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Anisotropy of the impact ionization coefficients of 4H silicon carbide is investigated by means of

the avalanche breakdown behavior ofp+n diodes on(0001) ands112̄0d 4H silicon carbide epitaxial
wafers. The impact ionization coefficients are extracted from the avalanche breakdown voltages and
the multiplication of a reverse leakage current, due to impact ionization of thesep+n diodes. The

breakdown voltage of ap+n diode on as112̄0d wafer is 60% of that on a(0001) wafer, and the
extracted impact ionization coefficients of 4H silicon carbide show large anisotropy. We have shown
that the anisotropy of the impact ionization coefficients is related to the anisotropy of carrier heating
and drift velocity, which are due to the highly anisotropic electronic structure of 4H silicon
carbide. ©2004 American Institute of Physics. [DOI: 10.1063/1.1784520]

Among many wide band-gap semiconductor materials,
4H silicon carbides4H-SiCd has great potential for use as the
material for power devices, owing to its crystal maturity and
superior electrical properties, such as nearly isotropic mobil-
ity and high breakdown electric field. Impact ionization co-
efficients are important material properties for power de-
vices, because the avalanche breakdown of a power device is
caused by the impact ionization phenomena, and the physical
model of an impact ionization coefficient is indispensable for
the device simulation of power devices. However, the reports
of measurements of the impact ionization coefficient of
4H-SiC are few, and they are not in agreement with one
another.1,2 Recently, it was shown that a significant reduction
of the breakdown field in 4H-SiC occurs when the electric
field is applied perpendicular to thec- axis, but the impact
ionization coefficients were not reported.3 In order to predict
the breakdown voltage of a real power device precisely, we
have to consider the anisotropy of impact ionization coeffi-
cients, because the direction of the electric field at the field
crowding part is not necessarily parallel to thec axis when
the reverse bias is applied, even if the device is fabricated on
a (0001) 4H-SiC wafer.

In this letter, we present the impact ionization coeffi-

cients of 4H-SiC fork0001l andk112̄0l directions that repro-
duce avalanche breakdown behavior ofp+n diodes on(0001)

and s112̄0d epitaxial 4H-SiC wafers. We also discuss the
origin of anisotropy of the impact ionization coefficient of
4H-SiC, based on the microscopic description of the impact
ionization and the transport physics under high electric field.

The breakdown voltages as a function of doping density
and the multiplication factors of a leakage current were ob-

tained usingp+n diode fabricated on(0001) ands112̄0d epi-
taxial 4H-SiC wafers. The substrates used in this work were

heavily dopedp-type (0001) ands112̄0d 4H-SiC wafers pur-
chased from Cree Research, Inc. The epitaxial layers on a
(0001) wafer were grown by Cree Research, Inc., and those

on a s112̄0d wafer were grown in a horizontal hot-wall
chemical-vapor deposition reactor using SiH4 and C3H8 as
source gases and H2 as a carrier gas.4 The inset of Fig. 1
shows a cross section of thep+n diode and the measuring
system for multiplication factors. Thep+n junction of a diode
is located between ap+-type epitaxial layer, on ap+-type
substrate and ann-type epitaxial layer in order to exclude the
effect of defects in the substrate. The doping concentration of
the n-type epitaxial layer, was between 331016 and 2
31017 cm−3. Deep mesa for the isolation and termination of
p+n diodes was formed using inductively coupled plasma
reactive ion etching in SF6 chemistries. Nickel was deposited
for the contact area after the contact implantation and
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FIG. 1. Reverse leakage current ofp+n diodes on(0001) ands112̄0d wafers
in the dark and in UV light. The inset shows a cross section of thep+n diode
and the measuring system for multiplication factors.
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1600°C activation annealing, and sintered before the metal-
ization. Last, photosensitive polyimide was coated and pat-
terned as a passivation layer. This passivation layer is effec-
tive for avoiding air spark formation. The active area of a
diode is circular, in order to prevent field crowding at the
corner. The diameter of a mesa diode is 500mm. The thick-
ness of then-type epitaxial layer is 10mm, which is thick
enough to prevent the depleting region from reaching the
substrate when the reverse bias is applied. Reverse current-
voltage characteristics ofp+n diodes were measured using
agilent 4142B. Photomultiplication factors were calculated
from the reverse leakage current versus voltage characteris-
tics under the illumination of UV light using an Ar laser
sl=350 nmd. Figure 1 shows a the reverse leakage current of

