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ATOMIC MAPPINGS CAN SPOIL LIGHTNESS OF

OPEN MAPPINGS

By

Janusz J. Charatonik and Pavel Pyrih

Abstract. We study continua on which each nonconstant open

mapping is light. W. Makuchowski asked if this property is

preserved under atomic mappings. It is known that thisis true under

an additional assumption of arcwise connectedness of the domain

continuum. We show that in general this is not true.

1

Introduction

It is known that each open mapping defined on an arc or on a simple closed

curve is light, see [9, Theorems 1.2 and 1.3, p. 184]. These results have been

extended in several ways. For example in [3, Theorem 5, p. 214] itis shown that

if a domain space is locally dendritic and the range one has no isolated points,

then each nonconstant open mapping is light.In particular,thisis the case when

the domain space is a continuum being a local dendrite. Obviously each local

dendrite, as a locally connected continuum, is arcwise connected. In a further

study of the subject,W. Makuchowski asked in [8, Question 2.6, p. 782] whether

there is a non-arcwise connected continuum X such that each nonconstant open

mapping defined on X is light. Answering this question in the affirmative, we

exhibited in [4, Theorems 16 and 41] two uncountable families of such continua,

each having some additional properties.

In [8, Question 2.10, p. 783] W. Makuchowski asked whether the considered

property of continua (that each nonconstant open mapping defined on any of

them is light)is preserved under atomic mappings. Answering this question in the

negative, we present an uncountable family of continua having the property, and
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atomic mappings defined on the continua so that the range spaces do not have

the property.

All spaces considered in the paper are assumed to be metric and all mappings

are continuous. Given a space X and its subset S, we denote by cl S the closure

of S, by bd S its boundary in X, and by int S its interior in X. The symbols Z and

N denote the sets of all integers and of all positive integers, respectively, and R

stands for the set of all real numbers. We will also use notation (―00,00) instead

of R.

A continuum means a compact connected space. A continuum homeomorphic

to the unit circle is called a simple closed curve. A subset S of a space X is said to

be arcwise connected provided that for every two points p and q of S there exists

in X an arc A with end points p and q such that A cz S. An arc A c X with end

points p and q is said to be a free arc in X provided that A＼{p, q] is an open

subset of X. We will use the notion of order of a point in the sense of Menger-

Urysohn (see e.g. [6, §51, I, p. 254]. In particular, a point p of a subset S of a

space X is called an end point of S provided that it is of order one in S, i.e., for

each e > 0 there is a neighborhood U of p such that diam U < s and card

(SOhdU) = 1. A ray means a one-to-one image of the closed half-line [0,+00),

and the image of 0 is called the end point of the ray.

For an arbitrary class W of mappings between continua, a mapping / : X ―>

Y is said to be hereditarily ffllprovided that for each subcontinuum S'cl the

partial mapping f＼S:S^> f(S) c Y is in 9W.

A mapping / : X ―>･Y is said to be:

- interior at a point p e X provided that for each open neighborhood U of

p in X the point f(p) is an interior point of the image f(U) in Y;

- atomic provided that for each subcontinuum K cz X with nondegenerate

image f(K) the equality f~＼f(K)) = K holds;

- monotone provided that for each subcontinuum Q of Y the inverse image

f~l(Q) is connected;

- open provided that for each open subset U of X its image /(U) is an open

subset of Y;

- simple provided that card f~l(y) < 2 for each point y e Y;

- light provided that for each point y e Y each component of the inverse

image f~l(y) is a singleton (equivalently, if f~l{f(x)) is totally dis-

connected for each x e X; note that if the inverse images of points are

compact, this condition is equivalent to the property that they are zero-

dimensional).

Obviously a mapping is open if and only if it is interior at each point of



Atomic mappings can spoillightnessof open mappings 159

its domain. It is known that each atomic mapping of a continuum is

hereditarily monotone, [7, (4.14), p. 17]. The reader is referred to [7, Chapters 3

and 4, especiallyTable II, p. 28] to see various interrelationsbetween these classes

of mappings. Simple mappings were defined in [2, p. 84].It is evident that each

simple mapping is light.

