RUSCHEWEYH DERIVATIVE AND STRONGLY STARLIKE FUNCTIONS

B_V

Liu JINLIN

Abstract. Let A denote the class of analytic functions $f(z)$ defined in the unit disc satisfying the condition $f(0) = f'(0) - 1 = 0$. Let $\overline{S}^*(\beta, \gamma)$ be the class of strongly starlike functions of order β and type γ , and let $\overline{C}(\beta, \gamma)$ denote the class of strongly convex functions of order β and type γ . Certain new classes $\overline{S}_{\alpha}^{*}(\beta, \gamma)$ and $\overline{C}_{\alpha}(\beta, \gamma)$ are introduced by virtue of Ruscheweyh derivative and some properties of $\overline{S}_\alpha^*(\beta,\gamma)$ and $\overline{C}_\alpha(\beta,\gamma)$ are discussed.

1. Introduction

Let A be the class of functions $f(z)$ of the form

(1.1)
$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
$$

which are analytic in the unit disc $E = \{z : |z| < 1\}$. A function $f(z)$ belonging to A is said to be starlike of order γ if it satisfies

(1.2)
$$
\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \gamma \quad (z \in E)
$$

for some γ ($0 \le \gamma < 1$). We denote by $S^*(\gamma)$ the subclass of A consisting of functions which are starlike of order γ in E. Also, a function $f(z)$ in A is said to be convex of order y if it satisfies $zf'(z) \in S^*(y)$, or

(1.3)
$$
\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \gamma \quad (z \in E)
$$

Keywords and Phrases. Strongly starlike function, Strongly convex function, Ruscheweyh derivative. 1991 AMS Subject Classification. 30C45.

Received August 17, 1999

Revised January 5, 2000

for some γ ($0 \le \gamma < 1$). We denote by $C(\gamma)$ the subclass of A consisting of all functions which are convex of order γ in E.

If $f(z) \in A$ satisfies

(1.4)
$$
\left| \arg \left(\frac{zf'(z)}{f(z)} - \gamma \right) \right| < \frac{\pi}{2} \beta \quad (z \in E)
$$

for some γ ($0 \le \gamma < 1$) and β ($0 < \beta \le 1$), then $f(z)$ is said to be strongly starlike of order β and type γ in E, and denoted by $f(z) \in \overline{S}^*(\beta, \gamma)$. If $f(z) \in A$ satisfies

(1.5)
$$
\left| \arg \left(1 + \frac{zf''(z)}{f'(z)} - \gamma \right) \right| < \frac{\pi}{2} \beta \quad (z \in E)
$$

for some γ ($0 \le \gamma < 1$) and β ($0 < \beta \le 1$), then we say that $f(z)$ is strongly convex of order β and type γ in E, and we denote by $\overline{C}(\beta, \gamma)$ the class of all such functions. It is obvious that $f(z) \in A$ belongs to $\overline{C}(\beta, \gamma)$ if and only if $zf'(z) \in \overline{S}^*(\beta, \gamma)$. Also, we note that $\overline{S}^*(1, \gamma) = S^*(\gamma)$ and $\overline{C}(1, \gamma) = C(\gamma)$.

Let $f(z)=z + \sum_{n=2}^{\infty} a_n z^n \in A$ and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n \in A$, then the Hadamard product (or convolution product) $(f * g)(z)$ of $f(z)$ and $g(z)$ is defined by

(1.6)
$$
(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.
$$

By the Hadamard product, we define

(1.7)
$$
D^{\alpha}f(z) = \frac{z}{(1-z)^{1+\alpha}} * f(z) \quad (\alpha \ge -1)
$$

for $f(z) \in A$. $D^{\alpha}f(z)$ is called the Ruscheweyh derivative and was introduced by Ruscheweyh in [1].

We now introduce the following classes:

$$
\bar{S}_\alpha^*(\beta, \gamma) = \left\{ f(z) \in A : D^\alpha f(z) \in \bar{S}^*(\beta, \gamma), \alpha \ge -1 \text{ and } \frac{z(D^\alpha f(z))'}{D^\alpha f(z)} \ne \gamma \text{ for } z \in E \right\}
$$

and

$$
\overline{C}_{\alpha}(\beta, \gamma) = \left\{ f(z) \in A : D^{\alpha} f(z) \in \overline{C}(\beta, \gamma), \alpha \ge -1 \text{ and } 1 + \frac{z(D^{\alpha} f(z))''}{(D^{\alpha} f(z))'} \ne \gamma \text{ for } z \in E \right\}
$$

In this note, we shall investigate some properties of $\overline{S}_\alpha^*(\beta,\gamma)$ and $\overline{C}_\alpha(\beta,\gamma)$.

305

2. Main Results

We shall need the following lemma.

