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We study two-dimensional σ-hole systems in boron layers by calculating the electronic struc-
tures of Mg1−xNaxB2 and Mg1−xAlxB2. In Mg1−xNaxB2, it is found that the concentration
of σ holes is approximately described by (0.8 + 0.8x) × 1022 cm−3 and the largest attainable
concentration is about 1.6×1022 cm−3 in NaB2. In Mg1−xAlxB2, on the other hand, it is found
that the concentration of σ holes is approximately described by (0.8 − 1.4x) × 1022 cm−3 and
σ holes disappear at x of about 0.6. These relationships can be used for experimental studies
on σ-hole systems in these materials.

KEYWORDS: MgB2, NaB2, AlB2, σ holes, two dimension, hole concentration

Recently, Nagamatsu et al. have discovered that magnesium diboride, MgB2, is a superconduc-

tor with a high transition temperature, Tc, of 39 K.1) Extensive studies have now started both

experimentally and theoretically. In particular, since MgB2 can be regarded as a starting material

for undiscovered high-Tc superconductors, it is important to search for various materials derived

from MgB2.

The structure of MgB2 consists of layers of triangular lattices of Mg atoms and layers of honey-

comb lattices of B atoms.2) This structure is basically the same as that of the alkali-metal binary

graphite intercalation compounds (GIC).3) Since Mg and B are light elements, where the s and p

atomic orbitals play dominant roles, the electronic structure of MgB2
4) is also very similar to those

of GIC.5) In spite of these similarities, there are no GIC superconductors developed with such a

high Tc; the highest Tc of alkali-metal GIC is only about 0.15 K for C8K.6)

One significant difference between MgB2 and GIC is the existence of the σ holes at the center

of the Brillouin zone,4) which are derived from the 2px and 2py atomic orbitals of B. Since the σ

bands in graphite layers are energetically very deep, the generation of σ holes is extremely difficult

in GIC. Furthermore, it is interesting to note that holes in boron layers will show characteristics

of two-dimensional (2D) systems. As revealed thus far, 2D systems can provide a rich variety of

physics and possibilities of applications. It is thus important for understanding the properties of

MgB2 and its derivatives to study the electronic structures of the σ-hole systems in boron layers.
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In this Letter, we study the 2D σ-hole systems in Mg1−xNaxB2 and Mg1−xAlxB2 at x=0, 1/3,

2/3, and 1 by calculating the electronic structures of these materials based on the density functional

theory. The main results of the present study are as follows. In Mg1−xNaxB2, since Na is a monova-

lent metal, the concentration of σ holes is increased with increasing x, approximately described by

(0.8+0.8x)×1022cm−3. In Mg1−xAlxB2, on the contrary, since Al is a trivalent metal, the concen-

tration of σ holes is reduced with increasing x, approximately described by (0.8−1.4x)×1022cm−3.

In the latter case, the σ holes disappear at x of about 0.6. These results can be used for experimental

studies on σ-hole systems in these materials.

In the present study, we carry out first-principles calculations based on the density functional

theory with the local density approximation7–10) by considering all electrons. To confirm the

reliability of the results, the Kohn-Sham equations are solved using both the mixed-basis method

and the linear-combination-of-atomic-orbital (LCAO) method.11) In this paper, we present the

results obtained using the mixed-basis method although the same results can also be obtained

using the LCAO method. The cut-off energy used for plane waves is 50 eV and the atomic orbitals

employed as localized orbitals are given in Table I. We use not only the atomic orbitals of neutral

atoms but also those of charged atoms to increase the variational flexibility. The number of used

k points in the full Brillouin zone is 52 for the structure optimization of NaB2 and 185 for the

electronic structure calculations of NaB2, MgB2, and AlB2. Moreover, that used in the calculations

of Mg1−xNaxB2 and Mg1−xAlxB2 is 104.

We first calculate the electronic structures of NaB2, MgB2, and AlB2. The calculations are

performed using the experimental lattice constants of MgB2 and AlB2; a = 3.084 Å and c = 3.522

Å are used for MgB2 and a = 3.009 Å and c = 3.262 Å are used for AlB2. On the other hand,

since NaB2 is a hypothetical material at present, it is necessary to optimize the lattice constants

of this material. The resultant constants a and c are 3.02 Å and 4.19 Å, respectively, and are used

for NaB2. To confirm the reliability of this result, we also optimize the structure of MgB2 and find

that the errors for a and c are −2 % and +0.5 %, respectively. We thus believe that the result

for NaB2 is also reliable with the same accuracy. The lattice constants c of these materials can be

understood by considering the fact that the ionic radii of Na+, Mg2+, and Al3+ are 0.97 Å, 0.65

Å, and 0.50 Å, respectively.

In Figs. 1(a), 1(b), and 1(c), the calculated electronic structures of NaB2, MgB2, and AlB2 are

shown, respectively. The dotted lines in the figures indicate the Fermi level. The most impressive

point is the position of the top of the σ bands derived from the 2px and 2py atomic orbitals of B.

