
Multi-Valued Bounded Model Checking

著者 Andrade Jefferson Oliveira, Yonezawa Takuo
journal or
publication title

2006年度CSテクニカルレポート・システム開発型研
究プロジェクト特集号

year 2006
URL http://hdl.handle.net/2241/104458

Multi-Valued Bounded Model Checking

Jefferson Oliveira Andrade

y

and Takuo Yonezawa

y

This article describes the implementation of the �rst (to our best knowledge) multi-valued

model-checker which is based on bounded model checking. Reasons to support the originality

of this work and foreseen impacts are given bellow.

1. Introduction

Software speci�cation is a challenging task.

It is not uncommon to be faced with contra-

dictory speci�cations or with uncertainty in re-

quirements. Current speci�cation techniques

and tools lack the proper treatment of these

problems. It would be highly desirable to have

tools that allow both (1) more precise creation

of systems models (system requirements), and

(2) to do more powerful reasoning about the

modeled systems (validate speci�cations). As

a �rst step toward this direction we propose a

multi-valued bounded model-checking tool.

We want to be able to create models with in-

corporate uncertainty and disagreement. This

is not possibly done in a natural way using clas-

sic 2-valued logics. That leads us to propose

the use of multi-valued logics

22),23)

, to express

both or model (requirements) and the proper-

ties (speci�cations) that we want to check for

these models.

Model checking (MC) is a successful tech-

nique for formal veri�cation of systems having

been successfully applied to many domains, like

hardware design veri�cation, protocol veri�ca-

tion, robotic control veri�cation, etc.

2),19),26)

Some organizations that make use of it include

Intel, Microsoft, NASA and Lucent Technolo-

gies.

In early 90's a variation of MC called Sym-

bolic Model Checking (SMC) was proposed.

27)

SMC was based on Binary Decision Diagram

(BDD) manipulation and has allowed the veri-

�cation of systems with more than 10

20

states.

Unfortunately the amount of memory required

to store and manipulate BDDs can grow ex-

ponentially on the number of state variables.

In late 90's a variation of MC called Bounded

Model Checking (BMC), based on boolean sat-

y Department of Computer Science, University of

Tsukuba

is�ability (SAT) checkers, was proposed.

3),4)

SAT procedures do not su�er from the space

explosion problem.

This report describes our �rst attempt to cre-

ate a tool that combines the expressive power

of many-valued logics and the e�ciency of

Bounded Model Checking. The rest of the

report is organized as follows. Section 2 de-

scribes further motivations for this work. Sec-

tion 3 presents related works. Section 4 de�nes

the syntax and semantics of standard 2-valued

CTL. Section 5 introduces briey Bounded

Model Checking. Section 6 expands the top-

ics of section 4 and 5 to the multi-valued case.

Section 7 describes our prototype implementa-

tion. The report ends with our conclusions and

states future directions for this work.

2. Motivation

Large software systems development is still a

highly error prone process. According to NIST,

errors in software systems cost about 60 billions

of dollars every year, only in United States.

33)

These errors are due, basically, to two causes:

(1) The system is not correct, i.e., the sys-

tem implementation does not satisfy the

speci�cation.

(2) The system is not adequate, i.e., the re-

quirements had not been correctly under-

stood and/or represented by the software

engineer. One can say that the model

created by the engineer incorrectly re-

ects the system.

This has leaded to a substantial grow in the

interest in formal methods in the last few years.

Formal methods is a collection of mathematical

techniques for specifying and verifying complex

hardware and software systems.

As said, a very common problem on specify-

ing software systems is the fact that usually we

�nd uncertainty or disagreement about the re-

quirements; or even worse, we �nd requirements

that are contradictory. It would surely be very

1

2

useful for a software engineer in this situation to

be able to include this uncertainty on the sys-

tem speci�cation and also create contradictory

models and have automatic or semi-automatic

ways to re�ne these contradictory models.

We believe that a tool that allows the creation

of models that incorporate uncertainty and dis-

agreement, and also allows the veri�cation of

these models against requirements will be ex-

tremely useful by the average software engineer.

3. Related work

In recent years a number of researchers has

shown interest in the problem of multi-valued

model checking, and many distinct approaches

has been proposed. The translation of a 3-

valued model checking problem for CTL* and

the model �-calculus to a standard model

checking problem was de�ned by Bruns and

Godefroid

5),6)

. A restricted version of the prob-

lem with a 2-valued transition relation in the

model was considered.

Another approach was adopted by Chechik

et al. A new model checking algorithm for a

multi-valued version of CTL was de�ned ex-

ploiting mv-BDD's

12)

for unrestricted interpre-

tations and MTBDD's

11)

for �nite distributive

quasi-boolean algebras. Still, a model checker

for mv-LTL under restrict interpretations (2-

valued transition relation and totally ordered

sets for the propositions) haves been imple-

mented, based on a translation to (mv-)B�uchi

automata.

13)

A translation from a negation-free mv-

CTL* to CTL* model checking for model

over �nite quasi-boolean lattices was shown by

Konikowska and Penczek

28)

, that later revised

their technique to make use of designated values

in complete lattices

29)

.

Also, model checking algorithms for mv-CTL

over multi-valued interpretations featuring dif-

ferent notions of negations were considered

Chechik et al.

15)

.

Regarding, bounded model checking, the

original idea has been proposed by Biere, Clarke

et al.

