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Abstract
We formalise certificateless public-key updatable encryption (CLUE), a primitive that has yet to be defined in the public-key
updatable encryption (PKUE) literature. Traditionally, PKUE allows outsourcing ciphertext key rotation to an untrusted
host using a special token such that the ciphertext is updated to a distinct period known as an epoch. Key to security, the
host does not learn anything about the underlying plaintext. In practice, applying PKUE in a public key infrastructure
(PKI) requires trust in a third party producing the epoch public and secret keys, which is a clear violation of privacy if
the key generator behaves maliciously or is corrupted. In this paper, we are concerned with reducing the trust in the PKI
key generator and our chosen solution is to formalise our novel CLUE primitive, from PKUE and certificateless public
key encryption (CL-PKE) primitives, as well as a security framework for CLUE. Moreover, we modify the certificateless
encryption scheme proposed by Libert et al. (PKC 2006) and demonstrate the provable security of our CLUE scheme. To
do so, we follow the modular approach given by Klooß et al. (EUROCRYPT’19) to reduce the security analysis to the
standard setting.
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1. Introduction

Introduced by [1], public-key updatable encryption (PKUE) is a primitive used by a data owner for the long-term
storage of encrypted data. For security purposes, the primitive is designed with timely updates of ciphertexts
using a key rotation element (token) such that the update process is outsourced to an untrusted server. Crucial
to security, the server learns no information regarding the underlying data when equipped with these tokens.

In practice, the public-key infrastructure (PKI) in which PKUE will be used as a building block is a lot more
involved than simply considering a data owner and a server. Traditionally, digital certificates are associated
with the public and secret key pairs to authenticate the data owner (individual/organisation) in a public-
key encryption scheme. An approach to simplifying the public key and certificate management in a PKI is
identity-based encryption (IBE), a primitive introduced by [2], in which a unique identifier is attached to the
cryptographic key(s). Realistically, in the IBE setting a data owner cannot generate the secret key associated
with their unique identifier. Instead, they need to place trust in a key generation centre (KGC) to compute
the secret key. Herein lies a problem if we were to use IBE to support a PKUE scheme, namely, security is no
longer guaranteed if the KGC becomes corrupted or behaves dishonestly.

In more words, traditional IBE schemes rely on an arrangement in which the key needed to decrypt a ciphertext
is held in escrow so that under certain circumstances, an authorised third party (KGC), can gain access to the
secret keys of all users. Thus, if the KGC is corrupt, they can forge signatures on any message and decrypt the
ciphertext without the consent of the users, which is a clear privacy issue. We observe that a corrupt KGC
has even more power in a PKUE scheme since the epoch secret keys are incorporated into update tokens,
meaning the KGC would be able to maliciously update ciphertexts as well as learn the underlying information.
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Therefore, we must consider a solution to the key escrow problem regarding PKUE, such that an identifier is
associated with an epoch instead of a user. This is especially important given the sensitive nature of information
encrypted in applications of a PKUE scheme.

Our chosen solution is to formalise a novel certificateless PKUE primitive that we dub CLUE. Intuitively, our
new definition is a PKUE scheme such that the underlying standard encryption scheme is the certificateless
public-key encryption (CL-PKE) primitive. First introduced by [3], CL-PKE is an alternative primitive to
PKI-supported IBE used to remove the need for certificate management and tackle the key escrow problem
inherent in traditional identity-based encryption (IBE) schemes [4, 2, 5], whilst continuing to benefit from the
advantages of identity-based cryptography. In more detail, the KGC in a CL-PKE scheme generates a partial
secret key that is distributed to the corresponding data owner who combines this cryptographic element with
their own, randomly chosen secret value to generate the secret and public keys associated with their identity.
In this way, the KGC does not learn the actual value of the secret key, which resolves the key escrow problem
and is crucial to the security of a CL-PKE scheme. We defer to a discussion on related work in Appendix A.

To summarise, we deem CL-PKE to be a suitable candidate for a revised version of the PKUE primitive formally
called certificateless public-key updatable encryption (CLUE). We do so with care considering both the security
requirements of traditional CL-PKE (including inside and outside adversaries) and the intricacies of security
modelling in PKUE arising from information inferred from corrupted tokens and epoch keys. We stress the
CLUE primitive applies to any setting in which KGC generating cryptographic keys and the server performing
updates are separate entities that cannot be trusted or instances where individuals want to reduce trust in
the KGC. Therefore, our main motivation in defining CLUE is to support long-term outsourced storage in an
environment with reduced trust, with the intent to preserve privacy on behalf of the data owner.

Contributions Our contributions are threefold: first, we introduce and formalise CLUE, a certificateless
public-key updatable encryption primitive, in Section 2. Secondly, we define and model a new security notion
(CLUE-IND-RCCA security) in Section 3 which captures the indistinguishability of freshly generated and
updated ciphertexts. Next, we propose a concrete CLUE scheme in Section 4 which is an adaptation of the
pairing-based CL-PKE scheme given in [6] to the updatable setting, and we conclude by providing an efficiency
analysis of our construction. Note, in Appendix C we present a sketch analysis that our construction provably
satisfies CLUE-IND-RCCA security. We highlight that the long version of this work contains greater detail,
and full security proofs which we have omitted due to lack of space.

2. Certificateless Updatable Encryption

Notation In the following, we define a certificateless public-key updatable encryption primitive. The scheme is
defined by epochs of time in which the keys, token and ciphertext are associated with a given epoch in time
and the ciphertext update algorithm rotates the ciphertext to encryption under a new epoch key using the
token. In line with the literature, we denote the current epoch as 𝑒, and use the subscript notation 𝑒𝑖 if we
define multiple epochs at once with the range of time 𝑖 = {0, . . . ,max} such that 𝑒max is the last epoch in the
scheme. Further, (𝑒𝑖, 𝑒𝑖+1) are two consecutive epochs for any 𝑖 ∈ N and 𝑒̃ represents the challenge epoch in
security games.

Definition 1 (CLUE). Given 𝑛 epochs identified by the space ℐ𝒟𝒮𝒫 , plus the message spaceℳ𝒮𝒫 , and ci-
phertext space 𝒞𝒮𝒫 , let a certificateless public-key updatable encryption scheme be a tuple of nine algorithms
ΠCLUE = {Setup, Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK, Set-Token, Enc,Dec,Upd} defined as fol-
lows,
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• Setup(1𝜆) $→ (𝑝𝑝,𝑚𝑠𝑘) : The key generation centre (KGC) takes security parameter 1𝜆 as input and
outputs public parameters 𝑝𝑝 and master secret key 𝑚𝑠𝑘.

• Partial-SK-Extract(𝑝𝑝,𝑚𝑠𝑘, ID𝑒)→ D𝑒 : the KGC takes the public parameters 𝑝𝑝, the master secret key
𝑚𝑠𝑘 and identity ID𝑒 ∈ ℐ𝒟𝒮𝒫 for epoch 𝑒 as input and outputs partial secret key D𝑒.1

• Set-Secret-Value(𝑝𝑝, 𝑒) $→ 𝑥𝑒 : the data owner takes the public parameters 𝑝𝑝 and the current epoch 𝑒
that they are running the algorithm for as inputs and randomly chooses secret value 𝑥𝑒.

