
Models and Issues on Probabilistic Data
Streams with Bayesian Networks

著者 Kawashima Hideyuki, Sato Ryo, Kitagawa
Hiroyuki

内容記述 2008 International Symposium on Applications
and the Internet : Turku,Finland ; July
28-August 01, 2008

journal or
publication title

International Symposium on Applications and
the Internet

page range 157-160
year 2008
URL http://hdl.handle.net/2241/106174

doi: 10.1109/SAINT.2008.108

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tsukuba Repository

https://core.ac.uk/display/56645458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Models and Issues on Probabilistic Data Streams with Bayesian Networks

Hideyuki Kawashima
Graduate School of Systems
and Information Engineering

University of Tsukuba
Tennodai 1–1–1, Tsukuba,
Ibaraki, 305–8573 Japan

kawasima@cs.tsukuba.ac.jp

Ryo Sato
College of Information

Sciences, University of Tsukuba
Tennodai 1–1–1, Tsukuba,
Ibaraki, 305–8573 Japan

punisiro@kde.cs.tsukuba.ac.jp

Hiroyuki Kitagawa
Graduate School of Systems
and Information Engineering

University of Tsukuba
Tennodai 1–1–1, Tsukuba,
Ibaraki, 305–8573 Japan

kitagawa@cs.tsukuba.ac.jp

Abstract

This paper proposes the integration of probabilistic data
streams and relational database by using Bayesian net-
works that is one of the most famous techniques for express-
ing uncertain contexts. A Baysian network is expressed by
the graphical model while relational data are expressed by
relation. To integrate them we make the relational model
as the unified model for its simplicity. A Bayesian network
is modeled as an abstract data type in an object relational
database, and we define signatures to extract a probabilis-
tic relation from a Bayesian network. We provide a scheme
to integrate a probabilistic relation and normal relations.
To allow continual queries over streams for a Bayesian net-
work, we introduce a new concept, lifespan.

1 Introduction

The progress of sensor devices is dramatically rapid.
It includes a variety of sensor devices such as network
cameras, wireless sensor nodes and RFID readers. These
devices generate massive sensor data streams, and many
stream processing engines (SPE) have been developed to
process them [1, 2, 7]. Operations on these SPEs are re-
lational operators (selection, projection, join, aggregation,
etc) and domain specific operators such as FFT[7] or Kleene
Plus[6].

Simply stated, all the usual operators reduces the amount
of data or translate data expression. They do not increase
the amount of data. Our question is, How can we enrich
stream data processing if the amount of data can be in-
creased ? When a SPE receives an event, possible events
can be reasoned from it, and the result of reasoning can be
used for the estimation or anticipation of the physical world.
We believe that by processing the result of reasoning by us-

ing conventional data processing techniques, a sophisticated
reasoning system can be presented.

There are many kinds of reasoning techniques such as
Bayesian network, hidden Markov model, or Kalman fil-
ter. As a first step, we focus on Bayesian network which
is widely accepted[11].in this research. In the rest of this
paper, A Bayesian Network is notated as BN. A BN has
a graph structure and each node in the graph can express
an event as a random variable. And causations between
each event are expressed with arrows. When an event oc-
currence is arrived on a BN, the probability of the event
is turned to 100%, and then on the all other nodes, proba-
bilities are updated through a probability propagation pro-
cedure1 A BN has many applications and its examples are
context estimation[9] and spam filter[8].

When applying a BN for event streams generated from
sensor data streams by using an event detector, the follow-
ing two problems arise.
(P1) Lack of Data Processing: Usually the result of rea-
soning on a BN is integrated with other data, and then they
are often selected, projected, joined, and aggregated to un-
derstand the contexts of the physical world. However, un-
fortunately, the processing are separately conducted on each
application. One of the reasons is any integration infrastruc-
tures are not proposed yet.

(P2) Lack of Multiple Event Detection Concept on
BN: A data stream has an infinite length of tuples and it con-
tinually arrives a system[4]. Thus in case a data stream is
used for a BN, the BN should continually detect an event oc-
currence and conduct a probability propagation procedure.
However, in the physical world, often multiple events occur
at the same time because the physical world has a spatial
spread and events occur in parallel. Thus, a mechanism to
detect multiple events occurred in the same time, should
be incorporated into a BN when a BN processes an event

1For probability propagation procedures, please see [10]
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stream. Unfortunately, this mechanism is not developed to
the best of our knowledge.

Then, this paper presents the following two contributions
to cope with the above two problems:

(C1) Integration of a BN model and a Relational
Model: As the first contribution, this paper proposes the
object relational data model to take the BN into the rela-
tional data model. This integrates probabilistic data streams
and relational data, and it enables to manipulate them uni-
formly and declaratively though SQL based language.

