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A new approach to study the equation of state in finite-temperature QCD is proposed on the lattice.

Unlike the conventional method in which the temporal lattice size Nt is fixed, the temperature T is varied

by changing Nt at the fixed lattice scale. The pressure of the hot QCD plasma is calculated by the

integration of the trace anomaly with respect to T at the fixed lattice scale. This ‘‘T-integral method’’ is

tested in quenched QCD on isotropic and anisotropic lattices and is shown to give reliable results,

especially at intermediate and low temperatures.

DOI: 10.1103/PhysRevD.79.051501 PACS numbers: 12.38.Gc, 12.38.Mh

I. INTRODUCTION

The equation of state (EOS) is one of the most funda-
mental observables to identify different phases in quantum
chromodynamics (QCD) at finite temperature T. Also, it is
an essential input to describe the space-time evolution of
the hot QCD matter created in relativistic heavy ion colli-
sions [1]. So far, lattice QCD is the only systematic method
to calculate EOS for a wide range of T across the region of
the hadron-quark phase transition (see the recent review,
[2]).

Conventionally, the EOS on the lattice is extracted from
a method in which T ¼ ðNtaÞ�1 is varied by changing the
lattice scale a (or equivalently the lattice gauge coupling
� ¼ 6=g2) at a fixed temporal lattice size Nt. Using the
thermodynamic relation p ¼ ðT=VÞ lnZ, with V being the
spatial volume and Z being the partition function, the
pressure p is calculated as [3]

p ¼ T

V
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Here S is the lattice action and h� � �i is the thermal average
with a zero-temperature contribution subtracted. (In multi-
parameter cases such as QCD with dynamical quarks, ‘‘�’’
should be generalized to the position vector in the coupling
parameter space [4].) The initial point of integration �0 is
chosen in the low temperature phase from the condition
pð�0Þ � 0.

In this conventional method, a major part of the compu-
tational cost is devoted to zero-temperature simulations;
they are necessary to set the lattice scale and to carry out
zero-temperature subtractions at the simulation points.
Furthermore, for the calculation of the trace anomaly ��
3p, with � being the energy density, the nonperturbative
beta functions have to be determined by zero-temperature

simulations at the same simulation points. In multipara-
meter cases, simulations should be performed on a line of
constant physics (LCP) in the coupling parameter space in
order to identify the effect of temperature on a given
physical system. LCP’s should be determined also at T ¼
0. These zero-temperature simulations for a wide range of
coupling parameters are numerically demanding, in par-
ticular, for QCD with dynamical quarks.
In this paper, we push an alternative approach where

temperature is varied by Nt with other parameters fixed.
The fixed scale approach has been applied with the deriva-
tive method [5] in, e.g., Ref. [6]. However, determination
of nonperturbative Karsch coefficients for all the simula-
tion points requires quite a bit of work, which will not be
easy for QCD with dynamical quarks. Here, we propose a
new method, ‘‘the T-integral method’’: To calculate the
pressure nonperturbatively, we use

p

T4 ¼
Z T

T0

dT
�� 3p

T5
; (2)

which is obtained from the thermodynamic relation that is
valid at the vanishing chemical potential:

T
@

@T

�
p

T4

�
¼ �� 3p

T4
: (3)

The initial temperature T0 is chosen such that pðT0Þ � 0.
Calculation of �� 3p requires the beta functions just at the
simulation point, but no further Karsch coefficients are
necessary. Since T is restricted to have discrete values,
we need to make an interpolation of ð�� 3pÞ=T4 with
respect to T.
Since the coupling parameters are common to all tem-

peratures, our fixed scale approach with the T-integral
method has several advantages over the conventional ap-
proach: (i) T ¼ 0 subtractions can be done by a common
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zero-temperature simulation, (ii) the condition to follow
the LCP is obviously satisfied, and (iii) the lattice scale as
well as beta functions are required only at the simulation
point. As a result of these conditions, the computational
cost needed for T ¼ 0 simulations is largely reduced. We
may even borrow results of existing high precision spec-
trum studies at T ¼ 0, which are publicly available e.g. on
the International Lattice Data Grid [7]. On the other hand,
when the beta functions are not available, we need to
perform additional T ¼ 0 simulations around the simula-
tion points, as in the case of the conventional method.