p+n diodes on(0001) and s112̄0d wafers in the dark and in
the UV light. The doping density of then− epitaxial layer for
both samples is approximately 431016 cm−3 The breakdown

voltage of ap+n diode on as112̄0d wafer is 50% –60% of
that on a(0001) wafer. It should be noted that ap+n diode on

s112̄0d shows very small leakage current to the avalanche

breakdown voltage. Mostp+n diodes ons112̄0d wafers did
not show a small leakage current, as indicated in Fig. 1.

From Fig. 1, we can also see that the multiplication fac-

tor of a p+n diode ons112̄0d is smaller than that of ap+n
diode on(0001). This means that the imbalance between the
hole-impact ionization coefficientsbd and the electron-
impact ionization coefficientsad is small compared with the
case of(0001) face, as shown later.

Figure 2 shows the measured results of the avalanche

breakdown voltages forp+n diodes on(0001) and s112̄0d
4H-SiC wafers as a function of doping density of then-type
epitaxial layer. In Fig. 2, the result for Ref. 1 is shown for the
purpose of comparison. The doping-dependent breakdown
voltage ofp+n diodes on the(0001) wafer is 10% larger than
that in Ref. 1. The breakdown voltage of thep+n diodes is
expressed by the following formula: VBD=1940
3 s1016/NDd0.8 for a (0001) face and VBD=1200

3 s1016/NDd0.8 for a s112̄0d face. The breakdown voltage of

a p+n diode on as112̄0d wafer is 60% of that on a(0001)
wafer in the case that the doping density of the epitaxial

layer is the same. Thus, in designing the structure of power
devices made of 4H-SiC, it is necessary to pay attention to
the direction of the high electric field when the reverse volt-
age is applied.

The impact ionization coefficients are obtained by the
combined fitting procedure of the multiplication versus volt-
age characteristics and breakdown voltage-doping density
curve, as mentioned above. The impact ionization coefficient
model commonly used in the device simulator is based on
the model suggested by Chynoweth:5 a=ae exps−be/Fd, b
=ah exps−bh/Fd, whereF represents the magnitude of the
electric field. Other parameters are fitting parameters. The
calibrated parameters of the electron- and hole-impact ion-
ization coefficients model are summarized in Table I. Figure
3 shows the obtained impact ionization coefficients ink0001l
direction and those ink112̄0l direction. It can be seen that

the ionization coefficients ink112̄0l direction are larger than
those ink0001l direction. Further, the asymmetry of the elec-

tron and hole-ionization coefficients ink112̄0l direction is
smaller than that ink0001l direction.

Now we discuss the origin of the anisotropy of the im-
pact ionization coefficients of 4H-SiC from the physical and
theoretical points of view. The impact ionization coefficient
for electrons is expressed by the integral of the product of the
impact ionization rate and distribution function,

a =
1

nvd
E

0

`

dEwiisEdfsEdrsEd, s1d

wheren, vd, fsEd, wiisEd, andrsEd denote electron density,
drift velocity, distribution function, impact ionization rate,
and density of states, respectively.6 Impact ionization for
holes can be viewed as a mirror image of the impact ioniza-

FIG. 2. Measured results of the avalanche breakdown voltages forp+n di-

odes on(0001) and s112̄0d wafers as a function of doping density of the
n-type epitaxial layer.

TABLE I. Parameters of the electron- and hole-impact ionization coeffi-
cients of4H-SiC.