(C2) Lifespan: As the second contribution, this paper
introduces the concept of occurring duration for each event
in a BN. For each event, a user should set a lifespan which
expresses the duration of occurrence of the event. After de-
tecting the occurrence of an event, the event is regarded
to be occurring until its lifespan passes. And it is turned
not to be occurring after the lifespan. When a query for
BN is evaluated, the occurrences of events in it are decided
by the lifespans. Though this is intuitive and simple exten-
sion, nobody has paid attention on it. A temporal Bayesian
network[3] is related to this concept, it is not the answer to
this problem. The detail is described in Section 3.

The rest of this paper is organized as follows. Section 2
presents two contributions for the two problems. They are
integration of BN with relational database, and incorpora-
tion of lifespan for a BN. Section 3 describes related work.
Finally Section 4 concludes this paper and indicates future
work issues.

2 Models and Issues

This section proposes approaches for two problems. Ap-
proaches for (P1) and (P2) are proposed in Section 2.1.2 and
Section 2.2 respectively after reviewing BN.

2.1 Integration of Data Models

2.1.1 Review of BN

A BN is widely used to express uncertain events[11]. It has
a directed acyclic graphical (DAG) structure and each node
expresses an event by a random variable. Events are con-
nected based on causal relationships. Each node has condi-
tional probability table (CPT) and it is used update propa-
gation of probabilities when event occurrences are detected.

When an event occurs, the event’s probability is set to
1.0, and the change of probability is propagated to other
nodes. To execute update propagation, two types of algo-
rithms are widely known. They are strict reasoning algo-
rithm and approximation reasoning algorithm that acceler-
ates processing by sacrificing accuracy. This paper focuses
on strict reasoning method referred to as “Pearl’s Message
Passing Algorithm”[10]. The algorithm spreads messages
in all the nodes when an event occurs.

2.1.2 Abstract Data Type for BN

This section proposes an approach for (P1) Lack of Data
Processing on Bayesian Networks.

Since BN has a graphical model which is different from
relational data model, the data cannot be directly processed
in relational data model. To integrate BN and relational
database, this paper adopts an object relational data model
of which object stores BN. The object is an abstract data
type (ADT) and it is denoted as BN-ADT. Though BN-
ADT manages BN in a relational database, the data man-
aged in BN-ADT and data in relational database cannot be
integrated because of different data models. To cope with it,
this paper introduces signatures that extract data from BN-
ADT and pack it into tuples. Since tuples are residents in
relational database, then data from BN and from relational
database are integrated.

Signatures Though we have many signatures, we intro-
duce only two primitive signatures here because of space
limitation.

getNode(Id or Ev or Pr, Sign, Value): The getNode
signature searches nodes which match search conditions
and returns them with context identifier which identifies the
BN object searched by getNode. The getNode require three
search conditions. Id denotes the identifier of a node. Ev
denotes the event name of a node. Pr denotes probability of
a node. First, as a search condition, either identifier or event
name or probability should be chosen.

Second, a sign should be chosen from {<, ≤, =, !=, >,
≥}. Third, value should be given.

makeTuple(): The makeTuple signature extracts infor-
mation from BN and pack it into tuple. That is, it translates
data from BN to relation. Each generated tuple should have
four attributes and two of them are from BN, and one is
from a tuple which includes the BN. The three from BN are
Id, Ev and Pr. The one from a tuple is: a primary key which
denotes the identifier of the tuple which includes the BN.

Other Signature: Other signature includes child, de-
scendant, parent, ancestor, sibling. The details are omit-
ted because of space limitation.

2.2 Lifespan

This section proposes an approach for (P2) Lack of
Window Concept on BN.

As described in Section 1, usual BN does not have the
concept of continual event stream processing and thus it
cannot deal with unbounded event streams. We propose
lifespan concept which extends BN to deal with streams.
The lifespan is the duration of event occurrence. Each
event, which is expressed as a node in BN, should be given
a lifespan by user. When a query is evaluated, the evalua-
tion process firstly detects which events are occurred at the
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moment. The detection is conducted by checking the last
occurred time and the lifespan for each event. If the de-
tection time is overlapped with the lifespan of a event, the
evaluation process detects the event as occurring. Finally,
the probabilities for events detected as occurred are set to
100%, and then update propagation process is invoked in
BN. For example, suppose two events A and B occur at time
t1 and t2 with 2 length lifespans respectively. If a query is
evaluated at t0, t2, t4, then the occurrence of, nothing, A
and B, B are detected respectively for each time point.

2.3 Operators

BN-Rel inputs event streams and outputs probabilis-
tic event streams. To deal with it, we should define
model translation operators for four kinds of data models:
stream(S), relation(R), probabilistic stream(PR) and proba-
bilistic stream(PS). Following the Stanford STREAM team
who defined model translation operators for relation and
stream[4], we define operators for S, R, PR and PS here.