3),4),18)

. For the CTL logics, an extension

of the BMC method based on SAT procedures

to veri�cation of all the properties expressed in

ACTL was shown by Penczek et al.

31)

.

4. Computational Tree Logic { CTL

Model checking can be summarized as an au-

tomated technique to verify temporal proper-

ties on �nite systems.

!y
In model checking liter-

ature, the standard representation of models for

the system we are interested in, is Kripke struc-

tures. A Kripke structure is a �nite transition

system. Regardless of the concrete de�nition

language, the system model can be represented

by a Kripke Structure.

De�nition 4.1 (Kripke structure). A Kripke

structure M is a t-uple, M = hS; S

0

; R;AP;Oi.

S is the set of states, S

0

� S is the set of initial

states, R � (S�S) is a transition relation, and

O : S ! }(AP) is a observation, or labeling,

function, where AP is the set of atomic propo-

sitions and }(AP) denotes the power-set over

AP .

The properties we want to verify can be clas-

si�ed in two groups:

� Safety properties { Regards the fact that

some forbidden state is unreachable by any

path from any of the initial states.

� Liveness properties { If some desirable

state will eventually be reached. To spec-

ify liveness properties, reachability analysis

is not enough, so we use temporal logics to

specify them.

To express speci�cations of transition sys-

tems, we need to state not only about current

state but also about future states, e.g. \When-

ever the light is turned on, it will be eventu-

ally turned o�". The logic commonly used to

express such a statement in model checking is

CTL (Computational Tree Logic). CTL treats

time as a sequence of states (path), and since

future need not be determinant in CTL, it forms

branching path, or computational tree.

De�nition 4.2 (Path on a Kripke structure).

Given a Kripke structure M = hS; S

0

; R;Oi,

a path � : N ! S is a mapping such that

8i 2 N:(�(i); �(i+ 1)) 2 R).

� The set of all paths for a Kripke structure

M will be denoted �

M

.

� The set of all paths starting at a given state

s 2 S of a Kripke structure M will be de-

noted by �

M

(s)

4.1 Syntax of CTL

The general syntax of CTL is de�ned as fol-

lowings:

�; ::= > j ? j p

j :� j � ^ j � _ j �!

j AX� j AF� j AG� j A[�U]

j EX� j EF� j EG� j E[�U]

!y
Although, there is an increasing interest in model

checking for in�nite systems.

Multi-Valued Bounded Model Checking 3

Where p 2 AP is an atomic proposition.

In the remaining of this article, to make the

de�nitions more manageable, we will constrain

ourselves on the ECTL fragment of the CTL

logic.

De�nition 4.3 (ECTL). The ECTL is the lan-

guage obtained by restricting the CTL formulas

from the use of the universal path quanti�er,

and also, in this text, the use of the implication

and the EF operators. So the syntax of ECTL

is given by:

�; ::= > j ? j p

j :� j � ^ j � _

j EX� jj EG� j E[�U]

We stress the fact that this restriction does

not a�ect the expressive power of CTL, since

all the remaining operators can be de�ned in

terms of the ECTL operators.

De�nition 4.4 (Operator equivalence). The

following equivalences are used to de�ne the re-

maining syntax and semantics of the CTL op-

erators:

�! � :� _

EF� � :EG:�

AX� � :EX:�

AF� � :EF:�

AG� � :EG:�

A[�U] � :E[:�U:]

4.2 Semantics of CTL

The meaning of >, ?, AP and the standard

logical operators (:, ^, _) remains the same as

in classical logic. They assert about the current

state.

The temporal operators (AX, AF, AG, A[U],

EX, EF, EG and E[U]) assert about future states.

All operators started with A state \for all paths

start from current state, . . . " while operators

started with E state \for some path starts from

current state, . . . ".

AX and EX state about next state, i.e. AX�

means \for all paths start from current state, �

hold at next state". AF and EF state about

sometime in future, i.e. AF� means \for all

paths start from current state, � hold at some

future state". AG and EG express permanent

property of the model, i.e. AG� means \for all

paths start from current state, � always hold".

AU and EU are AG and EG with a limit, i.e.

A[�U] means \for all paths start from current

state, � hold at every state until hold, and

hold at some future state.

De�nition 4.5 (Semantics of ECTL). Let

M = hS; S

0

; R;Oi be a model for CTL, s 2 S,

and � a CTL formula. The relation M; s j= �,

insists � hold at s in model M, is de�ned by

structural induction on �:

(1) M;s j= >

(2) M;s 6j= ?

(3) M;s j= p () p 2 O(s)

(4) M;s j= :� () M; s 6j= �

(5) M;s j= (�

1

^ �

2

) () (M; s j= �

1

) ^

(M; s j= �

2

)

(6) M;s j= (�

1

_ �

2

) () (M; s j= �

1

) _

(M; s j= �

2

)

(7) M;s j= EX� () 9

s

1

:(s; s

1

) 2 R ^

M; s

1

j= �

(8) M;s j= EG� ()

9�:(s = �(1) ^ 8

i

:(�(i); �(i+ 1)) 2 R)

^8i:M; �(i) j= �

(9) M;s j= E[�

1

U�

2

] ()

9

�

:(s = �(1) ^ 8

i

:(�(i); �(i+ 1)) 2 R)

^9

j

:(M;�(j) j= �

2

) ^ 8

i<j

:(M;�(i) j= �

1

)

Having de�ned the semantics of CTL, the

model-checking problem can now be stated as

the problem of verifying if 8

s2S

0

:M; s j= � holds

for a given speci�cation �.