For a continuum extrapolation, we need to repeat the
calculation at a couple of lattice spacings. If we adopt
coupling parameters from T ¼ 0 spectrum studies in which
the continuum extrapolation has already been performed,
we can get all the configurations for T ¼ 0 subtractions.
Furthermore, because the lattice spacings in spectrum
studies are usually smaller than those used in conventional
fixed-Nt studies around the critical temperature Tc, the
values of Nt in our approach are much larger there than
those in conventional studies. For example, at a �
0:07 fm, T � 175 MeV is achieved by Nt � 16.
Therefore, for thermodynamic quantities around Tc, we
can largely reduce the lattice artifacts due to large a and/
or small Nt over the conventional approach, without high
computational costs for T ¼ 0 calculations. This is also
good news for phenomenological applications of the EOS,
since the temperature achieved in the relativistic heavy ion
collisions at the Relativistic Heavy Ion Collider and the
LHC will be, at most, up to a few times the critical
temperature [1]. On the other hand, calculation of the trace
anomaly around and below Tc with large values of Nt may
require high statistics due to large cancellations by the T ¼
0 subtraction. We note here that, as T increases, Nt be-
comes small and hence the lattice artifact increases.
Therefore, our approach is not suitable for studying how
the EOS approaches the Stephan-Boltzmann value in the
high T limit.

The outline of this paper is as follows. After introducing
our lattice action and the trace anomaly in Sec. II, we test
our T-integral method in SU(3) gauge theory on an iso-
tropic lattice in Sec. III and on an anisotropic lattice in
Sec. IV. The last section is devoted to a summary and
conclusions.

II. LATTICE ACTION

We study SU(3) gauge theory with the standard pla-
quette gauge action on isotropic and anisotropic lattices
with the spatial (temporal) lattice size Ns (Nt) and lattice
spacing as (at). The lattice action is given by

S ¼ ��0
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whereU��ðxÞ is the plaquette in the�� plane and� and �0

are the bare lattice gauge coupling and bare anisotropy
parameters. The trace anomaly is obtained as
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where � ¼ as=at is the renormalized anisotropy and
asð@�=@asÞ� is the beta function. Note that ð@�0=@�Þ� ¼
0 on isotropic lattices.

III. EOS ON AN ISOTROPIC LATTICE

Our simulation parameters are listed in Table I. We
calculate the EOS on three isotropic lattices to study the
volume and lattice spacing dependence. The ranges of Nt

correspond to T ¼ 210–700 MeV for the sets i1 and i2,
and T ¼ 220–730 MeV for i3. The critical temperature
corresponds to Nt � 7–8 for i1 and i2, and �10 for i3,
assuming Tc � 290 MeV in quenched QCD with the
Sommer scale r0 ¼ 0:5 fm. Set a2 will be discussed in
the next section. The zero-temperature subtraction is per-
formed withNt ¼ 16 for i1 and i2, and withNt ¼ 22 for i3.
We generate up to a few million configurations using the
pseudo-heat-bath algorithm. Statistical errors are estimated
using the jackknife analysis. Typically, bin sizes of a few
thousand configurations are necessary near Tc, while a few
hundred are sufficient off the transition region.
Figure 1 shows ð�� 3pÞ=T4. Dotted lines in the figure

are the natural cubic spline interpolations. For comparison,
we also reproduce the result of the fixedNt method atNt ¼
8 and Ns ¼ 32 [9], for which we have rescaled the hori-
zontal axis by Tc ¼ 290 MeV according to our choice of
r0 ¼ 0:5 fm. At and below Tc, lattice size dependence is
visible among sets i1 (L � 1:5 fm) and i2 (2.2 fm) and the
fixed Nt ¼ 8 result (2.7 fm). On the other hand, the lattice
spacing dependence is negligible between i1 (a �
0:093 fm) and i3 (0.068 fm). At higher T, ð�� 3pÞ=T4