Let L denote the class of all continua X such that each nonconstant open

mapping defined on X is light, and let 9W be an arbitrary class of mappings

between continua that contains the class of homeomorphisms. Consider classes 9W

for which the implication holds:

(1) if / e m and IeL, then f(X) e L

Recall the following assertions (see [8, Propositions 2.7-2.9, p. 783]).

(1.1) The implication (1) holds if W is the class of open mappings.

(1.2) The implication (1) holds if Wl is the class of atomic mappings and the

continuum X is arcwise connected.

(1.3) The implication (1) does not hold if W is the class of hereditarily

monotone mappings.

W. Makuchowski in [8, Question 2.10, p. 783] asked whether the implication

(1) is true if the continuum X is not arcwise connected and $Jl is the class of

atomic mappings. Answering this question in the negative, we construct in the

present paper an uncountable family of non-arcwise connected continua for which

(1) does not hold.

Let us recall the following two (stillopen) problems (see [3, Problem 3, p. 214

and Problem 11, p. 217]).

Problem 1.4. What topologicalspaces X and Y have the property that each

open mapping from X onto Y is light?

Problem 1.5. Characterizeallcontinua X being in the classL.

Note that the family of continua in L thatis definedin the present paper

gives a partialanswer to Problems 1.4 and 1.5.

2. Crooked Spirals

If C is a dense subspace of a compact space Z, then Z is called a com-

pactificationof C, and Z＼C is called the remainder of C in Z (see e.g.[1, p. 341).
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It is known that if C is a locally compact, noncompact, separable metric space,

then each continuum is a remainder of C in some compactification of C,

[1, Theorem, p. 35]. Taking as C a one-to-one image of the real half-line[0, oo)

we conclude the following statement, which will play the key role in our

considerations.

Statement 2.1. Each nondegenerate continuum B is a remainder of a ray C

in some compactification of C, and then Y = 2?U C is a continuum having C as an

arc-component with B = clC＼C.

Let B and B+ are two disjointcontinua. A set C is called a spiralfrom B

to B+ if

(51) there is a one-to-one surjective mapping g :(―oo, oo) ―>C of the open

interval (―00,00) onto C;

(52) 5+ Ugf([0,00)) is a compactification of gf([O,00)) having B+ as the

remainder of gr([O,00)) in i?+ Ugf([O,00));

(53) U~ll0((―oo,0]) is a compactification of #((-00,0]) having B~ as the

remainder of #((-00,0]) in B~ U#((-oo,0]);

(S4) (ru5+)nc = 0.

If conditions (S1)-(S4) are satisfied,then we say that the above mentioned

mapping g :(―00, 00) ―>■C describes the spiral C from B~ to B+, and the union

X = B'UCUB+

is named a spiral-arcfrom B~ to B+. Obviously each arc is a spiral-arc(with its

ends as degenerate continua B~ and B+); and the sin(l/jc)-curvecl{(x,sin(l/x)) :

x e (0,1]} is a spiral-arc from a singleton {(l,sinl)} to the closed segment

{(0,^):^e[-l,l]}.

A spiral C from a continuum B~ to a nondegenerate continuum B+ is said to

be crooked (from B~ to B+) if for each point ae B+ there exists an arbitrarily

small neighborhood U of a such that for each b e B+ PIU there existsin UC＼C a.

sequence of arcs /, with end points otn,finsatisfying

(CS1) limaH = limySM e {a,b};

(CS2) {a,b} dim inf./,,.

A simple example of a crooked spiral is the following.

Example 2.2. Let Br = {(1,0)} and B+ = {(0, y) e R2 : y e [0,1]}. Take a

sequence of all rationals {rn} in (0,1), and for each n e N let LH be the union of
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Figure1 (Example 2.2)

two segments, the firstone joining points (l/≪,0) with ((l/w+ ＼/{n+ ＼))/2,rn),

and the second one joining (l/(w + l),0) with ((l/≪ + l/(≪+ l))/2,rn). Put C =

[j{Ln : n e N}. Then C is a crooked spiral from B~ to B+. The continuum X =

B-UCUB+ is pictured in Fig. 1. □

According to the above definition of a crooked spiral,a spiral C which is

crooked from B~ to B+ need not be crooked from B+ to B~ even if both B~ and

B+ are nondegenerate.