5. Bounded model checking

The basic idea of bounded model checking,

is to consider only a �nite pre�x of a path that

may be a witness to an existential model check-

ing problem. We restrict the length of the pre�x

by some bound k. Although the pre�x of a path

is �nite, it still might represent an in�nite path

if there is a back loop from the last state fo the

pre�x to any of the previous states.

De�nition 5.1 (k-path). Giben the Kripke

structure M = hS; S

0

; R;AP;Oi, and k 2 N

+

,

we de�ne a k-path as a sequence �

k

= s

0

; : : : ; s

k

of states, such that for all i, 0 � i � k,

(s

i

; s

i+1

) 2 R. We also de�ne �

k

as the set

of all k-paths of M .

De�nition 5.2 ((k; l)-loop). Giben the Kripke

structure M = hS; S

0

; R;AP;Oi, for l � k we

call a path � a (k; l)-loop in M if (�(k); �(l)) 2

R and � = u:v

!

with u = (�(0); : : : ; �(l � 1))

and v = (�(l); : : : ; �(k)). We cal � a k-loop if

there exists k � l � 0 for which � is a (k,l)-loop.

De�nition 5.3 (k-model). Given a Kripke

structure M = hS; S

0

; R;AP;Oi, we de�ne

the k-model of M as a structure M

k

=

hS; S

0

;�

k

;Oi

5.1 Semantics of bounded CTL

De�nition 5.4 (Bounded Semantics). Let M

be a Kripke structure hS; S

0

; R;AP;Oi, k 2 N

be a bound, and � and be CTL formulas.

M

k

; s j= � denotes that � is true at state s of

4

M under a bounded interpretation with bound

k, or equivalently, that � is true at state s of

the k-model M

k

. The relation j= is inductively

de�ned as follows:

M

k

; s j= p () p 2 O(s)

M

k

; s j= :p () p 62 O(s)

M

k

; s j= � ^ () M

k

; s j=

k

 ^

M

k

; s j=

k

�

M

k

; s j= � _ () M

k

; s j=

k

 _

M

k

; s j=

k

�

M

k

; s j= EX� ()

9

�2�

k

:(�(0) = s ^

M

k

; �(1) j= p)

M

k

; s j= EG ()

9

�2�

k

:(�(0) = s ^

8

0�i�k

:M

k

; �(i) j= p)

M

k

; s j= E[�U] ()

9

�2�

k

:(�(0) = s ^

9

0�j�k

:(M

k

; �(j) j= ^

8

0�i�j

:M

k

; �(i) j= �))

De�nition 5.5 (Validity for Bounded Seman-

tics). ACTL formula � is valid in a k-modelM

k

of M , denoted by M j=

k

� i� 8

s2S

0

:M

k

; s j= �.

Bellow we present an important result about

the completeness of the proposed bounded se-

mantics of CTL. For a proof of this result,

we direct the interested reader to the work of

Penczek et al.

31)

.

Theorem 5.1. Given a Kripke structure M =

hS; S

0

; R;Oi, a CTL formula � and a bound

k = jM j, then M j= � i� M j=

k

�.

It is important to mention that it is often

the case that, if M j= �, then there exists k <

jM j such that M j=

k

�. This observation can

explain the high e�ciency of BMC for a great

number of cases.

5.2 The BMC algorithm for CTL

In this section we present a general BMC

method for CTL. For this we �rs de�ne the no-

tion of sub-model of a k-model.

De�nition 5.6. Let M

k

= hS; S

0

;�

k

;Oi be a

k-model of a Kripke structureM , and let �

0

k

�

�

k

be a subset of the k-paths ofM

k

. We de�ne

States(�

0

k

) = fs 2 Sj9

�2�

k

:9

i�k

:�(i) = sg, as

the set of all states belonging to a k-path within

�

0

k

.

De�nition 5.7 (Sub-model). Given a k-model

M

k

= hS; S

0

;�

k

;Oi of a Kripke structure M ,

we call a structure M

0

k

= hS

0

; S

0

;�

0

k

;O

0

i a sub-

model of M

k

if �

0

k

� �

k

, S � States(�

0

k

) and

O

0

= Oj

S

0

.

The bounded semantics of CTL over sub-

models is de�ned after that for k-models.

Algorithm 1 BMC method for CTL

Require: AKripke structureM = hS; S

0

; R;Oi,

and a CTL formula .

Ensure: The validity check of in M .

1: procedure BMC(M;)

2: let � :

3: for k 1::jM j do

4: Let M

k

be a k-model of M

5: Let M

�

k

 fM

0

k

j M

0

k

=

hS

0

; S

0

;�

0

k

;O

0

i ^ j�

0

k

j � f

k

(�)g

6: Let [[M

�

]]

k

 Translate(M

�

k

)

7: Let [[M;�]]

k

 [[M

�

]]

k

^ [[�]]

M

k

8: Check the SATis�ability of [[M;�]]

k

9: end for

10: end procedure

5.3 Translating BMC to SAT

De�nition 5.8 (Translation of a CTL for-

mula). We denote by [[�]]

s

k

the propositional

translation of CTL formula � at state s.

