

Promoting effect of MgO addition to Pt/Ni/CeO2/AI2O3 in the steam gasification of biomass

著者	Nakamura Kazuya, Miyazawa Tomohisa, Sakurai Takuya, Miyao Toshihiro, Naito Shuichi, Begum Noorjahan, Kunimori Kimio, Tomishige Keiichi
journal or	Applied catalysis. B, Environmental
publication title	
volume	86
number	1-2
page range	36-44
year	2009-02
権利	(C) 2008 Elsevier B.V.
URL	http://hdl.handle.net/2241/101730

doi: 10.1016/j.apcatb.2008.07.016

catalysts	BET surface area / m ² ·g ⁻¹ -cat	H_2 consumption ^{a)} / 10 ⁻³ mol·g ⁻¹ -cat	Ni-based reduction degree ^{b)} / %	H_2 adsorption ^{c)} / 10 ⁻⁵ mol·g ⁻¹ -cat	Dispersion ^{d)} / %	Particle size of Ni metal ^{e)} / nm
Ni/CA	17.4	1.40	89	4.1	5.9	16.6
Pt/Ni/CA	18.8	1.51	96	4.2	5.6	17.5
Ni/CMA	17.6	0.46	29	4.1	17.8	5.4
Pt/Ni/CMA	19.2	0.47	30	3.9	16.6	5.9
Ni/MA	9.0	0.16	10	2.6	32.5	3.0
Pt/Ni/MA	9.1	0.24	15	2.4	20.0	4.9

Table 1. Properties of the catalysts after H₂ pretreatment at 773K.

a) H₂ consumption below 773 K in TPR profiles shown in Figure 3.

b) Based on the assumption that $Ni^{2+} + H_2 \rightarrow Ni^0 + 2H^+$, and the reduction of Pt and CeO₂ was neglected.

c) H_2 adsorption is total adsorption at room temperature, and H/Ni = 1 is assumed.

d) $2 \times (H_2 \text{ adsorption}) / (H_2 \text{ consumption}) \times 100.$

e) Particle size of Ni metal is calculated by the relation: (particle size / nm) = 9.71 / (dispersion / %) \times 10.

Catalyst	Condition	Shells	CN ^{a)}	$R / 10^{-1} \text{ nm}^{\text{b}}$	$\sigma / 10^{-1} \text{ nm}^{\text{c}}$	$\Delta E_0 / \mathrm{eV}^{\mathrm{d}}$	$R_f / \%^{e}$
Pt/Ni/CA	reduction	Ni-Ni	10.4±1.5	2.49±0.008	0.073±0.012	-0.5±2.0	0.1
	reaction	Ni-Ni	6.8±1.0	2.49±0.009	0.076±0.012	-5.0±2.0	0.6
	regeneration	Ni-Ni	10.7±1.6	2.49±0.008	0.072±0.012	-0.7±2.0	0.1
		Ni-O	2.1±0.2	2.10±0.007	0.060±0.009	-2.4±0.5	0.9
	1	Ni-Ni	8.5±0.1	2.49±0.003	$0.077 {\pm} 0.001$	-1.1±0.1	
	reduction	Ni-O-Ni	2.8±0.3	2.93±0.005	0.068 ± 0.013	8.5±0.5	
		Ni-O-Mg	1.4±0.4	2.94±0.018	0.069 ± 0.017	3.4±1.4	
		Ni-O	1.8±0.2	2.10±0.009	0.072±0.018	-4.7±1.9	0.5
Pt/Ni/CMA		Ni-Ni	9.1±0.1	2.49±0.001	0.069 ± 0.001	-1.1±0.1	
	reaction	Ni-O-Ni	2.3±0.1	2.93±0.004	$0.071 {\pm} 0.005$	8.0±0.6	
		Ni-O-Mg	1.3±0.2	2.94±0.000	0.071 ± 0.019	-5.3±1.7	
	regeneration	Ni-O	2.1±0.8	2.10±0.018	0.068±0.013	-3.3±1.7	0.9
		Ni-Ni	8.6±0.1	2.49±0.000	$0.077 {\pm} 0.001$	-0.9±0.2	
		Ni-O-Ni	2.7±0.1	2.93 ± 0.006	0.063 ± 0.004	6.7±0.6	
		Ni-O-Mg	1.4±0.5	2.94±0.017	0.061 ± 0.020	5.1±1.6	
Ni foil	-	Ni-Ni	12	2.49	0.060	0.0	-
NiO	-	Ni-O	6	2.10	0.060	0.0	
	-	Ni-O-Ni	12	2.94	0.060	0.0	-

Table 2. Curve fitting results of Ni K-edge EXAFS of the Pt/Ni/CA and Pt/Ni/CMA catalysts.

a) Coordination number. b) Bond distance. c) Debye-Waller factor. d) Difference in the origin of photoelectron energy between the reference and the sample. e) Residual factor.

