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1. Introduction

We study the asymptotic distribution near the origin of negative eigenvalues

for two dimensional Pauli operators with nonconstant magnetic fields.The Pauli

operator describes the motion of a particle with spin in a magnetic fields.It acts

on the space L2(R3) (g)C2 and is defined as

HP = (-Nx -A)2-a-B

under a suitable normalization of units, where A : R3 ―>R3 is a magnetic

potential, a ―(<7i,oi2,o-3)with components

*■= (,

is the vector of

i

2x2 Pauli

04=1 ,
;')

matrices and

(I 0 ＼

B = V x A is a magnetic field.If

A(x) ―(ai,ci2,0) with components a.j= aj(xi,X2), x = (x＼,X2)e R2, then the

magnetic field B(x) = (0,0, b(x)) is directed along the X3 axis and is identified

with the function b(x) = d＼ai―dia＼,8j = d/dxj. The Pauli operator also takes

the simple form

where

(1.1)

HP=
I H+-d23 0

0 H- - d＼

H±
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= n? + n* + b, Uj = -idj - aj
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The magnetic fieldb is represented as the commutator b = i[n2,ni] and hence

H+ can be rewritten as

(1.2) H± = (III ±iH2)*(ni ±iTI2).

This implies that H± > 0 is non-negative. If, in particular, b(x) > c > 0 is

positive, then H- becomes strictlypositive,while it is known ([1]) that H+ has

zero as an eigenvalue with infinitemultiplicities.Hence the operator H+ has the

origin as the bottom of its essential spectrum.

We consider the two dimensional Pauli operator

(1.3) H(V)=H+- V = nf + n22- b - v

perturbed by an electricpotential V(x). If V{x) > 0 fallsoff at infinity,then the

operator H(V) has an infinite number of negative discrete eigenvalues accu-

mulating the origin. The aim of the present work is to study the asymptotic

distribution near the origin of such negative eigenvalues. This problem has been

already discussed by [8, 10] when b(x) = b is a constant magnetic field.We here

deal with the case of nonconstant magnetic field b(x)=b(r), r=|x|, with

spherical symmetry.

We shall formulate the obtained result precisely.Let <jc> = (1 +1*!2)1/2. We

first make several assumptions on the magnetic field b(x) and the electric

potential V(x). The magnetic field b{x) : R2 ―>R is assumed to fulfillthe fol-

lowing three assumptions.

(b.l) b(x) > c > 0 is strictlypositive.

(b.2) b(x) = b(r) is spherically symmetric.

(b.3) b(x) is smooth and obeys ＼daxb{x)＼< Ca<x>~H.

The potential V(x) : R2 ―*■R is also assumed to satisfy the following three

assumptions. There exists d > 0 such that:

(V.I) V{x) > c{x}~d for some c> 0.

(V.2) V(x) is smooth and obeys ＼daxV{x)＼< Ca<jc>-rf-|flt|.

(V.3) -x ■VxV{x) = -rdV(x)/dr > c(xyd, c> 0, for |jc|> R ≫ 1.

Under these assumptions, the operator H(V) formally defined by (1.3) admits

a unique self-adjointrealization in the space L2 ―L2(R2) with natural domain

@ = {ueL2 : H(V)ueL2}. We denote by the same notation H(V) this self-
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adjoint realization. Let N(H(V) < ―X), X > 0, be the number of negative

eigenvalues less than ―X of operator H(V). We study the asymptotic behavior as

X ― 0 of this quantity. The main theorem is formulated as follows.

Theorem 1.1. Let the notations be as above. Assume that (b.l) ~(b.3) and

(V.I) ~(V.3) are fulfilled.Then

N{H{V)<-X) = {2n)-1
[
h{r)dx{l+o{＼)), X -> 0

J V(x)>X

The proof is based on the min-max principle and the perturbation theory for

singular numbers of compact operators. The idea, in principle,is the same as that

in Sobolev [8] where the asymptotic formula above has been obtained in the case

of constant magnetic fieldsas stated above. However the argument there does

not apply directly to the case of nonconstant magnetic fields,even if magnetic

fields are assumed to be spherically symmetric. We require several technical

improvements. As previously stated, the operator H+ has zero as an eigen-

value with infinite multiplicities.The proof relies on the fact that the spectral

function P{x,y) associated with this zero eigenvalue has the rapidly decreasing

property

P(x,y) = O((＼x＼+ ＼y＼)~N),M + M-oo,

for any N ≫ 1, provided that x/＼x＼# y/＼y＼.This is proved by use of the Poisson

summation formula. If magnetic fieldsare constant, then P(x, y) can be explicitly

calculated and the decaying property is easily checked from thisrepresentation.

This is one of main technical improvements. The theorem above is expected to

remain true for a class of magnetic fieldswithout spherical symmetry and it seems

to be an interesting open problem. The present method makes an essentialuse of

spherical symmetric property at many stages in the proof and it does not extend

to such a general case. Roughly speaking, the difficultycomes from the fact that

magnetic potentials which actually appear in Pauli operators undergo a nonlocal

change even under a local perturbation of magnetic fields.This makes it difficult

to control magnetic fieldsby an approximate method.