[[p]]

s

k

:= p(s)

[[:p]]

s

k

:= :p(s)

[[� ^]]

s

k

:= [[�]]

s

k

^ [[]]

s

k

[[� _]]

s

k

:= [[�]]

s

k

_ [[]]

s

k

[[EX�]]

s

k

:=

_

s

0

2S

0

�

R(s; s

0

) ^ [[�]]

s

0

k

�

[[EG�]]

s

k

:=

_

0�i�k

0

@

H(s; �(i))

^

W

k

l=0

L

k;i

(l)

^

V

k

j=0

[[�]]

�(j)

k

1

A

[[E[�U]]]

s

k

:=

_

0�i�k

0

B

@

H(s; �(i))

^

W

k

j=0

L

k;i

(l)

^

V

k

j=0

[[�]]

�(j)

k

1

C

A

6. Multi-valued Model-checking

Normal model-checking receives as input a

speci�cation composed by a Kripke structure

and a temporal logic description of the sys-

tem's properties. The speci�cation is veri�ed

against Kripke structure to see if it holds or not.

On the other hand, multi-valued model-checking

receives an extension of the Kripke structure

called multi-valued Kripke structure, and the

description of the properties is expressed on

multi-valued temporal logic. Then the speci�-

cation is veri�ed against multi-valued Kripke

structure.

Multi-Valued Bounded Model Checking 5

6.1 Boolean Algebras

This section introduces many-valued struc-

tures uses as logical domains of interpretation

for formulas in multi-valued logics, like mv-

CTL, that we use in our work.

De�nition 6.1 (Lattice). A lattice is a par-

tially ordered set L = (L;v) such that for any

two elements x; y 2 L it is de�ned:

� Their greatest lower bound (x u y), called

meet ;

� Their lowest upper bound (x t y), called

join;

Alternatively a lattice can be de�ned in terms

of the meet and join operations, so we can speek

of a lattice as a structure L = (L;u;t) that

satis�es the following laws:

x u y = y u y

x t y = y t y

�

commutative laws

(x u y) u z = x u (y u z)

(x t y) t z = x t (y t z)

�

associative laws

x t (x u y) = x

x u (x t y) = x

�

absorption laws

x t x = x

x u x = x

�

identity laws

De�nition 6.2 (Quasi-Boolean Algebra). We

call a Quasi-boolean Algebra, the structure B =

hB;u;t;�;>;?i where hB;u;ti is a distribu-

tive lattice, > and ? are the least and the great-

est elements and � is a unary operation on B

such that for every x 2 B there exists a unique

element � x 2 B satisfying the following laws

for all x; y 2 B:

� (a u b) =� at � b

� (a t b) =� au � b

�

De Morgan

�� a = a involution

a v b () :a w :b anti-monotonic

We also de�ne the relation v by a v b i�

a u b = a.

De�nition 6.3 (Boolean Algebra). A boolean

algebra is a quasi-boolean algebra B with the

additional condition that for every element x 2

B:

xu � x = ? Law of Non-Contradiction

xt � x = > Law of Excluded Middle

Figure 1 illustrates a boolean lattice with 16

elements, we say it is an order 4 boolean lattice.

Having introduced the necessary theoretical

background, we proceed to de�ne multi-valued

sets, relations and Kripke structures which are

going to be the foundation of the multi-valued

model checking. We de�ne the operations of

complement, intersection and backward image

Fig. 1 An order 4 boolean lattice.

over multi-valued sets, e.e. sets that the mem-

bership function takes values over a lattice. In

this section, the presentation of the material

combines results from various sources

7),10),29)

since a common ground for the subject is not

yet established.

6.2 Multi-valued sets and multi-valued

relations

In the classic notion of sets, the membership

of an object to a set is determined by the set's

membership function. Assume that we have a

set of object S and that we wanto to de�ne a

subset S

0

of S suc that every object in S

0

sat-

is�es a property H . Let the membership func-

tion of S

0

be h : S ! f?;>g with de�nition:

h(s) = >(true) if s satis�es property H and

h(s) = ?(false) otherwise. Then the collection

of objects of S that constitute the subset S

0

is

denoted by fs 2 S j h(s)g, which implies that

for all the objects s 2 S

0

it is the case that

h(s) = >. For example, consider S to be N and

the membership function to be h(s) = (s � 5),

then the set S

0

= fs 2 N j s � 5g is S

0

=

f0; 1; 2; 3; 4; 5g.

The multi-valued sets, denoted by mv-sets,

are a straightforward extension of the classical

sets. The characteristic function of an mv-set

takes values over a lattice instead of the classi-

cal 2-valued Boolean set. Intuitively, when the

characteristic function is multi-valued it express

the degree that an object belongs to the mv-set.

De�nition 6.4 (Multi-values set). Let L =

hL;u;ti be a lattice and S be a set of objects,

them a multi-valued set, denoted by S, is a total

6

function S : S ! L.

As mv-sets are, in fact, functions, S(x) de-

notes the degree of membership of x in S. Next,

we will de�ne the operations of union ([

L

), in-

tersection (\

L

), set-inclusion (�

L

) and equality

for mv-sets using the lattice join and meet op-

erations.