Fourier transform range: 30-160 nm⁻¹, Fourier filtering range: 0.126-0.292 nm.

Figure 1. Catalytic performance in steam gasification of cedar wood over the catalysts after H_2 reduction.

Conditions: biomass; 60 mg/min (H₂O 9.2 %, C 2191 μ mol/min; H 3543 μ mol/min; O 1475 μ mol/min), N₂ flow rate; 60 ml/min, (added H₂O)/C=0.5 (steam flow rate 1110 μ mol/min), reaction time; 15min, H₂ reduction 773 K, 30 min.

Figure 2. Catalytic performance in steam gasification of cedar wood over the catalysts after H_2 reduction.

Conditions: biomass; 60 mg/min (H₂O 9.2 %, C 2191 μ mol/min; H 3543 μ mol/min; O 1475 μ mol/min), N₂ flow rate; 60 ml/min, (added H₂O)/C=0.5 (steam flow rate 1110 μ mol/min), reaction time; 15 min, H₂ reduction 773 K, 30 min.

Figure 3. Catalytic performance in steam gasification of cedar wood at 923 K as a function of time on stream over the catalysts without H_2 reduction.

(a) Pt/Ni/CA (b) Pt/Ni/CMA

Conditions: biomass; 60 mg/min (H₂O 9.2 %, C 2191 μ mol/min; H 3543 μ mol/min; O 1475 μ mol/min), N₂ flow rate; 60 ml/min, (added H₂O)/C=0.5 (steam flow rate 1110 μ mol/min).

Figure 4. TPR profiles of the catalysts.

(a) Pt/Ni/CA (b) Ni/CA (c) Pt/Ni/CMA (d) Ni/CMA (e) Pt/Ni/MA (f) Ni/MA TPR condition: heating rate 10 K/min, Room temperature to 1273 K, and the temperature was maintained at 1273 K for 30 min. 5 % H₂/Ar flow rate 30 ml/min. Sample weight: 200 mg.

Figure 5. TEM images of the catalysts after H₂ pretreatment at 773K. (a) Pt/Ni/CA (b) Pt/Ni/CMA

Figure 6. Catalytic performance in steam gasification of cedar wood as a function of time on stream over the catalysts at 923 K.

(a) Pt/Ni/CA (b) Pt/Ni/CMA

Conditions: biomass; 60 mg/min (H₂O 9.2 %, C 2191 μ mol/min; H 3543 μ mol/min; O 1475 μ mol/min), N₂ flow rate; 60 ml/min, (added H₂O)/C=0.5 (steam flow rate 1110 μ mol/min), H₂ reduction at 773 K, 30 min.

Figure 7. Catalytic performance in steam gasification of cedar wood as a function of time on stream over the catalysts at 873 K.

(a) Pt/Ni/CA (b) Pt/Ni/CMA

Conditions: biomass; 60 mg/min (H₂O 9.2 %, C 2191 μ mol/min; H 3543 μ mol/min; O 1475 μ mol/min), N₂ flow rate; 60 ml/min, (added H₂O)/C=1 (steam flow rate 2220 μ mol/min), H₂ reduction at 773 K, 30 min.

Figure 8. XRD patterns of Pt/Ni/CA (I) and Pt/Ni/CMA (II).

 $\blacksquare = Ni, \bullet = CeO_2, \blacktriangle = Al_2O_3$

(a) After H_2 reduction, (b) after the reaction at 923 K (Figure 6), (c) after the regeneration.

Figure 9. Results of Ni K-edge EXAFS analysis of Pt/Ni/CA.

(a) After H_2 reduction, (b) after the reaction at 923 K (Figure 6), (c) after the regeneration.

I: k^3 -weighted EXAFS oscillation.

II: Fourier transform of k^3 -weighted Ni K-edge EXAFS. FT range : 30-160 nm⁻¹.

III: Fourier filtered EXAFS data (solid line) and calculated data (dotted line).

Fourier filtering range : 0.126 - 0.292 nm.

Figure 10. Results of Ni K-edge EXAFS analysis of Pt/Ni/CMA.

(a) After H_2 reduction, (b) after the reaction at 923 K (Figure 6), (c) after the regeneration.

I: k^3 -weighted EXAFS oscillation.

II: Fourier transform of k^3 -weighted Ni *K*-edge EXAFS. FT range : 30-160 nm⁻¹.