• Set-SK(𝑝𝑝,D𝑒, 𝑥𝑒) → 𝑠𝑘𝑒 : the data owner takes the public parameters 𝑝𝑝, partial secret key D𝑒 and
secret value 𝑥𝑒 as inputs and computes their secret key 𝑠𝑘𝑒.

• Set-PK(𝑝𝑝, 𝑥𝑒)→ 𝑝𝑘𝑒 : the data owner takes the public parameters 𝑝𝑝 and secret value 𝑥𝑒 as inputs and
computes their public key 𝑝𝑘𝑒.

• Set-Token(𝑝𝑝, (𝑝𝑘𝑒, 𝑠𝑘𝑒)) → Δ𝑒+1 : the data owner takes the public parameters 𝑝𝑝 plus the current
epoch public key and secret keys (𝑝𝑘𝑒, 𝑠𝑘𝑒) as inputs and computes (for epoch identifier ID𝑒) the update
token Δ𝑒+1 to epoch (𝑒+ 1) which is sent to the server.

• Enc(𝑝𝑝,𝑀, 𝑝𝑘𝑒, ID𝑒)
$→ {𝐶𝑒,⊥} : the data owner takes the public parameters 𝑝𝑝, message 𝑀 ∈ℳ𝒮𝒫 ,

public key 𝑝𝑘𝑒 and identity ID𝑒 as inputs and outputs the ciphertext 𝐶 ∈ 𝒞𝒮𝒫 for epoch 𝑒 or failure
symbol ⊥ if public key 𝑝𝑘𝑒 does not have the correct form.

• Dec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒)→ {𝑀,⊥} : the data owner takes the public parameters 𝑝𝑝, ciphertext 𝐶 and secret
key 𝑠𝑘𝑒 as inputs and outputs the message 𝑀 or failure symbol ⊥.

• Upd(𝑝𝑝, 𝐶𝑒,Δ𝑒+1)→ {𝐶𝑒+1,⊥} : the server takes the public parameters 𝑝𝑝, ciphertext 𝐶𝑒 and update
token Δ𝑒+1 as inputs and outputs the updates ciphertext 𝐶𝑒+1 for epoch (𝑒+ 1) or failure symbol ⊥.

Informally, for a CLUE scheme to satisfy the property of correctness, we require that fresh and updated
ciphertexts decrypt to the corresponding plaintext given the appropriate epoch key. The formal definition of
CLUE correctness follows.

Definition 2 (Correctness). Given security parameter 𝜆 ∈ N, a certificateless updatable encryption scheme
(ΠCLUE) formalised in Definition 1 is correct if, for any message 𝑀 ∈ ℳ𝒮𝒫 and for any 𝑗 ∈ {1, . . . ,max},
𝑖 ∈ {0, . . . ,max} with max > 𝑖, there exists a negligible function negl such that the following holds with
overwhelming probability.

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(𝑝𝑝,𝑚𝑠𝑘)
$← Setup(1𝜆);

D𝑒 ← Partial-SK-Extract(𝑝𝑝,𝑚𝑠𝑘, ID𝑒);

𝑥𝑒
$← Set-Secret-Value(𝑝𝑝, 𝑒); 𝑠𝑘𝑒←Set-SK(𝑝𝑝,D𝑒, 𝑥𝑒);

𝑝𝑘𝑒←Set-PK(𝑝𝑝, 𝑥𝑒);Δ𝑒𝑗←Set-Token(𝑝𝑝, 𝑠𝑘𝑒, 𝑥𝑒+1);

𝐶𝑒𝑖
$← Enc(𝑝𝑝,𝑀, 𝑝𝑘𝑒𝑖 , ID𝑒);

{𝐶𝑒𝑗 ← Upd(𝑝𝑝, 𝐶𝑒𝑗−1 ,Δ𝑒𝑗 ) : 𝑗 ∈ {𝑖+ 1, . . . ,max}};
Dec(𝑝𝑝, 𝐶𝑒max , 𝑠𝑘max) = 𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 1− negl(1𝜆).

3. Security Modelling for CLUE

Defining the security of a cryptographic primitive is often a complex process. For CLUE we want to combine
the approach to security taken in CL-PKE with the intricacies of UE security modelling to capture the

1This algorithm is run once for each epoch and the KGC distributes the partial secret keys to the data owner in a secure manner [7].
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indistinguishability of ciphertexts deriving from fresh encryption and updates. The notion of security we settle
on is CLUE-IND-RCCA (Definition 4) and we give an intuition of this notion in the full version of our work.
Next, we provide an overview of the security experiment in which the adversary has access to oracles and the
challenger records essential lists, both of which are key to capturing security given the challenging nuances of
the update functionality in CLUE.

High-Level Idea We define ciphertext indistinguishability against replayable chosen ciphertext attacks for the
CLUE primitive. This notion is formalised in Definition 1 through the security experiment ExpCLUE-IND-RCCA

ΠCLUE,𝒜 (1𝜆)
given in Figure 2. Informally, the game is between a challenger and an adversary 𝒜 such that the latter can
query the oracles detailed in Figures 1. To win the experiment, 𝒜 must distinguish the underlying message of
the challenge ciphertext without possession of the corresponding epoch secret key, given only access to the
relevant oracles and a challenge ciphertext. Security is satisfied if the adversary’s advantage in succeeding is
negligible, as detailed in Definition 4.

Lists To initialise the CLUE-IND-RCCA security experiment, the challenger runs Init(1𝜆) which outputs
the global state (GS) oracles have access to throughout. At the start, GS := (𝑝𝑝, 𝑠𝑘0, 𝑝𝑘0,Δ0,L, 0) contains
the public parameters 𝑝𝑝 generated by the CLUE setup algorithm; epoch secret and public keys (𝑠𝑘0, 𝑝𝑘0)
respectively; initial update token⊥ → Δ0; set L := {ℒ,ℳ*, 𝒯 ,𝒦, 𝒞*} containing initially empty lists that the
challenger is required to maintain throughout the experiment in order to prevent𝒜 from trivially winning and
setting the current epoch 0→ 𝑒. List ℒ is maintained to keep a log of updated versions of honestly-generated
ciphertexts, and the corresponding epoch, that the adversary learns through calls to the relevant oracle. List
ℳ* tracks the challenge messages the adversary sends to the challenger. Further, list 𝒯 records the epoch(s)
in which the adversary has obtained an update token and 𝒦 tracks the epoch(s) in which the adversary has
obtained an epoch secret key or epoch partial secret key.