TABLE I. Simulation parameters on isotropic and anisotropic
lattices. On isotropic lattices, we adopt the r0=a of [8] and the
beta function of [9]. The anisotropy r0=as is from [10], while the
beta function is calculated in Sec. IV. The lattice scale as and
lattice size L ¼ Nsas are calculated with r0 ¼ 0:5 fm.

Set � � Ns Nt r0=as as(fm) L(fm) aðdg�2=daÞ
i1 6.0 1 16 3–10 5:35ðþ2

�3Þ 0.093 1.5 �0:098 172
i2 6.0 1 24 3–10 5:35ðþ2

�3Þ 0.093 2.2 �0:098 172
i3 6.2 1 22 4–13 7.37(3) 0.068 1.5 �0:112 127
a2 6.1 4 20 8–34 5.140(32) 0.097 1.9 �0:107 04
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on our three lattices show good agreement; however, they
slightly deviate from the fixed Nt one at T > 600 MeV,
presumably due to the coarseness of our lattices at these
temperatures.

The integration of (2) is performed numerically using
the natural cubic spline interpolations shown in Fig. 1. For
the initial temperature T0 of the integration, we linearly
extrapolate the ð�� 3pÞ=T4 data at the few lowest T’s
because the values of ð�� 3pÞ=T4 at our lowest T are
not exactly zero. In this study, we commonly take T0 ¼
150 MeV as the initial temperature which satisfies ð��
3pÞ=T4 ¼ 0, and estimate the integration from T0 to the
lowest T by the area of the triangle.

We estimate the statistical error for the T integration by
the jackknife analysis at each T and accumulate the con-
tributions from different T’s by the error propagation [11],
because simulations at different Nt are statistically inde-
pendent. Note that the error for the lattice scale does not

affect the dimensionless quantity p=T4. Error bars shown
in the figures represent the statistical errors.
To estimate the systematic error due to the interpolation

ansatz, we compare the results of p=T4 using cubic spline
interpolation and those with the trapezoidal rule in Fig. 2.
(The results on the anisotropic � ¼ 4 lattice will be dis-
cussed later.) We find that the size of systematic errors due
to the interpolation ansatz is comparable to that of the
statistical ones. In Fig. 3, we note that the natural cubic
spline interpolation curve of ð�� 3pÞ=T4 for set i2 shows
small negative values at T � 250 MeV due to the nearby
sharp edge at T � 260 MeV. From a comparison with the
results of trapezoidal interpolation for that range, we find
that the effect of this bump on the value of p=T4 at T >
250 MeV is 0.032. Although a negative pressure is unphys-
ical, because this shift in p=T4 is smaller than the statistical
errors, we disregard the effects of the negative pressure in
this paper. To avoid arbitrary data handling, we just adopt
the results of natural cubic spline interpolations as the
central values in the following.
In Fig. 3, we summarize the results of the EOS. Results

on the anisotropic lattice (a2) will be discussed later. The
normalized energy density �=T4 is calculated by combin-
ing p=T4 and ð�� 3pÞ=T4.
We find that, except for the vicinity of Tc, the EOS is

rather insensitive to the variation of lattice size (between
L � 1:5 fm and 2.2 fm) and lattice spacing (between a �
0:093 fm and 0.063 fm). The results of the EOS agree
within 10% for our variation of lattice parameters. This
is in part due to the fact that ð�� 3pÞ=T4 is not so sensitive
to the lattice parameters up to high temperatures. Note also
that, because ð�� 3pÞ=T4 ¼ 0 in the high temperature
limit, the increasingly large lattice artifacts at large T are
naturally suppressed in the T integration. Looking more
closely at the T * Tc region, we note that both p and �
have a slight tendency to decrease as the lattice size (lattice
spacing) becomes larger (smaller).
Near and below Tc, we observe a sizable finite size effect