III: Fourier filtered EXAFS data (solid line) and calculated data (dotted line).

Fourier filtering range : 0.126 - 0.292 nm.

Figure 1. Catalytic performance in steam gasification of cedar wood over the catalysts after H₂ reduction.

Conditions: biomass; 60 mg/min (H₂O 9.2 %, C 2191 μ mol/min; H 3543 μ mol/min; O 1475 μ mol/min), N₂ flow rate; 60 ml/min, (added H₂O)/C=0.5 (steam flow rate 1110 μ mol/min), reaction time; 15min, H₂ reduction 773 K, 30 min.

Figure 2. Catalytic performance in steam gasification of cedar wood over the catalysts after H_2 reduction.

Conditions: biomass; 60 mg/min (H₂O 9.2 %, C 2191 μ mol/min; H 3543 μ mol/min; O 1475 μ mol/min), N₂ flow rate; 60 ml/min, (added H₂O)/C=0.5 (steam flow rate 1110 μ mol/min), reaction time; 15 min, H₂ reduction 773 K, 30 min.

Figure 3. Catalytic performance in steam gasification of cedar wood at 923 K as a function of time on stream over the catalysts without H_2 reduction.

(a) Pt/Ni/CA (b) Pt/Ni/CMA

Conditions: biomass; 60 mg/min (H₂O 9.2 %, C 2191 μ mol/min; H 3543 μ mol/min; O 1475 μ mol/min), N₂ flow rate; 60 ml/min, (added H₂O)/C=0.5 (steam flow rate 1110 μ mol/min).

Figure 4. TPR profiles of the catalysts.

(a) Pt/Ni/CA (b) Ni/CA (c) Pt/Ni/CMA (d) Ni/CMA (e) Pt/Ni/MA (f) Ni/MA TPR condition: heating rate 10 K/min, Room temperature to 1273 K, and the temperature was maintained at 1273 K for 30 min. 5 % H₂/Ar flow rate 30 ml/min. Sample weight: 200 mg.

Figure 5. TEM images of the catalysts after H₂ pretreatment at 773K. (a) Pt/Ni/CA (b) Pt/Ni/CMA

(a)

Figure 6. Catalytic performance in steam gasification of cedar wood as a function of time on stream over the catalysts at 923 K.

(a) Pt/Ni/CA (b) Pt/Ni/CMA

Conditions: biomass; 60 mg/min (H₂O 9.2 %, C 2191 μ mol/min; H 3543 μ mol/min; O 1475 μ mol/min), N₂ flow rate; 60 ml/min, (added H₂O)/C=0.5 (steam flow rate 1110 μ mol/min), H₂ reduction at 773 K, 30 min.

Figure 7. Catalytic performance in steam gasification of cedar wood as a function of time on stream over the catalysts at 873 K.

(a) Pt/Ni/CA (b) Pt/Ni/CMA

Conditions: biomass; 60 mg/min (H₂O 9.2 %, C 2191 μ mol/min; H 3543 μ mol/min; O 1475 μ mol/min), N₂ flow rate; 60 ml/min, (added H₂O)/C=1 (steam flow rate 2220 μ mol/min), H₂ reduction at 773 K, 30 min.

Figure 8. XRD patterns of Pt/Ni/CA (I) and Pt/Ni/CMA (II). $\blacksquare = Ni, \bullet = CeO_2, \blacktriangle = Al_2O_3$ (a) After H₂ reduction, (b) after the reaction at 923 K (Figure 6), (c) after the regeneration.

Figure 9. Results of Ni K-edge EXAFS analysis of Pt/Ni/CA.

(a) After H₂ reduction, (b) after the reaction at 923 K (Figure 6), (c) after the regeneration. I: k^3 -weighted EXAFS oscillation.

II: Fourier transform of k^3 -weighted Ni K-edge EXAFS. FT range : 30-160 nm⁻¹.

III: Fourier filtered EXAFS data (solid line) and calculated data (dotted line).

Fourier filtering range : 0.126 - 0.292 nm.

Figure 10. Results of Ni K-edge EXAFS analysis of Pt/Ni/CMA.

(a) After H_2 reduction, (b) after the reaction at 923 K (Figure 6), (c) after the regeneration.

- I: k^3 -weighted EXAFS oscillation.
- II: Fourier transform of k^3 -weighted Ni K-edge EXAFS. FT range : 30-160 nm⁻¹.
- III: Fourier filtered EXAFS data (solid line) and calculated data (dotted line).

Fourier filtering range : 0.126 - 0.292 nm.