List 𝒞 tracks the epochs in which an adversary obtains an updated version of the challenge-ciphertext through
querying the ciphertext update oracle. We must extend this list to capture additional information necessary
to prevent an adversary from trivially winning in the security experiment for Definition 4. Following the
approach taken in [8] to satisfy RCCA-security, this extension is recorded in 𝒞* which is a list encapsulating
all of the challenge-equal epochs in which the adversary knows a version of the challenge ciphertext since there
are epochs in which the adversary can infer information independently including epochs belonging to lists
𝒞, 𝒯 . Challenge-equal ciphertexts are defined by a recursive predicate challenge-equal as follows:

𝒞* ← {𝑒 ∈ {0, . . . , 𝑒max}|challenge-equal(𝑒) = true} and true← challenge-equal(𝑒) iff : (𝑒 ∈
𝒞) ∨ (challenge-equal(𝑒− 1) ∧ 𝑒 ∈ 𝒯 ) ∨ (challenge-equal(𝑒+ 1) ∧ (𝑒+ 1) ∈ 𝒯 ).

To illustrate, if an adversary knows a ciphertext 𝐶̃𝑒 from challenge epoch 𝑒 and update token Δ𝑒+1, then
the adversary can manually update the ciphertext to the epoch (𝑒 + 1) and therefore infer 𝐶̃𝑒+1 [8]. To
re-emphasise the importance of lists, winning conditions in the experiment from Figure 2 state that the
intersection of epochs contained within lists 𝒦 and 𝒞* must be empty which is crucial in preventing the
adversary from winning trivially. That is, the challenge epoch of the experiment cannot belong to the set of
epochs in which an update token has been learned or inferred, nor can there exist a single epoch where the
adversary knows both the epoch key pair and a version of the challenge-ciphertext.

Oracles Figure 1 provides formal descriptions of the initialisation phase a challenger runs and the oracles an
adversary has access to during the security experiment for Definition 4. For clarity, we provide intuition and
a definition of an important predicate utilised in UE security modelling to prevent trivial wins. Informally,
to prevent the decryption of an updated challenge ciphertext, irrespective of whether the UE scheme is
probabilistic or deterministic, a useful predicate defined in [8] can be utilised in the running of decryption and
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Init(1𝜆)

(𝑝𝑝,𝑚𝑠𝑘)
$← Setup(1𝜆)

ID0 ← Partial-SK-Extract(𝑝𝑝,𝑚𝑠𝑘, ID0)
for a valid ID0 ∈ ℐ𝒟𝒮𝒫

𝑥0
$← Set-Secret-Value(𝑝𝑝, 0)

𝑠𝑘0 ← Set-SK(𝑝𝑝, ID0, 𝑥0)
𝑝𝑘0 ← Set-PK(𝑝𝑝, 𝑥0)
Δ0 ← ⊥
𝑒← 0
L ∈ ∅ for the set of lists
L := {ℒ,ℳ*, 𝒯 ,𝒦, 𝒞*}
return GS
GS := (𝑝𝑝, 𝑠𝑘0, 𝑝𝑘0,Δ0,L, 0)
𝒪Dec(𝐶𝑒)
𝑀 ← Dec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒)
if (𝑀 ∈ℳ*) ∨ (isChallenge(𝑘𝑒, 𝐶𝑒) = true) then

return test
else

return 𝑀

𝒪Upd(𝐶𝑒𝑖)

for 𝑒𝑗 = {𝑒𝑖+1, . . . , 𝑒} do
𝐶𝑒𝑗←Upd(𝑝𝑝, 𝐶𝑒𝑖 ,Δ𝑒𝑗 )
𝐶𝑒 ← 𝐶𝑒𝑗

return 𝐶𝑒

ℒ ← ℒ ∪ {(𝑒, 𝐶𝑒)}
if (Dec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒) = 𝑀 ∈ ℳ*) ∨
(isChallenge(𝑘𝑒, 𝐶𝑒) = true) then
𝒞* ← 𝒞* ∪ {𝑒}

𝒪Next(𝑒)

𝑥𝑒+1
$← Set-Secret-Value(𝑝𝑝, 𝑒+ 1)

𝑠𝑘𝑒+1 ← Set-SK(𝑝𝑝, ID𝑒, 𝑥𝑒+1)
𝑝𝑘𝑒+1 ← Set-PK(𝑝𝑝, 𝑥𝑒+1)
Δ𝑒+1 ← Set-Token(𝑝𝑝, (𝑝𝑘𝑒, 𝑠𝑘𝑒))
Update GS
(𝑝𝑝, 𝑠𝑘𝑒+1, 𝑝𝑘𝑒+1,Δ𝑒+1,L, 𝑒+ 1)
if (𝑒 ∈ 𝒦) ∨ ((𝑒, 𝐶) ∈ ℒ) then

(𝐶 ′, 𝑒+ 1)
$← Upd(𝑝𝑝,Δ𝑒+1, 𝐶)

ℒ ← ℒ ∪ {(𝑒+ 1, 𝐶 ′)}
𝒪Corrupt-Token(𝑒

*)

if 𝑒* ≥ 𝑒 then
return ⊥

else
return Δ𝑒*

𝒯 ← 𝒯 ∪ {𝑒*}
𝒪Corrupt-key(𝑒

*)

if 𝑒* ≥ 𝑒 then
return ⊥

else
return 𝑠𝑘𝑒*

𝒦 ← 𝒦 ∪ {𝑒*}
𝒪PSKE(𝑒

*)
if ((𝑒* ≥ 𝑒) ∨ (𝑒* ∈ 𝒦)) then

return ⊥
else

return D𝑒

𝒦 ← 𝒦 ∪ {𝑒*}

Figure 1: Details of the initialisation phase run by the challenger and the oracles adversary 𝒜 has access to during the
security experiment of Definition 4.

update oracles. Informally, the isChallenge(𝑘𝑒𝑖 , 𝐶) predicate detects any queries to the decryption and update
oracles on challenge ciphertexts (𝐶̃), or versions (i.e updated) of the challenge ciphertext.

Definition 3 (isChallenge Predicate [8]). Given challenge epoch 𝑒̃ and challenge ciphertext 𝐶̃ , the
isChallenge predicate, on inputs of the current epoch key 𝑘𝑒𝑖 and queried ciphertext 𝐶𝑒𝑖 , responds in one of
three ways:

1. If (𝑒𝑖 = 𝑒̃) ∧ (𝐶𝑒𝑖 = 𝐶̃), return true;
2. If (𝑒𝑖 > 𝑒̃) ∧ (𝐶̃ ̸= ⊥), return true if 𝐶̃𝑒𝑖 = 𝐶𝑒𝑖 in which 𝐶̃𝑒𝑖 is computed iteratively by running

Upd(𝑝𝑝,Δ𝑒𝑙+1
, 𝐶̃𝑒𝑙) for 𝑒𝑙 = {𝑒̃, . . . , 𝑒𝑖};

3. Otherwise, return false.

Recall that the CL-PKE adversarial model focuses on two types of adversaries, namely, an outside and in-
side (honest but curious KGC) attacker. We explicitly define the oracles in the set 𝒪 that these distinct
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ExpCLUE-IND-RCCA,𝑏
ΠCLUE,𝒜 (1𝜆)