In NaB2 and MgB2, the top of the σ bands is above the Fermi level, and accordingly, there exist

σ holes in these materials. This is in strong contrast to the fact that there are no σ holes in GIC.

Since Na is a monovalent metal while Mg is a divalent metal, the concentration of σ holes is higher

in NaB2 than in MgB2. Thus, the concentration of the σ holes can be increased when we increase
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x in Mg1−xNaxB2. On the contrary, in AlB2, the top of the σ bands is below the Fermi level and

accordingly there are no σ holes in this material. Thus, the concentration of σ holes is reduced

when we increase x in Mg1−xAlxB2, and eventually they disappear at a certain value of x.

Furthermore, since the dispersion of the top of the σ bands of all the materials is very small along

the Γ-A direction, the σ holes can exhibit characteristics of 2D systems such as large fluctuation.

This is in strong contrast to the three-dimensionality of other carriers in these materials. In all the

materials studied, there exist three-dimensional (3D) π electrons and/or holes. Moreover, in AlB2,

there exist a small number of 3D electrons in the nearly free electron state at the Γ point, which

is derived from the hybridization between the 3s atomic orbitals of Al and the interlayer state of

boron layers; this is very similar to the situation in C8K, where the nearly free electrons also exist

at the Γ point.12) It should be noted that, in GIC, there exist π electrons and/or holes and also

nearly free electrons and not σ holes.

Next, we study the electronic structures of Mg1−xNaxB2 and Mg1−xAlxB2 at x=0, 1/3, 2/3,

and 1. In the calculations, we assume an in-plane (
√

3 ×
√

3) structure, as shown in Fig. 2. This

structure is simple because the threefold rotation axis also exists as in the (1×1) original structure,

and thus, the same Brillouin zone can be used. We also assume that the lattice constants of these

materials can be obtained by linearly interpolating between the lattice constants of MgB2 and NaB2

or AlB2. As an example, we show the result for Mg2/3Na1/3B2 in Fig. 3. The obtained electronic

structure can be understood by considering the folding of the original band structures shown in

Fig. 1. The σ bands are easily identified to be the bands with small dispersion along the Γ-A

direction immediately above the Fermi level.

In Fig. 4, we show the top of the σ bands in Mg1−xNaxB2 and Mg1−xAlxB2 as a function of x.

The dotted line in the figure indicates the Fermi level. It is found that the dependence is monotonic

and the largest attainable value is 1.8 eV for NaB2. We also find that, in Mg1−xAlxB2, the top of

the σ bands is below the Fermi level for x larger than about 0.6, that is, the σ holes disappear for

such x. The dependence on x for the entire region from NaB2 to AlB2 via MgB2 shown in Fig. 4

cannot be fitted with a single straight line. It is necessary to fit the result with a curve or, at least,

with two straight lines, one for Mg1−xNaxB2 and the other for Mg1−xAlxB2. If we select the latter

choice, the result can be fitted with

εtop = 0.90 + 0.91x eV (0.1)

for Mg1−xNaxB2 and with

εtop = 0.90 − 1.57x eV (0.2)

for Mg1−xAlxB2. Here, we ignore the point for AlB2 in obtaining the above formulae because some

quantities, including the top of the σ bands and the cohesive energy as shown below, are not on
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the same straight line as the other Mg1−xAlxB2; this can be ascribed to the existence of the nearly

free electrons in AlB2 which do not exist in the other Mg1−xAlxB2 calculated in the present study.

In Fig. 5, we show the cohesive energy of Mg1−xNaxB2 and Mg1−xAlxB2 as a function of x. It is

found that the most stable material is AlB2 and the least stable one is NaB2. The dependence on

x for the entire region from NaB2 to AlB2 via MgB2 can be described by a single straight line if

we ignore the point for AlB2 because the cohesive energy may be affected by the existence of the

nearly free electrons as mentioned above. The result can be fitted with

Ec = 5.59 − 0.62x eV/atom (0.3)

for Mg1−xNaxB2 and with

Ec = 5.59 + 0.62x eV/atom (0.4)

for Mg1−xAlxB2. Although NaB2 is a hypothetical material at present, we believe that this material

can be synthesized under some appropriate conditions because the cohesive energy of NaB2, about

5 eV/atom, is not very small; it is almost the same as that of the bulk Si.