between L � 1:5 fm (i1) and 2.2 fm (i2), while the effect
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FIG. 1 (color online). Trace anomaly on isotropic lattices as a
function of physical temperature. The dotted lines are natural
cubic spline interpolations. Horizontal errors due to the lattice
scale are smaller than the symbols.
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FIG. 2 (color online). Comparison of the pressure using different interpolation functions for integration. Statistical errors are
estimated using the jackknife method [11].
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of the lattice spacing is quite small (i1 and i3). Therefore,
for a reliable simulation, we need, at least, L * 2 fm.

Our results are qualitatively consistent with the previous
EOS by the fixed Nt method [9]. Quantitatively, our results
are slightly above the fixed Nt results. The discrepancy can
be understood in part by smaller spatial volumes below Tc

and the small values of Nt at higher T in our method.

IV. THE EOS ON AN ANISOTROPIC LATTICE

An anisotropic lattice with a temporal lattice finer than
the spatial one is expected to improve the resolution of T
without increasing the computational cost much. To further
test the systematic error due to the resolution of T, we
perform the study using the T-integral method on an
anisotropic lattice with the renormalized anisotropy � ¼ 4.

The simulation parameters are given as set a2 in Table I,
which are the same as those adopted in [10]. We vary Nt ¼
34� 8 corresponding to T ¼ 240–1010 MeV. The zero-
temperature subtraction is performed with Nt ¼ 80.
( ¼ 20� �). We generate up to a few million con-
figurations.

We calculate the beta function asð@�=@asÞ� by fitting

the r0=as data [10,12] with Allton’s ansatz [13].

as=r0 ¼ Rð�Þ � Að1þ Bf̂2ð�Þ þ Cf̂4ð�ÞÞ; (8)

where

Rð�Þ ¼
�
6b0
�

��b1=ð2b20Þ
exp

�
� �

12b0

�
;

f̂ð�Þ ¼ Rð�Þ=Rð6:10Þ; b0 ¼ 11

16�2
;

b1 ¼ 102

ð16�2Þ2 :

The best fit is achieved by A ¼ 76:0ð1:5Þ, B ¼ 0:190ð32Þ,
and C ¼ 0:0204ð87Þ with �2=dof ¼ 12:6=6. The beta
function is now obtained by

as

�
@�

@as

�
�
¼ 12b20�

6b1 � b0�

1þ Bf̂2 þ Cf̂4

1þ 3Bf̂2 þ 5Cf̂4
; (9)

and its value at our simulation point is given in Table I. For
ð@�0=@�Þ� we adopt the result of [14].

In Fig. 4, we compare the trace anomaly obtained on the
anisotropic lattice with that on the isotropic lattice with
similar as and L (set i2). We find that the results are
generally consistent with each other, while, due to the
cruder resolution in T, the natural cubic spline interpola-
tion for the i2 lattice slightly overshoots the data on the a2
lattice around the peak at T � 320 MeV. We note that the
height of the peak on the a2 lattice is similar to that of the
fine i3 lattice shown in Fig. 1 as well as the fixed Nt ¼ 8
result. Similar to the case of the isotropic lattice, our result
slightly overshoots the fixed Nt result below Tc and at T >
600 MeV. Around the sharp lower edge at T � 250 MeV,
the undershooting of the natural cubic spline interpolation
on the i2 lattice, discussed in the previous section, is
avoided by the finer data points on the a2 lattice.
The results of pressure on the a2 and i2 lattices are

compared in the lower panel of Fig. 2. While they are
roughly consistent with each other, we find that the pres-
sure on the anisotropic lattice is slightly smaller than that
on the isotropic lattice. This is in part due to the smaller
values of �� 3p around the peak at T � 320 MeV. We
also note that the trace anomaly on the a2 lattice has a
slight tendency to be systematically lower than that on the
i2 lattice by about 1� on the high temperature side.
When we consider the difference between the a2 and i2

