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Remarks on Krein-Kotani’s correspondence between strings

and Herglotz functions

By Yuji KASAHARA
�ÞyÞ and Shinzo WATANABE

��Þ

(Communicated by Heisuke HIRONAKA, M.J.A., Feb. 12, 2009)

Abstract: In the study of spectral functions of Strum-Liouville operators, S. Kotani found

a one-to-one correspondence between the operators and Herglotz functions determining the

spectral measures. In the present paper we give another correspondence to a class of Lévy

processes obtained as a compensated integrals of Brownian local times. As an application the

continuity theorem of Kotani’s correspondence is extended.

Key words: Strum-Liouville operator; spectral measure; Krein’s correspondence;
Herglotz function; Lévy process.

1. Introduction. In [3] the authors gave a

Brownian representation for a class of Lévy proc-

esses whose Lévy measures are absolutely continu-

ous with completely monotone densities. However,

some theorems were left half done in the sense that

we mentioned a little but did not discuss, for

instance, the inverse problem because probabilistic

approach is not suited for such kind of problems

and we need analytical results instead. The aim of

the present paper is a supplement based on the

results of recent paper of S. Kotani [4] on spectral

theory of second-order differential operators. Also

our argument, in turn, gives an extension to

Kotani’s result.

We first explain the notation and review

quickly the results of Kotani cited above. By a

string we mean a function

m : ð�1;þ1Þ ! ½0;þ1�

which is nondecreasing, right-continuous and nor-

malized so that mð�1Þ ¼ 0. We exclude the trivial

case where m vanishes identically.

For a string m we define

‘ ¼ ‘ðmÞ ¼ supfx; mðxÞ < 1g ð� þ1Þ;

and we are interested in the spectral theory of the

generalized Strum-Liouville operator

L ¼ �
d

dmðxÞ
d

dx
; �1 < x < ‘:

This operator appears not only in the theory of

vibration of the strings but also in Feller’s theory of

diffusion processes.

We say that a string m has left boundary of

limit circle type if, for some c ð< ‘Þ,Z c

�1
x2dmðxÞ < 1:ð1Þ

Throughout the paper we denote by Mcirc the

totality of strings satisfying the condition (1). For

each m 2 Mcirc, we can define ’�ðxÞ, ðx < ‘Þ, for

every � 2 C, as the unique solution of the following

integral equation:

’�ðxÞ ¼ 1� �

Z x

�1
ðx� yÞ’�ðyÞ dmðyÞ; x < ‘:

Let L2
0ðð�1; ‘Þ; dmÞ denote the space of all square

integrable functions f such that Supp ðfÞ � ð�1; ‘Þ
and, for f 2 L2

0ðð�1; ‘Þ; dmÞ, define

bffð�Þ ¼ Z ‘

�1
fðxÞ’�ðxÞ dmðxÞ:

Then a nonnegative Radon measure �ðd�Þ on ½0;1Þ
is called a spectral measure if

kfkL2
0
ðð�1;‘Þ;dmÞ ¼ kbffkL2ð½0;1Þ;d�Þ:

According to Kotani’s paper we can compute the

spectral measure �ðd�Þ by the following procedure:

Let
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Hð�Þ ¼ aþ
Z a

�1

1

’�ðxÞ2
� 1

 !
dxþ

Z ‘

a

dx

’�ðxÞ2
;ð2Þ

which exists for every � < 0 and does not depend on

the choice of a ð< ‘Þ. Then H is a Herglotz function

with the following representation:

Hð�Þ ¼ �þ
Z 1

�0

1

� � �
� �

�2 þ 1

� �
�ðd�Þ;ð3Þ

where � 2 R and �ðd�Þ is a nonnegative Radon

measure on ½0;1Þ satisfyingZ 1

0

�ðd�Þ
�2 þ 1

< 1:

Then �ðd�Þ is the spectral measure in question.

We call H the characteristic Herglotz function of

the string m. Kotani [4] proved that the corre-

spondence between m and H is not only one-to-one

but also onto (i.e., for any � 2 R and �ðd�Þ as

above, Hð�Þ defined by (3) is the characteristic

Herglotz function of some string m 2 Mcirc). Note

that M. G. Krein’s correspondence is the case whereR1
0 �ðd�Þ=ð� þ 1Þ < 1 and, therefore, Kotani’s cor-

respondence is its extension.