Initialise Global State

GS $← Init(1𝜆); GS = (𝑝𝑝, 𝑠𝑘0, 𝑝𝑘0,Δ0,L, 0);
ID𝑒 ← Partial-SK-Extract(𝑝𝑝,𝑚𝑠𝑘, ID𝑒) for a valid epoch identity ID𝑒 ∈ ℐ𝒟𝒮𝒫
𝑥𝑒

$← Set-Secret-Value(𝑝𝑝, 𝑒)
𝑠𝑘𝑒 ← Set-SK(𝑝𝑝, ID𝑒, 𝑥𝑒)
𝑝𝑘𝑒 ← Set-PK(𝑝𝑝, 𝑥𝑒)
(𝑀0,𝑀1, 𝑠)← 𝒜𝒪(𝑝𝑝, 𝑝𝑘𝑒)
Some state information s
if |𝑀0| ≠ |𝑀1| ∨ {𝑀0,𝑀1} ̸∈ ℳ𝒮𝒫 ∨ (𝑀0 = 𝑀1) then

return ⊥
else

𝑏
$← {0, 1},

𝐶
$← Enc(𝑝𝑝,𝑀𝑏, 𝑝𝑘𝑒, ID𝑒),

ℳ* ←ℳ* ∪ (𝑀0,𝑀1); 𝒞 ← 𝒞 ∪ {𝑒};𝑒̃← {𝑒}
𝑏′ ← 𝒜𝒪(𝑝𝑝, 𝐶, 𝑠),
if (𝒦 ∩ 𝒞* = ∅) then

return 𝑏′

Else abort.

Figure 2: The security experiment for CLUE-IND-RCCA security of a CLUE scheme, where the set of lists is L :=
{ℒ,ℳ*, 𝒯 ,𝒦, 𝒞*} is initially empty, 𝑠 defines some state information output by the adversary and 𝒪 denotes the
oracles an adversary has access to, depending on whether they are a type I or type II adversary.

adversaries possess during our security game. Explicitly, adversary 𝒜𝐼 has no access to the master secret
key, however, they have access to all of the oracles described above. Conversely, adversary 𝒜𝐼𝐼 has implicit
access to a master secret key, which means they can compute partial secret keys for their own use given
the master secret key and therefore do not need access to oracle 𝒪PSKE. Thus, 𝒜𝐼𝐼 has access to the set
𝒪 = {𝒪Dec,𝒪Next,𝒪Upd,𝒪Corrupt-Token,𝒪Corrupt-Key}.

Definition 4 (CLUE-IND-RCCA Security). A CLUE scheme following Definition 1 isCLUE-IND-RCCA secure
if an adversary 𝒜 participating in the security game of Figure 2 has a negligible advantage in 1𝜆, defined as
follows:

AdvCLUE-IND-RCCA
ΠCLUE,𝒜 (1𝜆) = |Pr[ExpCLUE-IND-RCCA,1

ΠCLUE,𝒜 (1𝜆) = 1]− Pr[ExpCLUE-IND-RCCA,0
ΠCLUE,𝒜 (1𝜆) = 1]| ≤ negl(1𝜆).

4. Construction

In this Section, we present a concrete pairing-based CLUE scheme (ΠCLUE). Primarily, we chose to present a
concrete CLUE scheme to demonstrate that ΠCLUE is comparably efficient to other certificateless updatable
PKE schemes such as the CL-PRE scheme from [9]. Informally, our choice of the underlying certificateless PKE
scheme is a modified version of the pairing-based NewFullCLE scheme proposed by [6]. Firstly, we deemed the
construction from [6] to be a worthy candidate for the underlying CL-PKE scheme used in our construction
due to the level of security satisfied. Secondly, we chose a pairing-based CL-PKE scheme for the same reasons
as [6]. Namely, regarding CL-PKE literature all concrete schemes generated without pairings are supported by
weaker security assumptions in the random oracle model. Whilst schemes without pairings are typically more
efficient computationally speaking, the authors of [6] demonstrated that their NewFullCLE scheme attained
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comparable efficiency to some non-pairing schemes. We discuss efficiency in greater detail at the end of this
Section.

Our choice for the update mechanism is a key-homomorphic pseudorandom function (KH-PRF) FDDH. We chose
this KH-PRF, not only for its desired homomorphic properties but also for its use in previous UE schemes
[10, 11, 12]. To be clear, we necessitate the use of a KH-PRF building block (FDDH) to support the update
functionality in our CLUE construction and we note that the use of this mechanism is a key differentiator of
our construction concerning that of [6]. Necessary to security, we require that the KH-PRF is proven secure
in the random oracle model, assuming the hardness of the decisional Diffie-Hellman problem in some finite
cyclic group. We defer the reader to the formal definition of a KH-PRF and security of FDDH in Appendix
B. Concretely, we denote the KH-PRF as FDDH : Z𝑞 × G2 → G1 whereby 𝒦 = (Z𝑞,⊕) and 𝒳 = (G2,⊗)
are additive and multiplicative groups respectively. Note that (G1,G2) are cyclic (multiplicative) groups of
prime order q. Evaluation of the KH-PRF is FDDH(𝑘, 𝑥) = ℋ2(𝑥)

𝑘 (see Definition 8) for cryptographic hash
functionℋ2 : G2 → G1, and FDDH(𝑘1+ 𝑘2, 𝑥) = FDDH(𝑘1, 𝑥) · FDDH(𝑘1, 𝑥) holds. Now we present the formal
definition of our concrete CLUE scheme.

Definition 5 (CLUE Construction). Given security parameter 𝜆 ∈ N, 𝑛 epochs, identity space ℐ𝒟𝒮𝒫 =
{0, 1}*, message space ℳ𝒮𝒫 = G1 and ciphertext space 𝒞𝒮𝒫 = G1 × G1, let groups (G1,G2) be
cyclic (multiplicative) groups of prime order q (a 1𝜆-bit prime). We define the CLUE scheme ΠCLUE =
(Setup, Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK, Set-Token, Enc,Dec,Upd) as follows,

• Setup(1𝜆) $→ (𝑝𝑝,𝑚𝑠𝑘) : Given the security parameter 𝜆 as input, the setup algorithm defines a
symmetric bilinear map 𝑒̂ : (G1 × G1) → G2 which is a Type 𝐼 pairing in Definition 6, Appendix B.
The following choices are made.

1. Choose an arbitrary value 𝑃 ∈ G1 to be the generator of G1 such that we have the element
𝑔 = 𝑒̂(𝑃, 𝑃 ) ∈ G2.

2. Given 𝑠
$← Z*

𝑞 chosen uniformly at random, set the master secret key 𝑚𝑠𝑘 = 𝑠 and set 𝑃 ′ = 𝑠𝑃 ∈
G1.

3. Choose three cryptographic hash functions used as follows2: ℋ1 : {0, 1}* → Z*
𝑞 ;ℋ2 : G2 → G1;

ℋ3 : {0, 1}* → Z*
𝑞 .