Recently several works have been done on the spectral problems of Pauli

operators with nonconstant megnetic fields. For example, the Lieb-Thirring

inequality for negative eigenvalues has been discussed in [5, 9] and the asymptotic

behavior of ground state densitiesin the strong fieldlimit has been studied in [4].

The present work is motivated by these works.
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2. Perturbation theory for singular numbers

As stated above, we use the perturbation theory for singular numbers of

compact operators as a basic tool to prove the main theorem. We here make a

brief review on several important properties of singular numbers. We refer to [6]

for details.

Let T : X ―>X be a compact operator (not necessarily self-adjoint)acting on

a separable Hilbert space X. We write ＼T＼for ＼/TT*. The singular numbers sn(T),

ne N, of T are defined as the non-increasing sequence of eigenvalues of |T＼ and

they have the following properties: sn(T) ―sn(T*) and

sn+m-x{Tx + T2) < sn(Ti)+sm(T2),
(2.1)

sn+m-i{TiT2) ^ SniT^iTi)

for two compact operators T＼ and T2. We now define

n(X＼T) = #{neN :sn(T) > A}, X > 0.

The next proposition is obtained as an immedaite consequence of (2.1) and is

repeatedly used in proving the main theorem.

Proposition 2.1. (1) If X＼,X > 0 with X＼+ fa = X, then

≪(A;Ti + T2) < n{Xx- Ti)+n(X2; T2).

(2) 7/"XhX2 > 0 wi?/i AiA2 = X, then

(3) Let g(X), X > 0, be a function such that X'a/c < g(X) < cX~ff,c> 1, for

some a > 0. If lim^o ≪(1;T2)/q(X) = 0, ?fe≪ owe has

liminf n(X;Ti

< lim limsup ≪((1- e)k＼Ti)/g(X),
40 3_≫0

+ T2)/g{X) > lim liminf ≫((1 + e)X; TA/gik).
e|0 A->0

We end the section by introducing another new notation. Let T : X ―>X be

a compact self-adjoint operator. We denote by N(T > X) and N(T < X) the

number of eigenvalues greater than X and less than X, respectively.By definition,

it immediately follows that

n(X;T)=N(T> X) + N(T < -X), X>0.

If, in particular, T > 0 is non-negative, then n(X; T) = N(T > X).
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3. Spectral properies of Pauli operators

Let H+ be defined by (1.1). In this section, we mention some basic spectral

properies of these operators, which are also required to prove the main theorem.

In particular,the important property is that the spectral function associated with

zero eigenvalue of H+ decreases rapidly (Proposition 3.1).

We can choose the magnetic potential to be divergenceless, so that it takes

the form

(3.1) ai(x) = -d2(p, a2(x) = d＼<p,

where mix) = w(r) satisfiesAm = h and is given as

(3.2)

Jo
la(r)dr, a(r)

[
rb(r)dr
Jo

The function <p is smooth and obeys the estimates

(3.3) ?lc < 9{r) < c?, |a>(x)| < Q<x>2-W

for some c > 1, which follows from assumptions (b.l) ~ (b.3). Throughout the

entire discussion, we fix the magnetic potential as in (3.1) and use the notations

(p{r) and a{r) with the meanings ascribed in (3.2).

We denote by (r, 0) the polar coordinate system and we often identify the

unit circle with [0,27c]. Let IIi and II2 be as in (1.1). If the magnetic potential is

chosen as above, then it follows that

III + 1TI2 = -iexp(-p(r))(di + id2) exp(p(r))

and hence we see from (1.2) that the eigenspace associated with zero eigenvalue

of H+ is spanned by the family of functions

(3.4) um{x) = rm exp(im0) exp(-^(r)), m e N* = N U {0}.

This is known as Aharonov-Casher theorem ([1]).

Let P : L2 ― L2 be the eigenprojection associated with the zero eigenspace of

H+. We write Q for Id ―P, Id being the identity operator. It is also known (see,

for example, [3]) that the non-zero spectra of the operators H+ and H- coincide

with each other. Since H- is strictly positive, we have

(3.5) QH+Q>j30Q po = Mb(r)>Q,

in the form sense. The family of eigenfunctions {um} forms an orthogonal system

and hence the integral kernel P(x,y) of the eigenprojection P is given by

(3.6) P(x,y) =
oo
£

m=0

vm(x)vm(y), vm(x) = ≪mW/＼/^.
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where

(3.7)

Akira Iwatsuka and Hideo Tamura

em =
JK(x)|2^x

= 2tJ r>I+1exp(-29≫(r))^

Proposition 3.1. Let x = (r,9) and y = (r;, 9'). If ＼0- 9'＼> 8 > 0, f/ie≪

|^P(x,^)| < Ca^(l + |x| + bf)-^

for any N ≫ 1 large enough, where Cubn also depends on 8.