Krein’s correspondence is bicontinuous in some

sense (see [5]) and it remains true in Kotani’s as

well;

Theorem A (S. Kotani [4]). Let mn;m 2
Mcirc and let Hn;H be their characteristic Herglotz

functions. ThenHnð�Þ ! Hð�Þ as n ! 1 for all � <

0 if and only if the following two conditions hold:

(M1) mnðxÞ ¼) mðxÞ;

(M2) lim
c!�1

sup
n�1

Z c

�1

Z y

�1
mnðuÞ du

� �
dy ¼ 0:

Here, ‘‘¼)’’ denotes the convergence at all

continuity points of the limit function.

The aim of the present paper is to study the

following two problems: The first one is to give a

probabilistic representation of H in terms of the

string m and Brownian local times. This will

supplement one of the results in [3] and therefore

its inverse problem is completely reduced to

Kotani’s result. The second one is to study the case

where the condition (M2) fails. These two problems

may look independent but will turn out helpful each

other.

2. Brownian representation of Hð�Þ.
The Herglotz function H is determined by m via

(2). But in this section we shall see another

(probabilistic) relationship between H and m.

For a string m 2 Mcirc we define its dual m� :
ð0;1Þ ! ð�1;1� by

m�ðxÞ ¼ m�1ðxÞ
� �

¼ inffu;mðuÞ > xg ðx > 0Þ:

Notice that the condition (1) can be rewritten asZ
ð0;aÞ

m�ðxÞ2 dx < 1ð4Þ

for some (small) a > 0. For such m�, we can

associate a Lévy process represented by the

Brownian local time as follows: Let fBðtÞ; t � 0g
be a standard Brownian motion (Bð0Þ ¼ 0) and let

‘ðt; xÞ be its local time with respect to 2dx; i.e.,Z t

0

fðBðuÞÞ du ¼ 2

Z 1

�1
fðxÞ ‘ðt; xÞ dx

for all bounded continuous function f . For functions

m� satisfying (4) we defined in [3] a Lévy process

T ðm�; tÞ in the following way; for any "1 >

"2 > � � � ! 0, the following limits (5) exist almost

surely for any 0 � t < �� :¼ inff‘ðt; 0Þ;BðtÞ ¼
�‘ðm�Þg and define mutually independent but

equi-distributed Lévy processes T�ðm�; tÞ with life

times ��, respectively;

T�ðm�; tÞð5Þ

¼ lim
n!1

Z
x>"n

‘ð‘�1ðt; 0Þ;�xÞ dm�ðxÞ þm�ð"nÞt:

Then T ðm�; tÞ is a Lévy process with this common

distribution (cf. [3]). Of course the interesting case

is when m�ð"nÞ ! �1. We refer to [3] for details

but we note that (5) is a natural extension of the

following way to construct an �–stable Lévy motion

(0 < � < 1):

Z�ðtÞ ¼
Z
x>0

‘ð‘�1ðt; 0Þ; xÞxð1=�Þ�2 dx:

Our first result is the following formula which was

already referred to in [3] without proof. It is an

extension of the well-known formula for Krein’s

strings.

Theorem 1. Let m 2 Mcirc and let � be the

life-time of fT ðm�; tÞgt�0. Then,

E½e�T ðm�;tÞ; � > t� ¼ et�Hð�Þ; � < 0:ð6Þ

Proof. (Step 1) Ifmð�0Þ ¼ 0, then m is a Krein

string and, as we mentioned above, the assertion is

already known. For details see [5] (where hðsÞ ¼
Hð�sÞ).
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(Step 2) If mðcÞ ¼ 0 for some c < 0, then put

mcðxÞ ¼ mðx� cÞ, which is a Krein string (i.e.,

mð�0Þ ¼ 0). By a simple change of the variables, we

see that the characteristic Herglotz function of mc is

Hcð�Þ ¼ Hð�Þ þ c and also it is easy to see that

m�
cðxÞ ¼ m�ðxÞ þ c and hence T ðm�

c ; tÞ ¼ T ðm�; tÞ þ
ct. Thus the problem may be reduced to Step 1.

