphological units 
of the observed phenomenon. Indeed, 4 main different cluster groups are 
indicative of a variation of displacement rate and temporal behaviour 
which become evident across the DSGSD longitudinal axis. TS-InSAR 
features residing in the scarp area prove to have the highest rates of 
displacement and a mostly linear trend (Fig. 11). The detected most 
active zones fade into features punctuating the main body of DSGSD 
(Fig. 11b), indicative of a less severe downward displacement trend. 
Lastly, the foot of the DSGSD is interested by a progressive shift from 
negative to positive (i.e., upward) displacements (Fig. 11). This can be 
related to the peculiar geometry of the failure surface. Within this 
framework, it should be mentioned that several studies conducted over 
Valle d’Aosta and the Alpine chain (Paranunzio et al., 2019) report that 
the frequency of not-ordinary climatic conditions, which follow a sea
sonal trend, is majorly related to slope failures events. 

6. Discussion 

The proposed unsupervised data mining approach can be regarded as 
a key contribution to the optimal management of big InSAR data, for the 
benefit of expert and non-expert users, for public and private scenarios. 
As a result, our data-driven analysis can greatly improve the interpret
ability and dissemination of InSAR-based information. 

The strength of the approach is evidenced in Fig. 12, depicting un
stable conditions within a landfill site, in the municipality of Aosta. The 
deformation map containing both ascending and descending TS-InSAR 
S-1 MPs (Fig. 12a) sets the starting point of our analysis, while the 
clustered features retrieved for the vertical component of motion 
(Fig. 12b) represent one part of a twofold outcome of the data mining 
approach. The procedure ensures an unprecedented improvement and 
readability of large amounts of radar data: 1) the analysis of the earth 
surface motion can be evaluated according to the vertical and horizontal 
directions, allowing for an enhanced interpretability of ground dis
placements; 2) the large quantity of targets is compressed into few data- 
driven clusters based on the similar temporal displacement behaviour, 
hence enabling to rapidly define common deformation processes; 3) the 
detected process is further analysed in terms of the main temporal trend 
of deformation and the eventual seasonality component. The temporal 
characterisation of clustered InSAR MPs represents a step forward 
respect to previous methods concerning the detection of unstable areas 
(Festa et al., 2022; Tomás et al., 2019). The analysed features demon
strate to be spatially clustered in accordance with the varying 
morphometry of the territory and in coherence with the described 

surface motion phenomenon. 
A well-known limitation of conventional InSAR techniques is the low 

sensitivity to North-South (N-S) deformations. Since modern spaceborne 
radar systems move along near-polar orbits, there is no diversity in the 
viewing geometries to accurately estimate N-S displacements. There
fore, N-S displacement time series are here neglected. Aside from the 
intrinsic limitations of InSAR, some other constraints may arise from the 
proposed approach. For instance, the MPs aggregation into grid cells 
might cause a significant drop in terms of spatial resolution (Fig. 12b) 
hindering the correct detection of very small-scale surface movements. 
Also, the approach does not consider any weight related to the quantity 
of MPs from the two geometries and contained within the cell. More
over, it should be considered that the absence of regular ascending and 
descending acquisitions constitutes a major obstacle for the applicability 
of the proposed approach. Anyway, whether only a single geometry of 
acquisition is available, our approach can be thought as still valid to 
reduce a TS-InSAR dataset into its PCs, to evaluate the temporal clusters 
and the related temporal components, as demonstrated in Fig. 11. 

We point out that the series averaging within each grid cell and the 
rationale of temporal interpolation can possibly make an impact in 
correctly reproducing the motion trend along the vertical and horizontal 
components. Since many sources of errors due to radar acquisitions are 
responsible for the generally high noise component in the TS-InSAR 
signals, a low resampling rate (downsampling) might result in a gen
eral positive effect of smoothing errors from the series data. On the other 
hand, an excessive loss of data might cause an oversimplification that 
can be detrimental to the accuracy of the analysis. In this regard, the TS- 
InSAR dataset quality also plays a role: discontinuity and unbalance in 
radar data acquisitions might bring to a misleading reconstruction of the 
TS-InSAR components of motion, regardless of the adopted interpolation 
method (see section 5.1). This, rather than affecting the clustering per
formances, might affect the trend and seasonality components estima
tion. In view of the above-mentioned, S-1 archives coupled with a 
balanced resampling rate (see section 4.1) have shown to be appropriate 
for time-dependent series data mining, given the temporal consistency 
in data collection. 

The restriction of the trend and seasonality analysis to the cluster 
centroid only, despite partially defeaturing the cluster series charac
terisation, requires a much lower computational effort while still 
constituting a valuable operation for the readability of the data-driven 
TS-InSAR clusters. Although the here presented approach is thought to 
extract, enrich, and summarise meaningful information from large scale 
InSAR data in an optimised way, more detailed results can be obtained 
by either using a reduced InSAR dataset as input (for small-scale anal
ysis) or by deliberately increasing the number of Principal Components 
(i.e., number of clusters) to retain. In this framework, the procedure can 
also be useful for the analysis of TS-InSAR datasets covering the extent of 
a single basin, allowing for an extremely detailed evaluation of hardly 
noticeable motion trends occurring at a local scale. 

The presented method can be further developed by integrating In
dependent Component Analysis (ICA) to retrieve the additive sub
components of PCA-based results (i.e., to characterize the temporal 
behaviours of vertical and horizontal TS-InSAR clusters). 

7. Conclusions 

The presented unsupervised data mining for the automatic recogni
tion of complex surface motion trends makes it possible to optimally 
interpret large-scale displacement TS-InSAR datasets, providing data- 
driven results for territorial planning operations and civil protection 
purposes. 

The core of the adopted algorithm relies on a statistical data 
dimensionality reduction technique (i.e., PCA) prior to K-Means for the 
automated spatial clustering of TS-InSAR data based on similar temporal 
displacement behavior of the analysed radar targets. The latter are fed to 
the algorithm prior a reprojection of the LOS displacement series along 
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the vertical and horizontal directions, where the applied data fusion 
rationale is robust about the spatial and temporal dimensions. Ulti
mately, the trend and seasonality components are retrieved to enhance 
the readability of the classified features. 

The application of the approach to the regional territory of Valle 
d’Aosta offered a valuable example of automation strategy for the pro
vision of support to risk-assessment against geohazards, both natural 
and anthropogenic. To promote the use of the approach in the frame
work of the increasing availability of space borne radar data (e.g., the 
European Ground Motion Service; EGMS, 2022), the adopted code is 
freely available on Github at https://github.com/maybedave/ 
InSAR-Time-Series-Clustering. 

In the near future, the current approach will be further developed 
through data fusion and deep learning-based solutions to feed and 
develop forecasting models to be used in decision-making strategies and 
early warning systems. 
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