De�nition 6.5 (mv-union, mv-intersection,

mv-set inclusion, mv-equality). Let L =

hL;u;ti be a lattice, then we de�ne:

mv-Intersection:

(S \

L

S

0

)(x) := S(x) u S

0

(x)

mv-Union:

(S [

L

S

0

)(x) := S(x) t S

0

(x)

mv-Set inclusion:

(S �

L

S

0

) := 8

x

:(S(x) v S

0

(x))

mv-Equality:

(S =

L

S

0

) := 8

x

:(S(x) = S

0

(x))

De�nition 6.6 (mv-complement, De Morgan,

mv-antimonotonicity). Let B = hB;u;t;�

;?;>i be an algebra, then the multi-valued set

will be the total function S : S ! B. When the

values of the set are over an albebra B, then we

denote the mv operations of De�nition 6.5 using

the subscript B. Now, we can de�ne the mv-

set complement operation using the algebra's

complement operation and, also, derive the De

Morgan laws:

mv-Complement:

S(x) :=� S(x)

De Morgan:

S \

B

S

0

:= S [

B

S

0

S [

B

S

0

:= S \

B

S

0

mv-Antimonotonicity:

S �

L

S

0

:= S

0

�

B

S

Note that all the above de�nitions actually

follow the de�nitions for the algebraization of

the classical 2-valued logic. Hence, in the spe-

cial case where the algebra is over the the lat-

tice L

2

we get the classical 2-valued set the-

ory. Now that we have established the notion of

mv-sets, we proceed to de�ne multi-valued re-

lations, or mv-relations. De�ning mv-relations

is important as they are necessary for de�ning

Kripke structures with multi-valued transition

relations.

De�nition 6.7 (Multi-valued relations). A

multi-valued relation R on sets S and T over

a lattice L is a function R : S � T ! L.

6.3 Multi-valued Kripke structure

The extension of the classical notion of

Kripke structures to the multi-valued ones (mv-

Kripke structures) is straightforward. Note

that some authors perform multi-valued model

checking on mv-Kripke structures where the

predicates take values from an mv-algebra

7),13)

,

but they keep the transition relation de-

�ned over B

2

, while others consider also mv-

transition relations. In the following we will

denote the multi-valued Kripke structures my

M .

De�nition 6.8 (Multi-Valued Kripke Struc-

ture). We call the t-upleM = hS; S

0

;R; AP;O;Lh

a Multi-Valued Kripke Structure with compo-

nents de�ned as follows:

� S is a �nite set of states.

� S

0

� S is the set of initial states.

� R : S � S ! L is a partial function called

mv-transition relation.

� AP is a �nite set of atomic propositions.

� O : S�AP ! L is a total labeling function

that maps a pair (s; a) 2 S � AP to some

l 2 L.

� L is an algebra, de�ned as hL;u; sqcup;�

;?;>i.

We assume R to be total (as it is usually the

case), i.e. Dom(R) = S � S, and it is de�ned

even for the cases where for s; t 2 R we have

R(s; t) = ?.

Also, for the multi-valued case we need to

slightly modify the de�nition of path sets.

De�nition 6.9 (Paths on mv-Kripke struc-

tures). Let M = hS; S

0

;R; AP;O;Li be a mv-

Kripke structure, the for each s 2 S:

�

all

M

(s) := f� : N ! S j (�(0) = s ^

8

i2N

:(R(�(i); �(i+ 1)) 6= ?)

6.4 Multi-valued CTL { mvCTL

The syntax of mv-CTL is basically the same

as the 2-valued CTL, except that beyond ? and

> we also accept the other lattice values l 2 L

as mv-CTL literal formulas. We now move to

the de�nition of the mv-CTL semantics.

De�nition 6.10 (mv-CTL Semantics). Given

a mv-Kripke structureM = hS; S

0

;R; AP;O;Li,

we denote by jj�jj

s

M

: S ! L the degree that a

state s 2 S satis�es a speci�cation � in the mv-

Kripke structure (model) M . The the multi-

valued semantics of the core operators of mv-

CTL are de�ned as shown in Fig. 2.

6.5 mv-CTL Bounded Semantics

De�nition 6.11 (mv-path). Given a mv-

Kripke structure M = hS;S

0

;R; AP;O;Li, we

call �

M

(s) the set of mv-paths of M , provided:

�

M

(s) = f� : N! S j �(0) = s ^

8

i2N

:(R(�(i); �(i+ 1)) v ?)g

De�nition 6.12 (mv-loop-path). Given a mv-

Multi-Valued Bounded Model Checking 7

jjljj

s

M

:= l for l 2 L

jjpjj

s

M

:= O(s; p) for p 2 AP

jj:�jj

s

M

:= � jj�jj

s

M

jj� _ jj

s

M

:= jj�jj

s

M

t jj jj

s

M

jjEX�jj

s

M

:=

G

s

0

2S

�

R(s; s

0

) u jj�jj

s

0

M

�

jjEG�jj

s

M

:= jj�jj

s

M

u

G

s

0

2S

�

R(s; s

0

) u jjEG�jj

s

0

M

�

jjE[�U]jj

s

M

:= jj jj

s

M

t

jj jj

s

M

u

G

s

0

2S

�

R(s; s

0

) u jjE[�U]jj

s

0

M

�

!

Fig. 2 Semantic for mv-CTL.

Kripke structure M = hS; S

0

;R; AP;O;Li be,

we call the set of mv-loop-paths ofM , provided:

�

k;l

M

(s) = f� : N! S j � 2 �

M

(s) ^

9

0�l�k

:(R(�(l); �(k)) v ?)g

De�nition 6.13 (Bounded Semantics). LetM

be a mv-Kripke structure hS; S

0

;R;O;Li, k 2 N

be a bound, and � and be CTL formulas.