LEMMA. (see [2] [3]). Let a function $p(z) = 1 + b_1 z + \cdots$ be analytic in E and $p(z) \neq 0$ ($z \in E$). If there exists a point $z_0 \in E$ such that

 $|\arg(p(z))| < \frac{\pi}{2}\beta \ (|z| < |z_0|)$ and $|\arg(p(z_0))| = \frac{\pi}{2}\beta \ (0 < \beta \le 1),$

then we have

$$
\frac{z_0p'(z_0)}{p(z_0)}=ik\beta,
$$

where

$$
k \ge \frac{1}{2} \left(a + \frac{1}{a} \right) \quad \left(when \arg(p(z_0)) = \frac{\pi}{2} \beta \right),
$$

$$
k \le -\frac{1}{2} \left(a + \frac{1}{a} \right) \quad \left(when \arg(p(z_0)) = -\frac{\pi}{2} \beta \right),
$$

and $(p(z_0))^{1/\beta} = \pm ia \ (a > 0).$

THEOREM 1.
$$
\bar{S}_{\alpha+1}^*(\beta, \gamma) \subset \bar{S}_{\alpha}^*(\beta, \gamma)
$$
 for $\alpha \geq -\gamma$ and $0 \leq \gamma < 1$.

PROOF. Let $f(z) \in \overline{S}_{\alpha+1}^*(\beta, \gamma)$. Then we set

(2.1)
$$
\frac{z(D^{\alpha}f(z))'}{D^{\alpha}f(z)} = \gamma + (1-\gamma)p(z),
$$

where $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ is analytic in E and $p(z) \neq 0$ for all $z \in E$. According to the well known identity (see [1] [4])

(2.2)
$$
z(D^{\alpha}f(z))' = (\alpha + 1)D^{\alpha+1}f(z) - \alpha D^{\alpha}f(z),
$$

we have

(2.3)
$$
\frac{D^{\alpha+1}f(z)}{D^{\alpha}f(z)} = \frac{1}{\alpha+1} \left[\frac{z(D^{\alpha}f(z))'}{D^{\alpha}f(z)} + \alpha \right] \n= \frac{1}{\alpha+1} [(1-\gamma)p(z) + \gamma + \alpha].
$$

Differentiating both sides of (2.3) logarithmically, it follows that

Liu JlNLIN

$$
\frac{z(D^{\alpha+1}f(z))'}{D^{\alpha+1}f(z)} = \frac{z(D^{\alpha}f(z))'}{D^{\alpha}f(z)} + \frac{(1-\gamma)zp'(z)}{(1-\gamma)p(z) + \gamma + \alpha}
$$

$$
= (1-\gamma)p(z) + \gamma + \frac{(1-\gamma)zp'(z)}{(1-\gamma)p(z) + \gamma + \alpha}
$$

or

(2.4)
$$
\frac{z(D^{\alpha+1}f(z))'}{D^{\alpha+1}f(z)} - \gamma = (1-\gamma)p(z) + \frac{(1-\gamma)zp'(z)}{(1-\gamma)p(z) + \gamma + \alpha}.
$$

Suppose that there exists a point $z_0 \in E$ such that

$$
|\arg(p(z))| < \frac{\pi}{2}\beta
$$
 (|z| < |z_0|) and $|\arg(p(z_0))| = \frac{\pi}{2}\beta$.

Then, applying $(p(z_0))^{1/p} = \pm ia$ the Lemma, we can write that $z_0 p'(z_0)/p(z_0) = ikp$ and $(a > 0)$.

Therefore, if $arg(p(z_0)) = \frac{\pi}{2}\beta$, then

$$
\frac{z_0(D^{\alpha+1}f(z_0))'}{D^{\alpha+1}f(z_0)} - \gamma = (1-\gamma)p(z_0)\left[1 + \frac{z_0p'(z_0)/p(z_0)}{(1-\gamma)p(z_0) + \gamma + \alpha}\right]
$$

$$
= (1-\gamma)a^{\beta}e^{i\pi\beta/2}\left[1 + \frac{ik\beta}{(1-\gamma)a^{\beta}e^{i\pi\beta/2} + \gamma + \alpha}\right].
$$