Next, we study the dependence of the concentration of σ holes on x by assuming a constant

density of states for the upper region of the σ bands. This assumption is good as long as two

conditions are satisfied; one is that the dispersion along the Γ-A direction is very small and the

other is that the deviation from the in-plane free-electron-like dispersion is negligible. Since both

conditions are satisfied as shown in Fig. 1, we derive the formulae which give the concentration of

σ holes for a given x. First, it is necessary to fit the in-plane free-electron-like dispersion using

effective masses for heavy and light holes. As a result, we find that the effective mass for heavy

holes is 0.5me and that for light holes is 0.3me, where me is the mass of free electrons. Next, by

combining these results with those shown in Fig. 4, the following formulae are derived to determine

the concentration of the σ holes:

nh = (0.8 + 0.8x) × 1022 cm−3 (0.5)

or

nh = 0.12 + 0.12x /B atom (0.6)

for Mg1−xNaxB2 and

nh = (0.8 − 1.4x) × 1022 cm−3 (0.7)

or

nh = 0.12 − 0.21x /B atom (0.8)
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for Mg1−xAlxB2. Thus, in Mg1−xNaxB2, the largest attainable concentration of σ holes is about

1.6× 1022 cm−3 in NaB2. In Mg1−xAlxB2, on the other hand, σ holes disappear at x of about 0.6.

Here, we discuss the possibility of LiB2 as a candidate for increasing the concentration of σ holes.

Although one may expect that LiB2 is the most plausible candidate because of the almost same

ionic radius of Li+, 0.68 Å, as that of Mg2+, this may not be the case. We have found that the

structure optimization of LiB2 results in strong contraction of c, which is found to be less than 3

Å. The result strongly conflicts with a simple expectation that the lattice constant c of LiB2 should

be about 3.6 Å if we estimate it by considering the ionic radius of Li+. To elucidate the stable

structure of LiB2, our study on this is now in progress. In spite of this result, one can still expect

that Mg1−xLixB2 for sufficiently small x can be synthesized because the introduction of sufficiently

small Li cannot affect the lattice constant c very strongly.

We next discuss the difference between MgB2 and other metal diborides such as transition-metal

(TM) diborides13) and noble-metal diborides, AgB2 and AuB2. The most important point is the

absence of d atomic orbitals in MgB2 in contrast to the existence of d atomic orbitals in other

metal diborides. In particular, since the d atomic orbitals in TM are partly filled, they form strong

covalent bonding with σ bonds of boron layers. This can destroy a 2D σ-hole system in boron

layers; we have calculated the electronic structures of some TM diborides and have found that the

σ bands of boron layers are strongly affected by the covalent bonding with d atomic orbitals of

TM. On the other hand, AgB2 and AuB2 can be candidates for materials similar to MgB2. The

reason for this is that the σ holes may survive in these materials because d atomic orbitals in these

materials should be sufficiently lower than the Fermi level, and thus, the hybridization between the

d atomic orbitals and the σ bands may occur at a lower-energy region.

We finally discuss the possible relationship between the superconductivity in MgB2 and the 2D

σ-hole systems in boron layers. If the superconductivity in Mg1−xAlxB2 disappears at x of about

0.6, it should be caused by the σ-hole systems. In addition, there are no TM diborides with Tc

as high as that of MgB2; this may be due to the fact that they have no σ holes. If this is the

case, both the electron-phonon interaction and the electron correlation may be the likely origins

of the superconductivity. Since σ bonds, particularly those of B, C, N, and O, are very strong,

the interaction between the σ holes and the in-plane σ-bond vibration is also expected to be very

strong. Furthermore, this electron-phonon coupling can result in a superconductivity of high Tc

because the frequency of the σ-bond vibration is of the order of 0.2 eV. On the other hand, the

electron correlation in the σ holes appears also important for the properties of the σ-hole system

in MgB2 because the wave function of the σ holes is localized to a considerable degree.
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Figure Captions

Fig. 1. Band structures of (a) NaB2, (b) MgB2, and (c) AlB2. The dotted lines indicate the Fermi level.

Fig. 2. In-plane (
√

3 ×
√

3) structure (dashed lines) used in the electronic structure calculations of Mg1−xMxB2

(M=Na or Al, x=0, 1/3, 2/3, and 1) and original (1 × 1) structure (dotted lines). Small closed circles represent

B atoms and large circles represent the other atoms. For x=0, all the large circles are Mg atoms. For x=1/3,

open and hatched circles are Mg and M atoms, respectively. For x=2/3, open and hatched circles are M and Mg,

respectively. For x=1, all the large circles are M atoms.

Fig. 3. Band structure of Mg2/3Na1/3B2. The dotted lines indicate the Fermi level.

Fig. 4. Top of the σ bands as a function of x. The horizontal axis is from NaB2 to AlB2 via MgB2. The dotted

line indicates the Fermi level. The solid line fits the four points for Mg1−xNaxB2. The dotted-dashed line fits the

three points for Mg1−xAlxB2, ignoring the point for AlB2.

Fig. 5. Cohesive energy as a function of x. The horizontal axis is from NaB2 to AlB2 via MgB2. The solid line fits

the six points for Mg1−xNaxB2 and Mg1−xAlxB2, ignoring the point for AlB2.
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Table I. Atomic orbitals used for mixed-basis calculations.

Atom Atomic orbitals (atomic charge)

B 1s,2s,2p(neutral)

Na 1s,2s,2p,3s(neutral)

Mg 1s,2s,2p,3s(neutral); 3p(1+); 3d(2+)

Al 1s,2s,2p,3s,3p(neutral); 3d(2+)
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