M

k

; s j= � denotes that � is true at state s of

M under a bounded interpretation with bound

k, or equivalently, that � is true at state s of

the k-model M

k

. The relation j= is inductively

de�ned as shown in Fig. 3.

7. Prototype Implementation

On this section we describe our prototype im-

plementation of multi-valued bounded model

checking. This �rst attempt is far from com-

plete and must be seen as a work in progress.

For this prototype two decisions were made in

order to reduce the time frame necessary for the

implementation. First we decided to work with

boolean algebras. Although we aim for more

general logic structures, boolean algebras pro-

vided both, a exible and expressive language

to express speci�cations, and a direct path for

a fast implementation. Secondly we decide to

translate our models to an underlying tools, in-

stead of implementing the low level BMC algo-

rithm directly. This strategy, namely, to trans-

late a multi-valued model-checking problem to

a standard 2-valued one, was already explored

by Konikowska et al.

28),29)

, but we make note

that we use a slightly di�erent approach in our

method.

We have implemented our prototype over

NuSMV

16)

and our method can be summarized

as follows. We encode a boolean algebra with

2

n

values in a vector of n bits. An extension

of the NuSMV syntax was de�ned with the fol-

lowing additional features:

� A statement lattice boolean(n), that

specify the size of the boolean algebra be-

ing used for the model.

� The lattice values are accepted as literals,

and speci�ed as #d

1

: : : d

n

where, d

i

1�i�n

2

f0; 1g.

� A special predicate $TR(l), where l is a lat-

tice value. We will discuss this predicate

latter.

� Speci�cations are de�ned in relation to a

given lattice value. This has the same ef-

fect of de�ning a set of designated values as

proposed in 29), except that the set of des-

ignated values is not bound to the model,

but to individual speci�cations.

The role of the special predicate $TR(l) is

paramount for the mapping of the multi-valued

model to a 2-valued one. The basic idea is that

$TR(l) can be used to de�ne the logic values

associated with the transitions in the model.

In a rouge view, $TR(l) can be compared to

the mv-transition relation R.

Although, the interpretation of $TR(l) as cor-

responding to the R is justi�able, we think that

a more interesting interpretation arise when we

think of a multi-valued model as a structure

representing the overlaying of many di�erent

2-valued models, each 2-valued model corre-

sponding to one layer of the �nal model, and

then we think of $TR(l) as a selector that spec-

i�es on which layers the outermost logic ex-

pression applies. The idea of a mv-model as

a composition of standard model is illustrated

in Fig. 4, where the transitions of the model

are labeled with 3-bit lattice values, indicating

3 composing layers.

Figure 5 illustrate the use of the special

8

jjljj

s;k

M

:= l for l 2 L

jjpjj

s;k

M

:= O(s; p) for p 2 AP

jj:�jj

s;k

M

:= � jj:�jj

s;k

M

jj� _ jj

s;k

M

:= jj�jj

s;k

M

t jj jj

s;k

M

jjEX�jj

s;k

M

:=

(

F

�2�

M

(s)

�

R(�(0); �(1)) u jj�jj

�(1);k�1

M

�

if k > 0

? otherwise

jjEG�jj

s;k

M

:=

(

F

�2�

k;l

M

(s)

�

d

k�1

i=0

�

R(�(i); �(i+ 1)) u jj�jj

�(i);k�i

M

��

if k > 0

? otherwise

jjE[�U]jj

s;k

M

:=

G

�2�

k;l

M

(s)

0

@

k�1

l

i=0

0

@

k

G

j=0

jj jj

�(j);k�j

M

u

j�1

G

i

R(�(i); �(i+ 1)) u jj�jj

�(i);k�i

M

!

1

A

1

A

Fig. 3 Bounded semantic for mv-CTL.

Fig. 4 Model with multiple viewpoints incorporated.

predicate $TR(l) as a selector of the layers of

the mv-model. Each bit in the argument of

$TR(l) selects a di�erent layer of the mv-model.

Of course, combinations of more than one layer

are possible. One immediate consequence of

this view is the possibility to express di�erent

viewpoints in a same composite model. Each

viewpoint standing for one layer in the model.

The translation of the model, from the multi-

valued description, to a standard 2-valued de-

scription is outlined by Algorithm 2. Basically,

each mv-variable is translated to an array of

size n, and each mv-expression is translated to

an equivalent list of n expressions. Algorithms

3, 4 and 5 deal with translation of general ex-

pressions, conditional expressions and speci�ca-

tions, respectively.

The translation for speci�cations, in Algo-

rithm 5, take in account that a speci�cation

is satis�able if it's interpretation issues a value

Algorithm 2 Translate the multi-valued model

to a 2-valued one.

Require: Multi-valued model M

n

, where

M

k

= hV

n

; I

n

; T

n

;�

n

;L

n

i.

Ensure: The corresponding 2-valued model

M

2

= hV

2

; I

2

; T

2

;�

2

i.