Thi s implies that

$$
\arg\left\{\frac{z_0(D^{\alpha+1}f(z_0))'}{D^{\alpha+1}f(z_0)} - \gamma\right\}
$$
\n
$$
= \frac{\pi}{2}\beta + \arg\left\{1 + \frac{ik\beta}{(1-\gamma)a^{\beta}e^{i\pi\beta/2} + \gamma + \alpha}\right\}
$$
\n
$$
= \frac{\pi}{2}\beta + \tan^{-1}
$$
\n
$$
\times \left\{\frac{k\beta\left(\gamma + \alpha + (1-\gamma)a^{\beta}\cos\left(\frac{\pi}{2}\beta\right)\right)}{(\gamma + \alpha)^2 + 2(\gamma + \alpha)(1-\gamma)a^{\beta}\cos((\pi/2)\beta) + (1-\gamma)^2a^{2\beta} + k\beta(1-\gamma)a^{\beta}\sin((\pi/2)\beta)}\right\}
$$
\n
$$
\geq \frac{\pi}{2}\beta. \left(\text{where } k \geq \frac{1}{2}\left(a + \frac{1}{a}\right) > 1\right),
$$

which contradicts the hypothesis that $f(z) \in S_{\alpha+1}^*(\beta, \gamma)$

306

Similarly, if $\arg(p(z_0)) = -(\pi/2)\beta$, then we obtain that

$$
\arg\bigg\{\frac{z_0(D^{\alpha+1}f(z_0))'}{D^{\alpha+1}f(z_0)} - \gamma\bigg\} \le -\frac{\pi}{2}\beta,
$$

which also contradicts the hypothesis that $f(z) \in S^*_{n+1}(\beta, \gamma)$.

Thus the function $p(z)$ has to satisfy $|\arg(p(z))| < \frac{1}{6}\beta$ ($z \in E$). This shows that

$$
\left|\arg\left\{\frac{z(D^{\alpha}f(z))'}{D^{\alpha}f(z)}-\gamma\right\}\right|<\frac{\pi}{2}\beta\quad(z\in E),
$$

or $f(z) \in \overline{S}_\infty^*(\beta, \gamma)$.

THEOREM 2. Let
$$
\alpha \geq -\gamma
$$
 and $0 \leq \gamma < 1$, then $\overline{C}_{\alpha+1}(\beta, \gamma) \subset \overline{C}_{\alpha}(\beta, \gamma)$.

PROOF.
$$
f(z) \in \overline{C}_{\alpha+1}(\beta, \gamma) \Leftrightarrow D^{\alpha+1}f(z) \in \overline{C}(\beta, \gamma) \Leftrightarrow z(D^{\alpha+1}f(z))' \in \overline{S}^*(\beta, \gamma)
$$

\n $\Leftrightarrow D^{\alpha+1}(zf'(z)) \in \overline{S}^*(\beta, \gamma) \Leftrightarrow zf'(z) \in \overline{S}^*_{\alpha+1}(\beta, \gamma)$
\n $\Rightarrow zf'(z) \in \overline{S}_\alpha^*(\beta, \gamma) \Leftrightarrow D^\alpha(zf'(z)) \in \overline{S}^*(\beta, \gamma)$
\n $\Leftrightarrow z(D^\alpha f(z))' \in \overline{S}^*(\beta, \gamma) \Leftrightarrow D^\alpha f(z) \in \overline{C}(\beta, \gamma)$
\n $\Leftrightarrow f(z) \in \overline{C}_\alpha(\beta, \gamma)$.

For $c > -1$, and $f(z) \in A$, we define the integral operator $L_c(f)$ as

(2.5)
$$
L_c(f) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt.
$$

The operator $L_c(f)$ when $c \in N = \{1, 2, 3, ...\}$ was studied by Bernardi [6]. For $c = 1, L_1(f)$ was investigated by Libera [5].

THEOREM 3. Let $c > -\gamma$ and $0 \le \gamma < 1$. If $f(z) \in \overline{S}_x^*(\beta, \gamma)$ with $z(D^{\alpha}(L_c(f)))'/(D^{\alpha}(L_c(f))) \neq \gamma$ for all $z \in E$, then we have $L_c(f) \in \widetilde{S}^*_{\alpha}(\beta, \gamma)$.

PROOF. Set

(2.6)
$$
\frac{z(D^{\alpha}(L_c(f)))'}{D^{\alpha}(L_c(f))} = \gamma + (1 - \gamma)p(z),
$$

where $p(z)$ is analytic in E, $p(0) = 1$ and $p(z) \neq 0$ ($z \in E$). From (2.5), we have

307

Liu JINLIN

(2.7)
$$
z(D^{\alpha}(L_c(f)))' = (c+1)D^{\alpha}f - cD^{\alpha}(L_c(f)).
$$

Using (2.6) and (2.7) , we get

(2.8)
$$
(c+1)\frac{D^{\alpha}f}{D^{\alpha}(L_c(f))} = c + \gamma + (1-\gamma)p(z).
$$

Differentiating (2.8) logarithmically, we obtain

$$
\frac{z(D^{\alpha}f(z))'}{D^{\alpha}f(z)} - \gamma = (1-\gamma)p(z) + \frac{(1-\gamma)zp'(z)}{c+\gamma+(1-\gamma)p(z)}.
$$

Suppose that there exists a point $z_0 \in E$ such that

$$
|\arg(p(z))| < \frac{\pi}{2}\beta
$$
 (|z| < |z_0|) and $|\arg(p(z_0))| = \frac{\pi}{2}\beta$.