Set 𝑝𝑝 = (𝑞, 1𝜆,G1,G2, 𝑃, 𝑃
′, 𝑒̂,ℋ1,ℋ2,ℋ3, 𝑛,ℳ𝒮𝒫, 𝒞𝒮𝒫) to be the public parameters and master

secret key 𝑚𝑠𝑘 = 𝑠 ∈ Z*
𝑞 .

• Partial-SK-Extract(𝑝𝑝,𝑚𝑠𝑘, ID𝑒) → ID𝑒 : Given ID𝑒 ∈ {0, 1}* input as the identifier for epoch 𝑒, set
the partial secret key as D𝑒 = ((𝑠+ℋ1(ID𝑒))

−1 ·𝑃 ) ∈ G1. Secretly send ID𝑒 to the server over a secure
broadcast channel.3

• Set-Secret-Value(𝑝𝑝, 𝑒) $→ 𝑥𝑒 ∈ Z𝑞 : the data owner randomly selects set secret value 𝑥𝑒 for epoch e.
• Set-SK(𝑝𝑝,D𝑒, 𝑥𝑒)→ sk𝑒 : for epoch 𝑒 the data owner sets secret key sk𝑒 := (𝑥𝑒,D𝑒) ∈ (Z𝑞 ×G1).
• Set-PK(𝑝𝑝, 𝑥𝑒)→ pk𝑒 : for epoch 𝑒 the data owner computes the public key pk𝑒 := 𝑦𝑒 = 𝑔𝑥𝑒 ∈ G2.
• Set-Token(𝑝𝑝, 𝑠𝑘𝑒, 𝑥𝑒+1) → Δ𝑒+1 : Using 𝑠𝑘𝑒 := (𝑥𝑒, ID𝑒) and new epoch secret value 𝑥𝑒+1, we set

the token Δ′
𝑒+1 := (−𝑥𝑒 + 𝑥𝑒+1) ∈ Z𝑞; secret key 𝑠𝑘𝑒+1 = (𝑥𝑒+1, ID𝑒) and compute 𝑝𝑘𝑒+1 = 𝑔𝑥𝑒+1 .

Set Δ𝑒+1 := (Δ′
𝑒+1, 𝑝𝑘𝑒+1) ∈ (Z𝑞 ×G2).

• Enc(𝑝𝑝,𝑀, 𝑝𝑘𝑒, ID𝑒)
$→ {𝐶𝑒,⊥} : the data owner performs the following three steps.

2Importantly, hash function ℋ2 differs from the CL-PKE scheme in [6] to suit the needs of our construction. That is, we require the
homomorphic property from the KH-PRF to satisfy updatability, and ℋ2 is used in the definition of FDDH.

3Note that a server possessing partial secret key ID𝑒 and update token Δ𝑒+1 is incapable of decrypting the ciphertext without
corrupting either of the secret keys (𝑠𝑘𝑒+1,𝑠𝑘𝑒), which we assume impossible in our security model.
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1. Select uniform randomness 𝜎 $← Z*
𝑞 .

2. Set 𝑟 = ℋ3(< 𝑀𝜎||𝑝𝑘𝑒||ID𝑒 >) ∈ Z*
𝑞 .4

3. Set 𝐶𝑒 = (𝑐1𝑒, 𝑐
2
𝑒) = (𝑟ℋ1(ID𝑒)𝑃 + 𝑟𝑃 ′,𝑀𝜎 · FDDH(𝑥𝑒, 𝑔

𝑟)).

• Dec(𝑝𝑝, 𝐶𝑒, sk𝑒) → {𝑀,⊥} : parse ciphertext 𝐶𝑒 = (𝑐1𝑒, 𝑐
2
𝑒) and secret key 𝑠𝑘𝑒 = (𝑥𝑒, ID𝑒) and go

through the following steps,

1. Compute𝜔 = 𝑒̂(𝑐1𝑒, ID𝑒) such that𝜔 = 𝑒̂(𝑐1𝑒, ID𝑒) = 𝑒̂(𝑟ℋ1(ID𝑒)·𝑃+𝑟𝑠·𝑃, (𝑠+ℋ1(ID𝑒))
−1 ·𝑃 ) =

𝑒̂(𝑟(ℋ1(ID𝑒)+𝑠)·𝑃, (𝑠+ℋ1(ID𝑒))
−1·𝑃 )

(*)
= 𝑒̂(𝑃, 𝑃 )𝑟(ℋ1(ID𝑒)+𝑠)·(ℋ1(ID𝑒)+𝑠)−1

= 𝑔𝑟 where equality
(*) holds due to the bilinearity property of 𝑒̂ (Definition 6, Appendix B).

2. In order for the data owner to compute 𝑟 in the next step,𝑀𝜎 needs to be determined. Given step 1 in
which it is determined that 𝜔 = 𝑔𝑟 , the following can be computed 𝑐2𝑒 · FDDH(−𝑥𝑒, 𝜔) = 𝑀𝜎 ∈ G1.
Correctness holds as follows: 𝑐2𝑒 · FDDH(−𝑥𝑒, 𝜔) = 𝑀𝜎 · FDDH(𝑥𝑒, 𝑔

𝑟) · FDDH(−𝑥𝑒, 𝜔) = 𝑀𝜎 ·
FDDH(𝑥𝑒 − 𝑥𝑒, 𝑔

𝑟) = 𝑀𝜎 .5 Note that the data owner randomly chose 𝜎 during encryption, so
knowledge of this enables the computation of the message (𝑀𝜎)−𝜎 := 𝑀 .6

3. Use the epoch secret-key and public parameters (𝑠𝑘𝑒, 𝑝𝑝) in addition to the previous two steps to
compute 𝑟 = ℋ3(< 𝑀𝜎||𝑝𝑘𝑒||ID𝑒 >) ∈ Z*

𝑞 . Message 𝑀 is accepted iff 𝑐1𝑒 = 𝑟(ℋ1(ID𝑒)𝑃 + 𝑃 ′)
from the computed 𝑟 value , else failure (⊥) is output.

• Upd(𝑝𝑝, 𝐶𝑒,Δ𝑒+1) → {𝐶𝑒+1,⊥} : recall the update token and ciphertext Δ𝑒+1 := (Δ′
𝑒+1, 𝑝𝑘𝑒+1),

𝐶𝑒 = (𝑐1𝑒, 𝑐
2
𝑒) respectively. The server must perform the following steps:

1. Check 𝑝𝑘𝑞𝑒+1 = 1G2 . Abort the update and output failure symbol ⊥ if this does not hold. Note,
validity holds with an honestly generated epoch public key: 𝑝𝑘𝑞𝑒+1 = (𝑔𝑥𝑒+1)𝑞 = (𝑔𝑞)𝑥𝑒+1 =
(1G2)

𝑥𝑒+1 .
2. Compute 𝜔 = 𝑒̂(𝑐1𝑒, ID𝑒) = 𝑔𝑟 ∈ G2. See step 1 of the decryption algorithm for correctness. Set

𝑐1𝑒+1 := 𝑐1𝑒 .
3. Use step 2 and the given public key 𝑝𝑘𝑒+1 to compute 𝑐2𝑒+1 := 𝑐2𝑒 · FDDH(Δ

′
𝑒+1, 𝜔) and output

𝐶𝑒+1 = (𝑐1𝑒+1, 𝑐
2
𝑒+1). Consistency is upheld using 𝜔 as follows:

𝑐2𝑒+1 = 𝑐2𝑒 · FDDH(Δ
′
𝑒+1, 𝜔) = 𝑀𝜎 · FDDH(𝑥𝑒, 𝑔

𝑟) · FDDH(−𝑥𝑒 + 𝑥𝑒+1, 𝜔)

= 𝑀𝜎 · FDDH(𝑥𝑒 − 𝑥𝑒 + 𝑥𝑒+1, 𝑔
𝑟) = 𝑀𝜎 · FDDH(𝑥𝑒+1, 𝑔

𝑟).