1: function TranslateModel(M

n

)

2: let hV

2

; I

2

; T

2

;�

2

i = h[]; []; []; []i

3: for all v 2 V

n

do

4: let V

2

= V

2

[[Var(v; i)j1 � i � n]

5: end for

6: for all e 2 I

n

do

7: let [e

1

; : : : ; e

m

] = TrltExpr(e)

8: let I

2

= I

2

[[e

1

; : : : ; e

m

]

9: end for

10: for all e 2 T

n

do

11: let [e

1

; : : : ; e

m

] = TrltExpr(e)

12: let T

2

= T

2

[[e

1

; : : : ; e

m

]

13: end for

14: for all q 2 �

n

do

15: let [�

1

; : : : ; �

n

] = TrltSpec(q)

16: let �

2

= �

2

[[�

1

; : : : ; �

n

]

17: end for

18: return hV

2

; I

2

; T

2

; S

2

i

19: end function

greater or equal the lattice value associated

with it. So, in translating the speci�cation to 2-

valued CTL we construct a boolean expression

that grants this meaning.

8. Conclusion and Future Work

We have shown that the application of

Bounded Model Checking to systems models

build over multi-valued structures based on

boolean algebras is possible, and that the trans-

Multi-Valued Bounded Model Checking 9

Fig. 5 Three di�erent \slices" of the original model.

Algorithm 3 Translate a multi-valued expres-

sion to a list of 2-valued ones.

Require: A valid multi-valued expression e,

over a boolean lattice of order n .

Ensure: A list of m � n 2-valued expressions.

1: function TrltExpr(e)

2: if e is a variable then

3: return [Var(e; i)j1 � i � n]

4: else if e is a lattice value then

5: return [Bit(e; i)j1 � i � n]

6: else if e is like ha� bi then

7: let [a

1

; : : : ; a

m

] = TrltSpec(a)

8: let [b

1

; : : : ; b

m

] = TrltSpec(b)

9: return [ha

i

� b

i

ij1 � i � m]

10: else if e is like h�ai then

11: let [a

1

; : : : ; a

m

] = TrltSpec(a)

12: return [h�a

i

ij1 � i � m]

13: else if e is a conditional then

14: return TrltCond(e)

15: end if

16: end function

lation of the multi-valued models to 2-valued

models is very straightforward. Furthermore,

we have shown that this approach leads to a

very suitable method of dealing with incosis-

tent viewpoints over speci�cations and allows

the construction of composed models from this

di�erent viewpoints.

We aim to keep the work on this line of in-

vestigation. Topics that can be further inves-

tigated our tool and future, improved, versions

include:

(1) Possible means for software engineers to

express requirements in a more precise

way, expressing the uncertainties or dis-

agreements about them. The possibil-

ity to �nd counter-examples will later

Algorithm 4 Translate conditional multi-

valued expressions.

Require: A multi-valued conditional expres-

sion C

n

= [c

1

; : : : ; c

l

], composed by a se-

quence of l clauses. Each clause c

i

=

he

ti

; e

ri

is a pair composed by a test expres-

sion e

ti

and a result expression e

ri

.

Ensure: A sequence [C

2

1

; : : : ; C

2

n

] of 2-valued

conditional expressions, translating C

n

.

1: function TrltCond(C)

2: let [C

2

1

; : : : ; C

2

n

] = [[]; : : : ; []]

3: for all he

t

i

; e

r

i

i 2 C

n

do

4: let [e

t

i

1

; : : : ; e

t

i

l

] = TrltSpec(e

t

i

)

5: let [e

r

i

1

; : : : ; e

r

i

l

] = TrltSpec(e

r

i

)

6: for j 1::n do

7: C

2

i

 C

2

i

[[he

t

i

j

; e

r

i

j

i]

8: end for

9: end for

10: return [C

2

1

; : : : ; C

2

n

]

11: end function

make possible to demonstrate, if neces-

sary, that some of these disagreements

must be solved and/or some uncertain-

ties must be dismissed to grant the va-

lidity of the speci�cations.

(2) The capacity of bounded model checking

to e�ciently �nd counter-examples and

the possibility that multi-valued tempo-

ral logic provides to express disagreement

will certainly provide powerful tools to

reason about model re�nement.

(3) The possibility to replace parts of a

model for a \macro-state" with all logic

variables having value \undetermined"

and check the resulting model against the

speci�cation can lead to new techniques

model abstraction and partial model ver-

10

Algorithm 5 Translation for multi-valued

CTL speci�cations.

Require: A speci�cation q = h�; li. That is a

pair of a multi-valued CTL formula � and

a lattice value l that states the acceptable

degree for the speci�cation.

Ensure: The composed 2-valued CTL formula

that translates q.

1: function TrltSpec(q)

2: let [�

1

; : : : ; �

n

] = TrltExpr(�)

3: for all i 1::n do

4: let q

i

= hi

5: for all j 1::(i� 1) do

6: if l

i

= 1 then

7: let q

i

= hq

i

^ �

i

i

8: end if

9: end for

10: end for

11: return hq

1

_ : : : _ q

n

i

12: end function

i�cation.

References

1) H.R. Andersen. An introduction to binary

decision diagrams. Lecture notes, 1997.

2) B.Beard, M.Bidoit, A.Finkel, F.Laroussinie,

A. Petit, L. Petrucci, P. Schnoebelen, and

P.McKenzie. Systems and software veri�cation:

model-checking techniques and tools. Springer-

Verlag, 2001.

3) A.Biere, A.Cimatti, E.Clarke, O.Strichman,

and Y.Zhu. Bounded model checking, 2003.

4) A. Biere, A. Cimatti, E. Clarke, and Y. Zhu.