(Step 3) For m 2 Mcirc such that mðþ1Þ ¼ 1 so

that � ¼ þ1, consider the truncated strings

mn 2 Mcirc defined by dmnðxÞ ¼ 1ð�n;1ÞðxÞ dmðxÞ
and apply Step 2 to have

E½e�T ðm�
n;tÞ� ¼ et�Hnð�Þ; � < 0:ð7Þ

Now let n ! 1. The right side converges to et�Hð�Þ

by Kotani’s theorem, while the left-hand side

converges to E½e�T ðm�;tÞ� since it holds T ðm�
n; tÞ !

T ðm�; tÞ a.s. by Theorem 2.5 of [3]. Precisely

speaking, since Xn ¼ T ðm�
n; tÞ (n � 1) may take

negative values in general, the convergence in law

does not necessarily imply that of the Laplace

transforms without additional conditions. However,

in the present case it is not difficult to see the

convergence (see Lemma 1 in Appendix).

(Step 4) For m 2 Mcirc such that mðþ1Þ < 1,

we need a little modification because some of the

arguments in Step 3 are not trivial because � < 1.

In such a case consider the truncated strings

mnðxÞ ¼ mðxÞ þ11½n;1ÞðxÞ, for which we can apply

Step 3. Since T ðm�
n; tÞ is nondecreasing in n, it is

easy to complete the proof by the continuity of the

correspondence. �

We can use Theorem 1 in two ways. One is to

study the law of T ðm�; tÞ by using Hð�Þ and the

other is to apply results on T ðm�; tÞ to the study

of Hð�Þ. To begin with let us compute Lévy-

Khintchine’s canonical representation of the

Fourier transform of T ðm�; tÞ: Let m 2 Mcirc and

let H be its characteristic Herglotz function of the

form (3), and define

MðxÞ ¼ �
Z 1

�0

e�x��ðd�Þ ðx > 0Þ:

Recall that, in general, such a function expressed as

a Laplace transform of a Radon measure on ½0;1Þ is
said to be completely monotone (see Feller [1]).

Then by a direct computation we can rewrite (6) as

logE½e�s T ðm�;1Þ� ¼ �sHð�sÞ

¼ ��0sþ
Z 1

0

e�sx � 1þ
sx

1þ x2

� �
dMðxÞ

for s > 0, where �0 is a real constant. Thus, dMðxÞ,
which is a positive Radon measure on ð0;1Þ, is the
Lévy measure of the Lévy process fT ðm�; tÞg. This
fact is an extension of the well-known formula for

the case of Krein’s string. Thus Theorem 1 implies

the following properties of T ðm�; tÞ, which were

referred to without proofs (except (ii)) in our

previous paper [3].

Corollary 1. For every t > 0, the law of

T ðm�; tÞ is infinitely divisible such that

(i) the Gaussian part vanishes,

(ii) the Lévy measure vanishes on ð�1; 0Þ, and
(iii) the function �MðxÞ ¼

R
ðx;1Þ dMðyÞ, x > 0, de-

fined by the Lévy measure, is completely monotone.

Conversely, such an infinitely divisible law can

be realized by T ðm�; 1Þ þ a for suitably chosen m 2
Mcirc and a 2 R.

Thus, Kotani’s correspondence between m 2
Mcirc and Hð�Þ also corresponds to a Lévy process

satisfying (i)–(iii).

3. An extended continuity theorem. At

the end of the previous section we mentioned an

application of Theorem 2 to a class of Lévy process,

and in this section we give, in return, an application

of probability theory to Theorem A via Theorem 1:

We study the case where the condition (M1) in

Theorem A holds but (M2) fails. Our main result is

Theorem 2. Let �2 � 0 and mn;m 2 Mcirc

and let Hn;H be their characteristic Herglotz

functions, respectively. Then

Hnð�Þ ! Hð�Þ þ �2�; n ! 1ð8Þ

for every � < 0 if and only if the following two

conditions hold:

(M1) mn ¼) m;

(M2a) lim
c!�1

lim sup
n!1

Z c

�1
x2 dmnðxÞ � �2

���� ���� ¼ 0:

Before we proceed to the proof, we see that this

theorem is compatible with Theorem A. To this end

note thatZ c

�1

Z y

�1
mnðuÞ du

� �
dy ¼

1

2

Z c

�1
ðc� xÞ2 dmnðxÞ

whileZ 2c

�1
ð2c� xÞ2 dmðxÞ �

Z 2c

�1
x2 dmðxÞ

� 4

Z c

�1
ðc� xÞ2 dmðxÞ:
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Here the inequalities hold because x < 2c < 0 im-

plies jx� 2cj � jxj � 2jx� cj. Therefore, it is easy

to see that, when �2 ¼ 0, (M2a) is equivalent to

(M2).