We note that only the second component (𝑐2𝑒) of the ciphertext gets updated and the first component (𝑐1𝑒)
remains the same, in line with previous identity-based approaches used in CL-PKE literature [13, 14]. The first
component contains a secure signature of an identifier for the epoch in which the ciphertext was created, and
is crucial for computing the value 𝜔 in the decryption and update process. The fact that 𝑐1𝑒 remains unchanged
is the reason why we do not achieve the stronger PKUE notion of full ciphertext unlinkability, and instead, our
construction only achieves encrypted and updated ciphertext indistinguishability.

Security Results Recall, our security framework presented in Section 3 modelled the first notion of ciphertext
indistinguishability in certificateless public key updatable schemes. Intuitively, this notion captures the in-
distinguishability of fresh and updated encryptions. Specifically, we encapsulate security against replayable
chosen-ciphertext attacks from an adaptive adversary (CLUE-IND-RCCA). We defined our concrete CLUE

4Let < · > denote an encoding of the bracket contents to a string {0, 1}*.
5To see the penultimate equation differently, given the definition of the KH-PRF: FDDH(𝑥𝑒 − 𝑥𝑒, 𝑔

𝑟) = ℋ2(𝑔
𝑟)𝑥𝑒−𝑥𝑒 = ℋ2(𝑔

𝑟)0 =
idG1 .

6The technique of using the corresponding randomness for a given epoch to decrypt the ciphertext is utilised in various UE schemes
including [10, 12].
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Efficiency
Encryption Decryption Update

Our Construction 1 multi-exp (G1), 1
exp (G2)

1 pairing, 1 multi-exp
(G1), 1 exp (G2)

1 pairing, 1 exp
(G1,G2)

[6] - NewFullCLE 1 multi-exp (G1), 2
exp (G2)

1 pairing, 1 multi-exp
(G1), 1 exp (G2)

N/A

[15] - CLPKE (No
pairings)

3 exp in group G 3 exp in group G N/A

[16] - FullCL-PKE 1 pairing, 2 exp (G1),
1 exp (G2)

1 pairing, 2 exp (G1) N/A

[9] - CL-PRE 2 pairings, 3 exp (G1),
1 exp (G2)

1 pairing, 1 exp (G1),
2 exp (G2)

6 pairings

Table 1
Efficiency comparisons for algorithms (Enc,Dec,Upd) of our construction against the literature.

scheme (ΠCLUE) in Section 4 to illustrate the existence of a CLUE construction satisfying ciphertext indistin-
guishability, a sketch of which is provided in Appendix C. Note, to demonstrate provable security we make
use of a modular proof technique first defined in [8] in which we reduce security to an isolated epoch of our
CLUE scheme.

4.1. Efficiency

In Table 1 we make explicit the cost of encryption, decryption and ciphertext updates of our CLUE scheme
(ΠCLUE). To be precise, the encryption algorithm only has one exponentiation in both G2 and a multi-
exponentiation in G1. Decryption requires the computation of a pairing, one exponentiation in G2 and a
multi-exponentiation in G1. In addition, the token generation algorithm Set-Token requires one exponentiation
in G2; the Upd algorithm requires the computation of a pairing and one exponentiation in both G1 and G2

respectively. The size of an updated ciphertext in ΠCLUE is the same as from encryption, that is, 2|G1|. One
can see that running the ciphertext update algorithm is more efficient than decryption, albeit both require a
pairing computation.

Nevertheless, the encryption in our construction has comparable efficiency to a pairing-free CL-PKE scheme
[15]. The underlying CL-PKE scheme in ΠCLUE from Section 4 slightly improves upon the efficiency of the
CL-PKE scheme given in [6] as one less exponentiation is G2 is required for encryption.

Additionally, we observe that the data owner may pre-compute and store (ℋ1(ID𝑒)𝑃 + 𝑃 ′), which is part
of the first component of the ciphertext (𝑐1), so that validation of the ciphertext in the decryption process
only requires a scalar multiplication in G1. This pre-computation also speeds up the encryption operation
for the data owner if they encrypt several messages using the same public-key [6].7 We note the following
observations made by the authors of [6]. With pre-computation, our construction is comparably efficient to
the pairing-based CL-PKE scheme from [16]. However, with the removal of pre-computation both the CL-PKE
scheme from [6], and by extension in our construction, are more efficient than the scheme from [16] due to
the fact encryption has no pairing computation.

Importantly, our final comparison of efficiency is against the most similar updatable CL-PKE scheme that satis-
fies CL-PKE-IND-RCCA security. Namely, the CL-PRE scheme proposed in [9] requires three exponentiations

7In the case of ΠCLUE, encrypting several messages under the same public-key translates to encryption of messages in a single epoch
of the scheme.
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in G2 for the re-encryption key; the computation of six pairings in their ciphertext re-encryption process
and the re-encrypted ciphertext is of size (|G2|+ 𝑙) for 𝑙 ∈ N which differs in size compared to a ciphertext
generated from fresh encryption. In comparison to [9], one can therefore see that our construction ΠCLUE in
Section 4 is more efficient with regards to the update feature. In summary, Table 1 provides explicit efficiency
details for the works mentioned, and in the Table, we detail the cost of encryption, decryption and update
algorithms (if applicable) of the aforementioned schemes.