Note the following simple observation.

(2.3) Let I be a spiral-arc from B~ to B+. Then each nondegenerate

subcontinuum of X with the empty interior is contained in B~＼JB+.

Observe that if the nondegenerate continua B~ and B+ in a spiral-arc X

are arcwise connected, then X has exactly three arc-components, namely B~, B+

and C. Since an arbitrary continuum can be taken as B~ and B+ in the definition

of a spiral-arc according to Statement 2.1, and since the family of all (non-

homeomorphic) subcontinua of the Hilbert cube is uncountable, the family of all

spiral-arcsis uncountable. But even if the continua B~ and B+ are fixed, we have

uncountably many nonhomeomorphic 'crooked' compactifications of the real

half-line with B+ as the remainder. Summarizing, we conclude that

(2.4) The family of all (crooked) spiral-arcsis uncountable.

Let H denote the class of all continua X such that each nonconstant open

mapping defined on X is a homeomorphism. Thus HcL, and an arc is in L＼H.

Remarks 2.5. (a) In a conversation with the second named author, W.

Makuchowski asked if thereexistsan arclikecontinuum X which isin H. Recall

that a continuum X is said to be arclikeprovided that it is the inverselimit
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of arcs with surjective bonding mappings, or―equivalently―provided that for

each £> 0 there is a surjective e-mapping / of X onto an arc Y (i.e.,such that

diam f~l(y) <e for each y e Y). Obviously any such a continuum cannot be

arcwise connected (and, consequently, cannot be locally connected, because each

either arcwise or locally connected arclike continuum is an arc, which is not in

H). The question is answered in the affirmative: an uncountable family of such

continua has been constructed in [4, (32) and Theorem 41].

(b) Note that if the continua B~ and B+ in the definition of the spiral-arc X

are arclike, then X is arclike (and vice versa).

The main property of the family of all spiral-arcsis formulated in the

following theorem.

Theorem 2.6. Let X = B UCU5+ be a spiral-arc with a crooked spiral C

from a continuum B~ to a nondegenerate continuum B+, and let f : X ―> Y be an

open nonconstant surjective mapping.

(2.7) If B~ and B+ are homeomorphic, then f is either a homeomorphism or

a ^-folding' mapping, i.e.,X is the one point union of two copies Y~

and Y+ of Y with the common point in C and both f＼Y~ and f＼Y+ are

homeomorphisms onto Y.

(2.8) If B~ and B+ are not homeomorphic, then f is a homeomorphism, and

thus X H.

(2.9) If C is not a crooked spiralfrom B+ to B~, then f is a homeomorphism,

and thus X eH.

In any case the mapping f is simple, and therefore X e L.

A proof of Theorem 2.6 willbe given in Section 3. Now we present some

consequences of the theorem.

Example 2.10. There existsan arclikespiral-arcleHcL and an atomic

mapping f : X -> f(X) such that f(X) <£L.

Proof. Let {rn}t^ be a double-sequence containing all rationals in [0,1]

satisfyingrn = 1 for n < 0. Let {xn}* be a monotone double-sequence in (―1,1)

satisfying

lim xn = ―1, lim xn = 1, xn = 0.
n―≫―oo n―>+oo
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Figure2 (Example 2.10)

Define a piecewise linear mapping g :{―1,1) ―>[0,1] as a one which is linear

on each segment [xn,(xn +xn+＼)/2] and [(xn + xn+＼)/2,xn+i], with g(xn)=0,

g{(xn + xn+＼)/2)= rn for each n e Z. Put

B~ = {(-＼,y) eR2:ye[0,1]}, B+ = {(1, y) e R2 : y e [0,1]},

C={(x,g(x))eR2:xe(-l,l)}.

Set Z = B~ U CU^+. The continuum X is pictured in Fig. 2. Evidently, X is

arclike.

Observe that the spiral C is crooked from B~ to B+ while it is not crooked

from B+ to B~. Then leHcL due to Theorem 2.6. Define a mapping / : X ―>

f(X) = Y by the conditions

(i) /((x,jO) = (*,jO for xe [-1,0);

(ii)/((x,j;)) = (x,0) for xe[0,l].