lattices as the systematic error due to the cruder T resolu-
tion of the i2 lattice, the systematic error is about 2–3 times
larger than the estimation in the previous section from a
comparison of different interpolation ansätze. Therefore,
for an estimation of the systematic error on isotropic
lattices, it may be safer to assume errors a few times larger
than those estimated from a comparison of different inter-
polation ansätze.
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continuum S.B. limit
fixed Nt=8 result [9]
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FIG. 3 (color online). The EOS on isotropic and anisotropic
lattices. The dashed horizontal line represents the free gas case in
the continuum (Stefan-Boltzmann limit).
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FIG. 4 (color online). Trace anomaly on isotropic and aniso-
tropic lattices with similar spatial lattice spacing and lattice size.
The dotted lines are natural cubic spline interpolations.
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Some part of this difference in the EOS between a2 and
i2 lattices might be explained by the difference of the
lattice spacing in the temporal direction, since lattice arti-
facts of thermodynamic quantities generally have domi-
nant contributions from the temporal lattice spacing [15].
Indeed, this interpretation is supplemented by the fact that
the difference in the EOS between i1 and i3 has a similar
tendency, as shown in Fig. 3. We reserve further investiga-
tion of this possibility for future study.

V. CONCLUSIONS

We proposed a fixed scale approach to investigate finite-
temperature QCD on the lattice. To calculate the EOS
nonperturbatively at a fixed scale, we introduced the
T-integral formula (2), in which p is calculated as an
integration of the trace anomaly �� 3p with respect to
T. The fixed scale approach using the T-integral method
enables us to efficiently utilize the results of previous T ¼
0 spectrum studies. At intermediate and low temperatures,
we can largely reduce the lattice artifacts compared to the
fixed Nt approach. On the other hand, our approach is not
suitable for studying the approach to the high T limit
because of the small Nt there. Also, around and below
Tc, the large values of Nt may require high statistics due
to large cancellations by the T ¼ 0 subtraction.

To test the T-integral method, we performed a series of
simulations of SU(3) gauge theory on isotropic and aniso-
tropic lattices. We found that the method works quite well.
Our results of the EOS for the quenched QCD on isotropic
and anisotropic lattices are summarized in Fig. 3, and are
qualitatively consistent with the previous results using the
conventional fixed Nt approach.

Our EOS in the high temperature region turned out to be
roughly independent of the lattice spacing, lattice volume,
and anisotropy. All the results agree within about 10% for
the range of our lattice parameters. With small statistical
errors of less than about 2%, we identified small systematic
shifts under the variations of lattice parameters. Their

smallness will be useful for precise continuum extrapola-
tions. Around the critical temperature, we found that the
lattice size should be at least larger than about 2 fm.
The fixed scale approach using the T-integral method is

applicable to QCD with dynamical quarks too. With dy-
namical quarks, it is more convenient to simulate isotropic
lattices, because the tuning of anisotropy parameters, as
well as the determination of the factors @�0=@� in (7),
requires quite a bit of work for full QCD. Therefore, it is
important to estimate the systematic error in the EOS due
to the limited resolution of T on an isotropic lattice. From
the test of quenched QCD presented in this paper, we found
that this systematic error is under control and its order of
magnitude can be correctly estimated by a comparison of
different interpolation ansätze, though it may be safer to
introduce a factor of about 2–3 to the estimates.
We are currently investigating the EOS in 2þ 1 flavor

QCD with nonperturbatively improved Wilson quarks, us-
ing the configurations by the CP-PACS/JLQCD
Collaboration [16], which are publicly available on the
International Lattice Data Grid [7]. The pseudocritical
temperature (� 175 MeV) is around Nt � 16 on the finest
lattice with a � 0:07 fm. We are further planning to extend
the study to use the 2þ 1 flavor configurations by the
PACS-CS Collaboration generated just at the physical
values of the light quark masses [17].
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