Conclusion In our first contribution of this paper, we formally defined a novel certificateless public-key
updatable encryption primitive CLUE to mitigate the risk of a malicious key generation centre, when con-
sidering applications of a PKUE primitive in a public key infrastructure. In our second contribution, we
provided a security framework to model the first notion of ciphertext indistinguishability in certificateless
public key updatable schemes. In particular, security against replayable chosen-ciphertext attacks from an
adaptive adversary. Our third contribution was to propose a concrete CLUE scheme (ΠCLUE) derived from
a modified pairing-based CL-PKE scheme [6], which we used as the underlying PKE scheme, and KH-PRFs
applied to support the necessary update mechanism in CLUE. In doing so, we were able to demonstrate an
efficiency improvement compared to other certificateless updatable schemes and provide a proof sketch that
our construction satisfies ciphertext indistinguishability.
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A. Related Work

Updatable encryption (UE) schemes [12, 17, 8, 18] are traditionally designed in the symmetric setting, but recent
focus has turned to formalise various public-key encryption primitives imbued with an update functionality
[19, 1, 20]. In this paper, we are interested in the PKUE primitive defined by the authors of [1]. Both UE and
PKUE can be viewed through two lenses in the literature: Ciphertext-dependent UE schemes [10, 11, 21, 22] and
ciphertext-independent UE schemes [12, 8, 17, 23, 24, 1]. The former requires the data owner to produce a token
for each ciphertext, therefore, it is computationally expensive and inefficient for the data owner. Additionally,
generating individual tokens translates to the storage of epoch keys over a long time, ultimately defeating the
purpose of the UE primitive. Conversely, the latter strain requires the data owner to generate a single update
token which enables the server to sequentially update ciphertexts using a token derived from the current and
new epoch keys alone. Observe that the CLUE primitive we introduce (Definition 1, Section 2) is designed in
the ciphertext-independent setting.

Proxy re-encryption (PRE), first introduced by [25], is a primitive used for ciphertext decryption delegation
in which a proxy server generates a re-encryption key used to rotate the cryptographic key a ciphertext is
encrypted by from one user to another. Specific to this paper, certificateless-PRE (CL-PRE) [26, 27, 28, 9] is
a primitive introduced following the advent of identity-based PRE [2] to resolve the issues of key escrow
and user revocation simultaneously. The distinctions between CLUE and CL-PRE directly follow from the
fundamental differences of the underlying updateable primitive ((PK)UE and PRE respectively). Comparisons
between the two have been made in the works of [29, 30, 12, 8]. We highlight the most prevalent difference is
that PRE rotates keys to delegate ciphertext decryption, whereas (PK)UE updates ciphertexts to a new period.
Further, the security framework of the two primitives differs. In particular, PRE does not typically capture
information an adversary can infer from the corruption of the re-encryption key, nor does it consider the
notion of ciphertext unlinkability usually captured in UE security modelling.

B. Definitions and Assumptions

In this Section, we explain the intuition and assumptions required such that ciphertext indistinguishability is
achieved for construction ΠCLUE from Section 4. We state further definitions and assumptions are required for
security analysis, given in Section C, and note that proofs of the lemmas are omitted due to lack of space. To
start, the first definition presented is used when defining the pairing map used in the construction ΠCLUE.

Definition 6 (Bilinear Maps). Let additive groups G1,G2 have prime order 𝑞, such that G1 is generated by
𝑃 , G2 is generated by 𝑄, and multiplicative group G𝑇 is also of prime order 𝑞. A pairing is a bilinear map
𝑒̂ : G1 ×G2 → G𝑇 with the following properties,

1. Bilinearity: ∀𝑎, 𝑏 ∈ F*
𝑞 ,∀𝑃 ∈ G1, 𝑄 ∈ G2 : 𝑒̂(𝑎𝑃, 𝑏𝑄) = 𝑒̂(𝑃,𝑄)𝑎𝑏;

2. Non-Degeneracy: 𝑒̂ ̸= 1, that is, the mapping is not the identity map;
3. Computability: there exists an efficient algorithm to determine the output of map 𝑒̂.

Definition 6 can be classified into three types, in line with [31]:

• I : If G1 = G2. This is known as a symmetric bilinear map.
• II : If G1 ̸= G2 and there exists an efficiently computable homomorphism 𝜑 : G2 → G1.
• III : If G1 ̸= G2 and there does not exist an efficiently computable homomorphism like 𝜑.

Next we introduce the p-Bilinear Diffie Hellman Inversion (p-BDHI) problem, which is used to prove the
security of our construction in Section 4. The p-BDHI problem is stated as follows:
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Definition 7 (p-BDHI Problem). Given map 𝑒̂ defined as in Definition 6 over groups (G1,G2,G𝑇 ) and given
{𝑃, 𝛼𝑃, 𝛼2𝑃, . . . , 𝛼𝑝𝑃} ∈ G𝑝+1

1 , the p-BDHI problem is considered hard if it is computationally intractable to
compute 𝑒̂(𝑃, 𝑃 )1/𝛼 ∈ G2 in polynomial time.

Key-Homomorphic PRFs The update feature in CLUE is attained using a collision-resistant homomorphic
hash function in the encryption process, which we model as a random oracle. For our construction, we
assume the hash functionℋ2 : G2 → G1 is homomorphic, and we consider building the hash function from a
key-homomorphic PRF.

Definition 8 (Key-Homomorphic PRF [10]). Consider an efficiently computable function F : 𝒦 × 𝒳 → 𝒴
such that (𝒦,⊕) and (𝒴,⊗) are groups. Then (F,⊕,⊗) is a key-homomorphic PRF if the following properties
hold,

1. F is a secure pseudorandom function.
2. For every 𝑘1, 𝑘2 ∈ 𝒦 and every 𝑥 ∈ 𝒳 : F(𝑘1, 𝑥)⊗ F(𝑘2, 𝑥) = F((𝑘1 ⊕ 𝑘2), 𝑥).

Lemma 1. Given the KH-PRF used in ΠCLUE defined as FDDH : Z𝑞 ×G2 → G1 with 𝒦 = (Z𝑞,⊕), 𝒳 = (G2,⊗)
the additive and multiplicative groups of prime order q respectively such that (G1,G2) are cyclic (multiplicative)
groups of prime order 𝑞, evaluation of the KH-PRF is FDDH(𝑘, 𝑥) = ℋ2(𝑥)

𝑘. Further, FDDH(𝑘1 + 𝑘2, 𝑥) =
FDDH(𝑘1, 𝑥) · FDDH(𝑘1, 𝑥). That is, FDDH satisfies Definition 8. Then FDDH is a secure KH-PRF in the random oracle
model assuming the hardness of the decisional Diffie-Hellman problem in G1.

Updatable Encryption Assumptions Construction CLUE is designed with deterministic ciphertext updates,
therefore, the security ofΠCLUE assumes the properties of randomness-preserving re-encryption; the underlying
CL-PKE scheme ΠPKE is tidy and simulatable token generation. The formal definitions of these properties
are utilised in the security proof of Theorem 1 to argue that the indistinguishability of fresh and updated
ciphertexts is satisfied. We present them below. Due to lack of space, we omit the proofs of Lemmas and defer
the reader to the full version of this paper.

Definition 9 (Randomness-Preserving Re-Encryption [8]).