Clearly, / is atomic. Observe that f{X) is homeomorphic to the sin(l/x)-

curve, which is not in L (see [4, Remark 18]). The proof is then complete. □

Remarks 2.11. (a) Example 2.10 shows that all three above mentioned

questions of Makuchowski, viz. Questions 2.6 and 2.10 of [4, p. 782 and 783] and

the one formulated in Remark 2.5, can be answered by just one example, namely

the continuum X of Example 2.10.

(b) The same example shows that the assumption of arcwise connectedness of

the continuum X in (1.2) is essential.

As it was observed in Remark 2.5 arclike continua in H are (obviously) not

arcwise connected. So, one can ask if there are arclike members of H which are

'relativelyclose' to arcwise connected continua in the following sense. A con-
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tinuum X is said to have the arc approximation property provided that for each

subcontinuum K of X and for each point p e K there is a sequence of arcwise

connected continua Kn of X such that p e Kn for each n e N and K ― Lim Kn (see

[5, Section 3, p. 1131). More precisely, the following question is interesting.

Question 2.12. Does there existin the class H an arclike continuum having

the arc approximation property?

Note that no spiral-arc X = B UCU5+ has the arc approximation

property because if a continuum has the property, then each arc component of

the continuum is dense (see [5, Proposition 3.10, p. 116]), while arc components

of the spiral-arc X contained in the union B~ U B+ are not dense in X.

Problem 2.13. Characterize arclike continua being in the class H.

3. Proofs

We start with recalling a well known result,see [9, Chapter 8, (7.31), p. 147]

Statement 3.1. The order of a point is never increased under an open

mapping.

The next two propositionsconcern mappings of continua that contain a

spiral-arcin a specialway.

Proposition 3.2. Let a continuum X contain a spiral C from a continuum to

a nondegenerate subcontinuum B in such a way that BU C is an open subset of X.

If a nonconstant mapping f : X ―>f(X) = Y is open, then f(B) is not a singleton.

Proof. Assume on the contrary that f(B) is a singleton. We claim that

(3.3) there exists a spiral C c C from a singleton p' to B such that / is

injective on C.

To see this,let g : R ―>C be a homeomorphism describing the spiral C.

Suppose on the contrary that for each neN the restrictionf＼g([n,cc))is not

injective. This means that for each neN there are sn, tne R with n < sn < tn

such that f{g(sH)) = f{g{tn)). Then f(g([sH,oo))) = f(g((sH, x))). Since 5U C is

open in X by assumption, it follows that BUg((sn, oo)) cr BU C is open as well,

and therefore f(B＼Jg([sn,oo))) = f(B＼Jg((sn, oo))) is both closed and open sub-
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set of Y, so it equals Y. Since the sequence of continua g([n,co))＼JB approaches

B, we infer from continuity of/that f(g([n, oo))) Vf(B) is a null-sequence of

continua. On the other hand, each term of this sequence equals Y, a contradic-

tion, because / is nonconstant. Therefore (3.3) holds.

We may now assume that/is injective on C by (3.3). Put f(B) = {r}. Since

each point of C is of order 2 in X, it follows from Statement 3.1 that f(BU C)

contains a free arc J having r as one of its end points. Since B is nondegenerate,

we can choose two distinctpoints b＼and hi of B. Let U＼ and Uj be disjointopen

neighborhoods of b＼and bi, respectively,in X, contained in BUC. Then their

images f(U＼) and /(C/2) are open subsets of Feach of which contains r. Further,

since CDU＼ and Cfl C/2 are nonempty open subsets of X, theirimages /(CD U＼)

and /(CnC/2) are open in /. Then since re/(clC) c= cl/(C), the sets {r} U

f(CP＼U＼) and {r}U/(Cfl[/2) are open neighborhoods of r in J. Let s e

/(Cn £/i)n/(Cn l/2).Thus there are points *i e Cfl C/i and x2 e Cfl U2 such

that /(xi) = f{xj) = s. Since f/i and U2 are disjoint,xi 7^X2, contrary to the

injectivityof / on C. This contradiction finishes the proof. □

Proposition 3.4. Let a continuum X contain a crooked spiral C from a

continuum to a nondegenerate subcontinuum B in such a way that BUC is an open

subset of X. If a mapping f : X ―>f(X) = Y is such that f(X) is eitheran arc or

a simple closed curve, then f is not open.