Proof of Theorem 2. Suppose (M1) and

(M2a) are satisfied. Then, by Theorem 2.10 of [3],

we see that T ðm�
n; tÞ converges in law to T ðm�; tÞ þffiffiffi

2
p

�B�ðtÞ, where fB�ðtÞgt�0 is a standard Brownian

motion independent of fT ðm�; tÞgt. This implies

that, for � < 0,

E½e�T ðm�
n;tÞ� ! E½e�fT ðm�;tÞþ

ffiffi
2

p
�B�ðtÞg�

by Lemma 1 in Appendix. Therefore, by Theorem 1,

this probabilistic result may be translated as (8).

Thus we have the ‘‘if ’’ part. Conversely, suppose (8)

holds. Then as in the proof of Theorem 1 of [4], we

can choose a subsequence fmnk
gk�1 and a string m1

such that

mnk
ðxÞ ¼) m1ðxÞ:

By Fatou’s inequality, we see m1 2 Mcirc although

(M2) may fail in general. However, instead, his

proof implies

lim
c!�1

sup
k�1

Z c

�1

Z y

�1
mnk

ðuÞ du
� �

dy < 1

which condition is equivalent to

lim
c!�1

lim sup
k!1

Z c

�1
x2 dmnk

ðxÞ < 1:

(We do not go into details because this condition is

in fact not mandatory in the sequel if we allow a

simple abuse of notation).

Now choosing a subsequence again, if neces-

sary, we may assume that

lim
c!�1

lim sup
j!1

Z c

�1
x2 dmnj

ðxÞ � �2
1

���� ���� ¼ 0

for some �2
1 (consider the measures x2 dmnj

ðxÞ on

½�1; ‘Þ). Then, apply the ‘‘if’’ part to deduce

Hnj
ð�Þ ! H1ð�Þ þ �2

1 �; � < 0:

Since the left side converges to Hð�Þ þ �2 � by

assumption, we see that H1ð�Þ þ �2
1 � ¼ Hð�Þ þ

�2 �, which implies thatH1ð�Þ ¼ Hð�Þ and �2
1 ¼ �2

by the uniqueness of the representation of Herglotz

functions. Since the subsequence was arbitrary, it is

routine to complete the proof. �

Example. Let m 2 Mcirc and Define

mnðxÞ ¼ mðxÞ þ cn1½�n;1ÞðxÞ; ðx 2 RÞ

for a sequence c1 > c2 > � � � ! 0. Of course mn ¼)
m. Let H and Hn be the characteristics of m and

mn. Then, by Theorem 1 we have Hnð�Þ ! Hð�Þ if
and only if n2cn ! 0. But Theorem 2 insists that,

more generally, Hnð�Þ ! Hð�Þ þ �2� if and only if

n2cn ! �2. This fact can be confirmed directly if m

is of Krein’s type; i.e., mðaÞ ¼ 0 for some a. In such

a case, we have, for n > �a,

Hnð�Þ ¼ �nþ
1

�cn�þ
1

nþHð�Þ

¼
Hð�Þ þ ncn�Hð�Þ þ n2cn�

�ncn�� cn�Hð�Þ þ 1

(cf. Examples 1.1, 1.3 of [5]). Thus the assertion can

easily be verified.

4. Appendix.

Lemma 1. Let X1; X2; . . . be random varia-

bles with infinitely divisible laws such that

logE½ei�Xn � ¼ icn� �
1

2
�2
n �

2

þ
Z 1

þ0

ei�x � 1�
i�x

1þ x2

� �
dMnðxÞ:

If Xn converges in law to a random variable X, then,

for all s > 0,

E½e�sXn � ! E½e�sX�; n ! 1:ð9Þ

Proof. Since it is well known that the law of X

also has a similar representation, let c1; �1;M1ðxÞ
be their characteristic. Then it holds that

cn ! c1; MnðxÞ ¼) M1ðxÞ ðx > 0Þ;

lim
"!0

lim sup
n!1

Z
ð0;"�

x2 dMnðxÞ þ
1

2
ð�2

n � �2
1Þ

�����
����� ¼ 0

(see p. 88 of [2]). Therefore, it is a routine to prove

(9). �
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