Given the updatable scheme CLUE is designed for deterministic updates, an updated ciphertext is
randomness-preserving assuming CLUE encrypts with uniformly chosen randomness (Enc(𝑝𝑝,𝑀, 𝑝𝑘𝑒, ID𝑒) and

Enc(𝑝𝑝,𝑀, 𝑝𝑘𝑒, ID𝑒; 𝑟) for uniformly chosen 𝑟 are identically distributed). If for all (𝑝𝑝,𝑚𝑠𝑘)
$← Setup(1𝜆);

for all old and new epoch key pairs 𝑘𝑒 := (𝑝𝑘𝑒, 𝑠𝑘𝑒), 𝑘𝑒+1 := (𝑝𝑘𝑒+1, 𝑠𝑘𝑒+1) generated from running the
Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK algorithms in epoch 𝑒 and (𝑒 + 1) respectively; for all
valid ciphertexts 𝐶 ∈ 𝒞𝒮𝒫 and for all tokens Δ𝑒+1←Set-Token(𝑝𝑝, (𝑝𝑘𝑒, 𝑠𝑘𝑒)), we then have the following:

Enc(𝑝𝑝,Dec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒), 𝑝𝑘𝑒+1, ID𝑒) = Upd(𝑝𝑝, 𝐶𝑒,Δ𝑒+1).

Lemma 2. The scheme ΠCLUE satisfies randomness preserving re-encryption given in Definition 9.

Definition 10 (Randomness-Recoverable Tidy Encryption Scheme). A public-key encryption scheme is
called randomness-recoverable if there is an associated efficient deterministic algorithm RDec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒)
for epoch 𝑒 such that ∀(𝑝𝑘𝑒, 𝑠𝑘𝑒),𝑀, 𝑟 :RDec(𝑝𝑝, 𝑠𝑘𝑒, Enc(𝑝𝑝, 𝑝𝑘𝑒,𝑀 ; 𝑟)) = (𝑀, 𝑟). We call a randomness-
recoverable public-key encryption scheme tidy if ∀(𝑝𝑘𝑒, 𝑠𝑘𝑒, 𝐶𝑒) :

RDec(𝑝𝑝, 𝐶𝑒, 𝑠𝑘𝑒) = (𝑀, 𝑟) =⇒ Enc(𝑝𝑝, 𝑝𝑘𝑒,𝑀 ; 𝑟) = 𝐶𝑒.
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Lemma 3. The CL-PKE scheme ΠPKE implicit in ΠCLUE satisfies the randomness recoverable tidy encryption
property given in Definition 10.

Assumption 1 (Reversible Update Tokens). Update token Δ−1 is called a reverse token of Δ if for ev-
ery pair of epoch keys (𝑘𝑒old = (𝑝𝑘𝑒old , 𝑠𝑘𝑒old), 𝑘𝑒𝑛𝑒𝑤 = (𝑝𝑘𝑒new , 𝑠𝑘𝑒new)) in key-space 𝒦𝒮𝒫 such that Δ ∈
supp(Set-Token(𝑝𝑝, 𝑠𝑘𝑒old , 𝑥𝑒new)), we have reversible token Δ−1 ∈ supp(Set-Token(𝑝𝑝, 𝑠𝑘𝑒new , 𝑥𝑒old).

Definition 11 (Simulatable Token Generation). The CLUE scheme ΠCLUE defined in Section 4 has simulat-
able token generation if the following properties hold:

1. There exists a PPT algorithm denoted Sim-Set-Token(𝑝𝑝)which samples a pair of update tokens (Δ,Δ−1)
of the token and reverse token respectively.

2. For arbitrary (fixed) 𝑘𝑒old := (𝑝𝑘𝑒old , 𝑠𝑘𝑒old) which is generated from running the
Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK algorithms, the following token (Δ) distri-
butions are the same:

• Distribution induced by running (Δ, ·) $← Sim-Set-Token(𝑝𝑝);

• For epoch key 𝑘𝑒new := (𝑝𝑘𝑒new , 𝑠𝑘𝑒new) the distribution is induced by running (Δ, ·) $←
Set-Token(𝑝𝑝, 𝑠𝑘𝑒old , 𝑥𝑒new).

Lemma 4. The CLUE schemeΠCLUE defined in Section 4 satisfies simulatable token and reversible token generation
given in Definition 11.

C. Security Analysis

In this Section, we provide a sketch analysis of security for our construction ΠCLUE. Due to lack of space, we
provide an overview of our proof, deferring the reader to the full version of this paper for a detailed proof of
correctness and security. Observe that when proving CLUE-IND-RCCA security of ΠCLUE to achieve ciphertext
indistinguishability, we assume several properties regarding the underlying building blocks. This proof method
follows directly from [8] who proposed a generic transformation demonstrating that it is sufficient to consider
the underlying encryption and key-rotation capabilities of a scheme (almost) separately and therefore reduce
proving to the standard-setting. Now, we present a detailed statement of security.

Theorem 1. Given ΠCLUE is a deterministic updatable encryption scheme satisfying randomness-preserving
tidy updates (Lemma 2); simulatable token generations (Lemma 4) and the underlying certificateless encryption
scheme ΠPKE satisfies CLUE-IND-RCCA in an isolated epoch, then the construction ΠCLUE satisfies security notion
CLUE-IND-RCCA assuming the intractability of the p-BDHI problem formalised in Definition 7 (Appendix B).

Sketch Proof. We take a two-step modular approach in proving Theorem 1, adapting the techniques of [8] to
suit our security model, such that we can reduce the proof of security from the updatable setting (CLUE) to
the standard setting. That is, we provide a proof reduction to the security of the underlying CL-PKE scheme
ΠPKE := (Setup,Partial-SK-Extract, Set-Secret-Value, Set-SK, Set-PK, Enc,Dec) of construction ΠCLUE. The
first step of the proof is used to prove that ΠPKE satisfies a security notion akin to CLUE-IND-RCCA for an
isolated epoch of ΠCLUE, labelled CL-PKE-IND-RCCA (full details are provided in the full version of this paper).
Again, security is against the adaptive adversary 𝒜 = (𝒜I,𝒜II) defined in Section 3. Briefly, we are able to
prove this notion is satisfied by observing that the authors of [6] demonstrated that ΠPKE satisfies the strictly
stronger notion of CL-PKE-IND-CCA security against adversary 𝒜 in the random oracle model assuming the
hardness of Definition 7. Moreover, we prove this security notion holds for ΠPKE following the implication
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[32, 9] that satisfaction of CCA security implies that the same construction will also satisfy CL-PKE-IND-RCCA
security.

In the second step of the proof we look at proving the security of the updatable construction ΠCLUE over multiple
epochs. In more detail, this part of the proof sees a series of hybrid games H𝑙 built for epochs 𝑒𝑙 ∈ {0, . . . , 𝑒̂+1}
of ΠCLUE where 𝑒̂ is the maximum number of epochs in which an adversary 𝒜 can query oracles (Figure 1).
Suppose we have adversary 𝒜 against ΠCLUE, defined in Section 3. We use 𝒜 to construct an adversary ℬ𝑙
against the standard CL-PKE construction ΠPKE [6] which is proven CL-PKE-IND-RCCA secure in the first
part of our proof. Constructing adversaries in this way enables us to demonstrate the indistinguishability
of games H𝑙−1,H𝑙 for the epochs of the CLUE scheme 𝑒𝑙 ∈ {0, . . . , 𝑒̂+ 1}. Thus, updatable security can be
reduced to the security of ΠPKE in an isolated epoch of the CLUE scheme.
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