Parameter k0001l k112̄0l

aescm−1d 1.763108 2.103107

besV/cmd 3.303107 1.703107

ahscm−1d 3.413108 2.963107

bhsV/cmd 2.503107 1.603107

FIG. 3. Measured impact ionization coefficients in thek0001l direction and

those in thek112̄0l direction.
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tion for electrons, and so we treat only the electron impact
ionization. The Keldysh formula is assumed for the impact
ionization rate

wiisEd = CiisE − Ethda, s2d

where Eth is a threshold energy andCii is a fitting
parameter.7,8 The distribution functionfsEd is a solution of
the Boltzmann transport equation(BTE), which includes mi-
croscopic physical properties, such as the band-structure and
carrier scattering mechanisms. For easier comprehension, we
first adopt the “hydrodynamic” model to introduce the mean
quantities, such as carrier temperature and drift velocity, and
their relation with impact ionization coefficients.9 The BTE
is treated as a set of the kinetic equations for mean quantities
in the hydrodynamic model. After we can figure out the re-
lation between the mean quantities and impact ionization co-
efficients, we return to the discussion of the effect of micro-
scopic physical properties on high-field transport. In the
hydrodynamic model, the distribution function is assumed to
be nearly Maxwellian:

fsEd = exps− E/kBTed, s3d

whereTe is an electron temperature, or electron mean energy.
The relation between the electron temperature and the drift
velocity is derived from the energy balance equation, which
is one of the kinetic equations in the hydrodynamic model:

kBTe = kBTL + 2
3esvdtwdF < 2

3esvdtwdF for F @ 1,

s4d

whereTL andtw denote lattice temperature and energy relax-
ation time. Equations(1)–(3) indicate that the impact ioniza-
tion coefficient depends exponentially on the carrier tem-
perature, because hot carriers that have a larger energy than
Eth contribute to the impact ionization coefficient. If the car-
rier temperature varies according to the direction of the elec-
tric field, the impact ionization coefficient should be aniso-
tropic. Further, from Eq.(4), if the drift velocity under high
electric field is anisotropic, the impact ionization coefficient
should be anisotropic. The anisotropies of these quantities
are related to each other. However, we have to emphasize
that the anisotropy of mean quantity itself cannot be derived
in the framework of the hydrodynamic model. In order to
identify the origin of the anisotropy of the mean quantities,
we have to evaluate the effect of microscopic physical prop-
erties on high-field transport using the BTE, which is directly
solved by the Monte Carlo technique, considering the band-
structure and carrier scattering mechanisms. Monte Carlo
studies of high-field transport in 4H-SiC have shown aniso-
tropy of the carrier velocity, the carrier temperature and the
impact ionization coefficients; the carrier velocity, the carrier

temperature, and the impact ionization coefficients under the
electric field parallel to thec axis are much smaller than
those under the electric field perpendicular to thec axis.10–12

This is due to the highly anisotropic band structure of
4H-SiC, which is derived from a long period along thec axis
of the crystal structure of4H-SiC.

The anisotropy of the saturation velocity can be esti-
mated from anisotropy of the impact ionization coefficients
based on Eq.(4), if we assume that the drift velocity shows
saturation characteristics as for the electric field. The elec-
tron saturation velocity parallel to thec axis is about 60% of
that perpendicular to thec axis. The hole saturation velocity
parallel to thec axis is about 80% of that perpendicular to
the c axis.

In conclusion, the electric-field dependence and aniso-
tropy of the impact ionization coefficients of 4H-SiC are
obtained. The obtained impact ionization coefficients show

large anisotropy; the ionization coefficients ink112̄0l direc-
tion are larger than those in thek0001l direction and the
asymmetry of the electron and hole-ionization coefficients in

the k0001l direction is smaller than that in thek112̄0l direc-
tion. The anisotropy of the impact ionization coefficients is
originated from the anisotropic electronic structure or crystal
structure of 4H-SiC.
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