Proof. Suppose on the contrary that / is open. Composing / with an open

projection from a circle onto a unit segment we may assume that f{X) = Y =

[0,1].By Proposition 3.2 we see that f(B) is not a singleton. Take a e B such that

0 ^ f(a) z£l. Then arbitrarilyclose to a there are points in B which are not

mapped to f(a). Then there is an open set W containing a such that f(W) c

(0,1).

By the crookedness of C there is a neighborhood U <= W of a such that

for any fixed point b e UC＼B with f(b) ^ f{a) there existsin f/flCa sequence

of arcs Jn with end points ocn,(5n satisfying conditions (CS1)-(CS2).

Let e= ＼f{b)―f(a)＼/3. By the continuity of/there are in U open neigh-

borhoods Va and Vb of a and of b respectively, such that f{Va) a {y e (0,1) :

＼y-f{a)＼<e} and /(F,) c={y e (0,1) : ＼y- f(b)＼< e}.

In the sequence {/,} of arcs in C one can find an arc / c CC＼U such that

/ meets both Va and Vb and its end points a and /? are contained in one of the

mentioned sets;we may assume that they are contained in Va. Note that /(/) is

an arc in Y = [0,1] not containing the end points of Y. Moreover, /(/) meets
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both f{ya) and f(Vb). Hence, at least one of the end points of /(/), denote it

by y, is differentfrom both /(a) and /(/?).But then/is not interior at that point

x e /＼{a,/?}which is mapped onto y. We have obtained a contradiction with the

openness of/. D

Remark 3.5. The assumption that B＼JC is an open subset of X made in

Propositions 3.2 and 3.4 implies that the spiral C is open in X. Thus itis natural

to ask if the conclusions of these propositions hold if the assumption of openness

of B U C is replaced by a weaker one, namely by openness of C.

Proof 3.6. (Proof of Theorem 2.6.) Let X = B-{JCUB+ be a spiral-arc

with a crooked spiral C from a continuum B~ to a nondegenerate continuum B+,

and let / : X ―> Y be an open nonconstant surjective mapping.

First observe that, since any point of C is of order 2 in X, the following

assertion holds by Statement 3.1.

(3.7) The image f(C) is an arcwise connected open subset of Y that is

composed of points of orders at most 2 in Y.

Therefore f(C) is homeomorphic to one of the following four sets:

(a) the open interval (0,1);

(b) the half-open interval [0,1);

(c) the closed interval [0,1];

(d) the circle.

Second, note that since C is an open subset of X, its image f(C) is open in

Y. Thus, if either(c) or (d) holds, f(C) is both open and closed subset of Y, so it

equals Y, whence /cannot be open by Proposition 3.4.Therefore cases (c) and (d)

cannot hold, and thus we have the following assertion

(3.8) Only cases (a) and (b) are possible.

The next assertion is obvious.

(3.9) If f{C) is homeomorphic to the open interval (0,1) (i.e.,if case (a)

holds), then / is injective on C.

In the next assertion we study case (b).

(3.10) If/(C) is homeomorphic to the half-open interval [0,1) (i.e.,if case

(b) holds), then there exists c e R such that / is injective on both

gU-co,c]) and g([c,oo)), and f(C) = f(g((-co, c]))= f(g([c, co))).
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To see this, let h : f(C) ―> [0,1) be the above mentioned homeomorphism.

Choose c e R such that h(f(g(c))) = 0. Suppose on the contrary that f＼g([c, oo))

is not injective. This means that there are s,t e R with c < s < t such that

f(g(s)) = f(g(t)) = y for some ye Y. Then g([s,t]) is an arc in C. Let A be a

component of g([s, t])＼f~1(y). Thus cl^4 is an arc in C. If the end points of clA

are a and 6, then f(a) = /(&) = y. Therefore f(c＼A) is an arc in f(C), and /(^4)

is its dense and connected subset which does not contain the point y. It follows

that y is an end point of the arc f(c＼A). Let y' be the other end point of this arc.

Thus y' f(A), and if x' e AC＼f~l(y'), then / is not interior at x', a contra-

diction with openness of/. We have shown that / is injective on g([c, oo)).