We adopt 7 kinds of model translation operators from 16
combinations. The description of operators are as follows.

1. S-to-R

S-to-R cuts off a limited number of tuples from un-
bounded streams. This includes the usual window op-
erator.

2. R-to-PR

R-to-PR translates relation to probabilistic relation
which forms possible worlds[5]. Since probability is
the first class citizen (native and mandatory attribute)
in probabilistic database, 100 % probability is attached
to each tuple.

3. PR-to-R

PR-to-R translates probabilistic relation to relation,
and probability is changed to editable attribute by
usual relational operators.

4. R-to-R

R-to-R includes relational operators such as σ, π, ��
, δ, α.

5. PR-to-PR

PR-to-PR executes relational operators in possible
worlds[5]. The execution is same as (4) except for that
the probability of a tuple is computed by the frame-
work of probabilistic data model.

6. PR-to-PS

PR-to-PS outputs the result of query evaluations to the
outside of BN-Rel as probabilistic streams.

MASTER 10sec
SELECT bn

.getNode(Ev=Fire)

.makeTuple()
FROM tableR
WHERE tableR.Room=7

Figure 1. Query Example

7. R-to-S

R-to-S outputs the result of query evaluations to the
outside of BN-Rel as normal streams.

Readers may wonder why other combinations do not ex-
ist. It is because this system does not receive PS and does
not generate PS internally.

2.4 Query Language

Our model is object relational data model and thus we
design query language based on SQL. An example query of
our language is shown in Figure 1. The query is processes as
follows. Firstly, the query should choose a relation named
“tableR” and then a tuple of which “Room = 7” is selected
from the relation. Then an attribute “bn” is projected from
the tuple. Then, a node of which “Ev = Fire” is chosen by
the getNode signature, and finally the data is packed into
a tuple by makeTuple. This process is conducted every 10
seconds as MASTER clause specifies.

3 Related Work

3.1 Stream Processing

From the viewpoint of stream processing, the tech-
nology is rapidly progressing. Though the first genera-
tion and second generation stream processing engines[1,
2] Ignored concrete applications, the third generation
SPEs are motivated by specific application such as event
stream processing[6], signal processing[7] and audio-visual
sensors[12].

However, most of the work still ignores probabilistic rea-
soning. Even uncertainty which is inherent to the physical
world, is not yet full attacked. Therefore we argue that this
paper is novel on that it deals with probabilistic reasoning
in the viewpoint of stream processing.

3.2 Temporal Bayesian Network

This paper presented the “lifespan” concept to detect
multiple event occurrences in a Bayesian network. As an
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extension of Bayesian network for time domain, temporal
Bayesian network of events (TBNE) is already proposed[3].
From [3], a TBNE is defined as follows. “A TBNE is a
Bayesian network in which each node represents an event
or state change of a variable, and an arc corresponds to a
causal-temporal relation. A temporal node represents a pos-
sible state change of a variable and the time when it hap-
pens. Each value of a temporal node is defined by an or-
dered pair: the value of the variable to which it changes and
the time interval of its occurrence. Time intervals represent
relative times between the parent events and the correspond-
ing state change.”

The conceptual difference between the time interval in
TBNE and the lifespan is the existence of causal-temporal
relationship. The causal-temporal relationship expresses
the relationship between nodes in a Bayesian network in
a causal-temporal aspect. Plus, the purpose of TBNE is to
conduct effective reasoning for causal-temporal events in a
Bayesian network. While on the other hand, lifespan does
not express the relationship between nodes in a Bayesian
network. Each lifespan just expresses how long an event
occurs for each event. Plus, the purpose of lifespan is to de-
tect multiple events for a query. Thus, TBNE and lifespan
are independent.

4 Conclusions and Future Work Issues

4.1 Conclusions

The purpose of this paper was the development of a tech-
nology that supports a system which continuously monitors
the physical world event streams. To achieve the purpose,
we formulated three problems. They were (1) integration
of BN and relational data and (2) providing a mechanism to
cope with unbounded event streams.

As for (1), we proposed a new object relational data
model in which BN is stored and probabilistic values are
packed into a relation. As for (2), we proposed a concept
of lifespan, and clarified query evaluations to BN for un-
bounded event streams.

4.2 Future Work Issues

This paper described a model for the integration of re-
lational database and reasoning. This field includes many
research challenges. They include the following.

1. Full implementation of a real DBMS which integrates
reasoning and relational data.

2. Considering efficient probability propagation algo-
rithms on streaming environment.

3. Query optimization techniques over probabilistic rea-
soning and relational operators.

4. Establishment of multiple query optimization algo-
rithms.

5. Considering other reasoning algorithms such as HMM
and Kalman filter.

6. Establishment of parallel distributed algorithms for in
network Query/reasoning processing.
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