Then, applying the Lemma, we can write that $z_0 p'(z_0)/p(z_0)= ik\beta$ and

$$
(p(z_0))^{1/\beta} = \pm ia \quad (a > 0).
$$

If $arg(p(z_0)) = -(\pi/2)\beta$, then

$$
\frac{z_0(D^{\alpha}f(z_0))'}{D^{\alpha}f(z_0)} - \gamma = (1 - \gamma)p(z_0)\left[1 + \frac{z_0p'(z_0)/p(z_0)}{c + \gamma + (1 - \gamma)p(z_0)}\right]
$$

$$
= (1 - \gamma)a^{\beta}e^{-i\pi\beta/2}\left[1 + \frac{ik\beta}{c + \gamma + (1 - \gamma)a^{\beta}e^{-i\pi\beta/2}}\right].
$$

This shows that

$$
\arg\left\{\frac{z_0(D^x f(z_0))'}{D^x f(z_0)} - \gamma\right\}
$$
\n
$$
= -\frac{\pi}{2}\beta + \arg\left\{1 + \frac{ik\beta}{c + \gamma + (1 - \gamma)a^{\beta}e^{-i\pi\beta/2}}\right\}
$$
\n
$$
= -\frac{\pi}{2}\beta + \tan^{-1}
$$
\n
$$
\times \left\{\frac{k\beta\left(c + \gamma + (1 - \gamma)a^{\beta}\cos\left(\frac{\pi}{2}\beta\right)\right)}{(c + \gamma)^2 + 2(c + \gamma)(1 - \gamma)a^{\beta}\cos((\pi/2)\beta) + (1 - \gamma)^2a^{2\beta} - k\beta(1 - \gamma)a^{\beta}\sin((\pi/2)\beta)}\right\}
$$
\n
$$
\leq -\frac{\pi}{2}\beta \quad \left(\text{where } k \leq -\frac{1}{2}\left(a + \frac{1}{a}\right) < -1\right),
$$

which contradicts the condition $f(z) \in \overline{S}_\alpha^*(\beta, \gamma)$

308

Similarly, we can prove the case $arg(p(z_0)) = (\pi/2)\beta$. Thus we conclude that the function $p(z)$ has to satisfy $|\arg(p(z))| < (\pi/2)\beta$ for all $z \in E$. This gives that

$$
\left|\arg\left\{\frac{z(D^{\alpha}(L_c(f)))'}{D^{\alpha}(L_c(f))}-\gamma\right\}\right| < \frac{\pi}{2}\beta \quad (z \in E),
$$

or $L_c(f) \in \overline{S}_\alpha^*(\beta, \gamma)$.

THEOREM 4. Let $c > -\gamma$ and $0 \le \gamma < 1$. If $f(z) \in \overline{C}_\alpha(\beta, \gamma)$ and $1+z(D^{x}(L_c(f)))''/(D^{x}(L_c(f)))' \neq \gamma$ for all $z \in E$, then we have $L_c(f) \in \overline{C}_{\alpha}(\beta,\gamma)$.

PROOF.
$$
f \in \overline{C}_{\alpha}(\beta, \gamma) \Leftrightarrow zf' \in \overline{S}_{\alpha}^{*}(\beta, \gamma) \Rightarrow L_{c}(zf') \in \overline{S}_{\alpha}^{*}(\beta, \gamma)
$$

 $\Leftrightarrow z(L_{c}(f))' \in \overline{S}_{\alpha}^{*}(\beta, \gamma) \Leftrightarrow L_{c}(f) \in \overline{C}_{\alpha}(\beta, \gamma)$.

References

- [1] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc, 49 (1975), 109- 115.
- [2] M. Nunokawa et al., Some results for strongly starlike functions, J. Math. Anal. Appl., 21 (1997), 98-106.
- [3] M. Nunokawa, On properties of non-caratheodory functions, Proc. Japan Acad. Ser. A Math. Sci., 68 (1992), 152-153.
- $[4]$ R. M. Goel and N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc., 78 (1980), 353-357.
- [5] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc, 16 (1965), 755-758.
- [6] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc, 135 (1969), 429-446.
- [7] A. Gangadharan and V. Ravichandran, Radii of convexity and strong starlikeness for som classes of analytic functions, J. Math. Anal. Appl., 211 (1997), 301-313.
- [8] W. Ma and D. Minda, Coefficient inequalities for strongly close-to-convex functions, J. Math. Anal. Appl., 205 (1997), 537-553.

Department of Mathematics Yangzhou University Yangzhou 225002 People's Republic of China