Similarly we can show that / is injective on g((―co,c]). Note further that the

point c is uniquely determined.

To show the equality suppose on the contrary that f(g{[c, oo))) is a proper

subset of/(#((―oo, c])) (the other possibility can be considered in the same way).

Since B+ is the remainder of g([c, oo)) in B+ Ug([c, oo)) according to (S2), the set

f(B+) must be a singleton. Thereby, according to Proposition 3.2, the mapping

/cannot be open, a contradiction. Therefore (3.10) is proved.

(3.n)/(C)n(/(£-)u/(£+)) = 0.

Suppose on the contrary that this intersection is not empty. By symmetry we

can assume f(C) D (f(B+) ^ 0. Then there are points x＼e C and xj e B+ such

that f(x＼) = f{x2). Let t = g~l(x＼)e R. If case (b) holds, we can take that t e

[c, oo) by (3.10). If / = c, then /is injective on g[c, oo)) and f(C) = f(g([c, oo)))

according to (3.10). Otherwise there is e>0 such that / is injective on

g([t ―e,co)). Consider the arc A = g([t ― e,t + e]) (if case (a) holds, s > 0 is

arbitrary). So A is a free arc in C a X, whence by openness of/its image f(A)

is a free arc in Y. Since X2 e B+, then, according to (S2), there is a sequence of

points cme C tending to X2. Then the numbers tm = g~l(cm) e R tend to infinity,

whence t + e <tm for almost all meN. Since f{x＼) ― f{xi) e f(g((t ― e,t + e))),

we have f(cm)ef(g((t-e,t + e)))czf(A), whence it follows that / is not

injective on g([c, oo)) (or on C, in case (a)), contrary to either (3.9) or (3.10).

Thus (3.11) is shown.

(3.12) The partial mappings f＼B~ and f＼B+ are injective.

By symmetry it is enough to show that f＼B+ is injective. Striving for a

contradiction, suppose that there are two distinct points x＼,xi e B+ such that

f(x＼) =/(x2). Choose disjoint open neighborhoods U＼ of jci and U2 of X2. By

(S2) there is a sequence of points cm g U＼DC (or even cm e U＼ C＼g([c,00)), if (b)
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holds) converging to x＼. Then the open set f(U 1)0/(1/2) contains almost all

points /(cm). Fix one of them, cm. Thus there is a point d e U2 with /(cmo) =

/(d). If d g C, then / is not injective on C (in case (b) we may assume that

d e g([c, 00)) by (3.10), and then/is not injective on g([c, 00))). In both cases we

get a contradiction, either with (3.9) or with (3.10). Thus d e Ui 0 B+, whence we

see that /(C)0/(B+) # 0, a contradiction again, now with (3.11). Therefore

(3.12) is established.

The sequential assertion concerns case (a).

(3.13) If /(C) is homeomorphic to the open interval (0,1) (i.e., if case (a)

holds), then /(B~)0/(B+) = 0.

Indeed, if not, there are points x~ e B~ and x+ e B+ such that /(x~) =

/(x+) = y. Let U~ and U+ be disjoint open neighborhoods of the points x~

and x+, respectively. By the openness of/the set /(U~)0/(U+) is an open

neighborhood of y. Take a point c' e U+ 0 C such that /(cf) e /(U~). Thus there

is a point d e U~ with /(c1) = /(d). Since / is injective on C, it follows that

deB~. Therefore /(C)0/(B~) # 0, contrary to (3.11). So (3.13) is proved.

Now we can summarize the considered cases. If (a) holds, then by (3.9),

(3.11), (3.12) and (3.13) we infer that / is injective on the whole X, i.e., /is

a homeomorphism. In case (b) the mapping / is '2-folding' on C according to

(3.10), and it is a homeomorphism on B~ and on B+ by (3.12), which are glue

together under/by its continuity, again by (3.10). Observe that in this case B~

and B+ are homeomorphic. Notice also that in this case Y+ = g([c, 00)) U5+ is

homeomorphic to Y~ = #((-oo, c＼)U B~. But then C is a crooked spiral from B+

to B~ due to our assumption in Theorem 2.6. Since the discussed cases cover all

possibilities, Theorem 2.6 is shown. □
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