Symbolic model checking without bdds. Lec-

ture Notes in Computer Science, 1579:193{207,

1999.

5) G.Bruns and P.Godefroid. Model checking

partial state spaces with 3-valued temporal log-

ics. In Computer Aided Veri�cation, pages 274{

287, 1999.

6) G. Bruns and P. Godefroid. Generalized

model checking: Reasoning about partial state

spaces. Lecture Notes in Computer Science,

1877:168+, 2000.

7) G.Bruns and P.Godefroid. Model checking

with multi-valued logics, 2003.

8) R. E. Bryant. Graph-based algorithms for

boolean function manipulation. IEEE Trans-

actions on Computers, 35(8):677{691, 1986.

9) R.E. Bryant. Symbolic Boolean manipulation

with ordered binary-decision diagrams. ACM

Computing Surveys, 24(3):293{318, 1992.

10) M.Chechik, B.Devereaux, S.Easterbrook, and

A. Gur�nkel. Multi-valued symbolic model-

checking. ACM Transaction on Software Engi-

neering and Methodology, 2(4):371{408, 2003.

11) M. Chechik, B. Devereaux, S. Easterbrook,

Y.C. Lai, and V.Petrovykh. E�cient multiple-

valued model-checking using lattice represen-

tations. Lecture Notes in Computer Science,

2154:441{455, 2001.

12) M.Chechik, B.Devereux, and S.Easterbrook.

Implementing a multi-valued symbolic model

checker. In Proceedings of 7th Interna-

tional Conference on Tools and Algorithms

for the Construction and Analysis of Systems

(TACAS'01), volume 2031 of Lecture Notes in

Computer Science, pages 404{419. Springer,

2001.

13) M. Chechik, B. Devereux, and A. Gur�nkel.

Model-checking in�nite state-space systems

with �ne-grained abstractions using SPIN. Lec-

ture Notes in Computer Science, 2057:16+,

2001.

14) M.Chechik, A.Gur�nkel, B.Devereux, A.Lai,

and S.Easterbrook. Data structures for sym-

bolic multi-valued model-checking. Form.

Methods Syst. Des., 29(3):295{344, 2006.

15) M. Chechik and W. MacCaull. Ctl model-

checking over logics with nonclassical nega-

tions, 2003.

16) A. Cimatti, E. Clarke, E. Giunchiglia, F.

Giunchiglia, M. Pistore, M. Roveri, R.

Sebastiani, and A. Tacchella. Nusmv 2: An

opensource tool for symbolic model checking,

2002.

17) E. Clarke, D. Kroening, J. Ouaknine, and

O. Strichman. Computational challenges in

bounded model checking. Software Tools for

Technology Transfer (STTT), 7(2):174{183,

April 2005.

18) E.M. Clarke, A.Biere, R.Raimi, and Y.Zhu.

Bounded model checking using satis�ability

solving. Formal Methods in System Design,

19(1):7{34, 2001.

19) E.M. Clarke, O.Grumberg, and D.A. Peled.

Model Checking. The MIT Press, 1999.

20) M. W. M. Cong Liu, Andreas Kuehlmann.

Cama: A multi-valued satis�ability solver. In

International Conference on Computer Aided

Design, pages 326 { 333. IEEE/ACM, Novem-

ber 2003.

21) G. E. Fainekos. An introduction to multi-

valued model checking. Technical report, De-

partment of Computer and Information Sci-

ence, University of Pennsylvania, 2005.

22) M.C. Fitting. Many-valued modal logics. Fun-

damenta Informaticae, XV:235{254, 1991.

23) M.C. Fitting. Many-valued modal logics II.

In Proc.LFCS'92. Springer-Verlag, 1992.

Multi-Valued Bounded Model Checking 11

24) A.Gur�nkel. Multi-valued symbolic model-

checking: fairness, counter-examples, running

time. Master's thesis, Department of Computer

Science, University of Toronto, 2003.

25) A.Gur�nkel and M.Chechik. Generating coun-

terexamples for multi-valued model-checking,

2003.

26) M. Huth and M. Ryan. Logic in Computer

Science: Modelling and Reasoning about Sys-

tems. Cambridg University Press, Cambridg,

UK, 2

nd

edition, 2004.

27) J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.

Dill, and L.J. Hwang. Symbolic Model Check-

ing: 10

20

States and Beyond. In Proceedings

of the Fifth Annual IEEE Symposium on Logic

in Computer Science, pages 1{33, Washington,

D.C., 1990. IEEE Computer Society Press.

28) B. Konikowska and W. Penczek. Reducing

model checking from multi-valued ctl* to ctl*,

2002.

29) M.C. Konikowska. On designated values in

multi-valued ctl* model checking, 2004.

30) H.C. Li, S.Krishnamurthi, and K.Fisler. Mod-

ular veri�cation of open features using three-

valued model checking. Automated Software

Engg., 12(3):349{382, 2005.

31) W. Penczek, B. Wo'zna, and A. Zbrzezny.

Bounded model checking for the universal frag-

ment of ctl, 2002.

32) F.Somenzi. Binary decision diagrams, 1999.

33) G.Tassey. The economic impacts of inade-

quate infrastructure for software testing. Tech-

nical Report 7007.011, National Institute of

Standards and Technology { NIST, May 2002.

34) G.Winskel. The formal semantics of program-

ming languages: an introduction. MIT Press,

1993.