The proof is rather long. We will prove this proposition in section 8. The

proof uses the Poisson summation formula. If b(r) = b > 0 is constant, then

(p[r)= br2/4 and em is calculated as em = (2n/b)ml(2/b)m, so that P(x,y) has the

explicitrepresentation

P(x,y) = (b/2n) exp(-(£/4)(|x|2 + ＼y＼2- 2＼x＼＼y＼exp(/(5- #)))･

Thus the proposition follows at once in the case of constant magnetic fields.The

lemma below is obtained as a simple application of Proposition 3.1.

Lemma 3.2. Let Tj c [0,2rc],1 <j < 2, and let Sj = {x : x/＼x＼ Tj] be the

sector generated by Tj. Denote by Xj{x) tne characteristicfunction of Sj. If the

distance d(T＼,T2) between T＼ and F2 is strictlypositive, then

for any a > 0 small enouah.

4. Proof of Theorem 1.1

The theorem below plays a basicrolein proving the main theorem. We here

complete the proof of Theorem 1.1,acceptingthistheorem as proved.

Theorem 4.1. Let P again denote the eigenprojection associated with zero

eigenspace of H+. Assume that W(x) fulfills(V.I) ~(V.3). Then

lim N(PWP > X)/Z(k, W) = ＼,

Z(hW) = (2n)-1
I
h{r)dx

JW(x)>k
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Proof of Theorem 1.1. We firstnote that

r2/d/c < Z(A; W) < cr2/d

for some c > 1 and that

287

(4.1) Z((l + s)X; W) = Z(X; W){1 + 0(e)), e -> 0,

uniformly in X > 0 small enough. These properties follow from (V.I) ~(V.3). Let

Q = Id-P and fiQ= iafb{r) again. The operator H{V) under consideration

satisfiesthe form inequalities

(4.2) H(V) ^ Q(H+ -V±c)Q-P(V+ V2/c)P

for any c > 0. We now choose c as 0 < c < /?0 and define

r±=P(F±F2/c)P, S± = g(H+ - F + c)Q.

Then it follows from (4.2) that

N{H{V) < -X) ^ N{T+ >X) + N(S+ < -X).

The multiplication operator V is relativelycompact with respect to H+. Hence we

have by (3.5) that the number N(S± < 0) of negative eigenvalues of S+ is finite.

We shall show that

(4.3) limsup N{T+ > X)/Z{X- V) < 1.

2^0

To prove this,we decompose T+ into T+ = T＼+ Ti and use Theorem 4.1 with

W = V or W=V2, where TY = PVP and T2 = PV2P/c. Since

lim iV(72 > A)/Z(A; F) = 0

by Theorem 4.1,(4.3)is obtained from Proposition 2.1 and (4.1). By Proposition

2.1 again,

N{Ti > (1 + e)X) < N{T- > X) + N{T- < -2) + N{T2 > eX)

for any e > 0 small enough. Since T- = T＼― T2> ―Ti in the form sense, it

follows that N(T- < -X) < N(T2 > X). Hence the lower bound

liminf Mr_ > A)/Z(A; V) > 1

can be also proved in a similarway. Thus the proof is complete. D
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The main body of the present work is devoted to proving Theorem 4.1. Let

{vm} be as in (3.6) and let ( , ) denote the I? scalar product. Then the operator

PWP in Theorem 4.1 is represented as the infinite matrix with components

(Wvm,vi). Thus the proof of the main theorem is reduced to the study on the

asvmototic distribution of eigenvalues of such an infinitematrix.

5. Spherically symmetric potentials

In this section, we firstprove Theorem 4.1 for the special case that W ―

W(r) is sohericallv symmetric.

Lemma 5.1. Assume that W = W{r) is sphericallysymmetric and satisfiesthe

same assumvtions as in Theorem 4.1. Then

lim N{PWP > k)/Z{k; W) = 1

As an immediate consequence, we can obtain the followinglemma, which is

used to prove Theorem 4.1 for the general case.

Lemma 5.2. Assume that W(x) < c<x} d for some c> 0. Then

for some constant C > 0.

limsup X2/dN{PWP > X) < C

Proof of Lemma 5.1. Let em be defined by (3.7).If W is spherically

symmetric, then PWP is representedas a diagonal matrix and it has Xm ―am/em

as eigenvalues,where

am = (Wum,um) =2n
r

Jo
r2w+1^(r)exp(-2^(r))Jr

Hence we have

N(PWP >X)=#{meN*: am/em > X}.

We study the asymptoticbehavior as m ― oo of em and am. If we make a change

of variabler ―＼m＼l^t.then

em = 2nmm+l
r

Jo
texp(-2mg(t;m))dt,
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where

(5.1) g(t;m) = <p(m^2t)/m-logt.

Let a(r) be as in (3.2). By definition,a(r)is a monotone increasing function and

hence it has the inverse function a~l(r).Since <p'(r)= a(r)/r, the stationary point

xm of phase function g(t;m) is defined as a root to the equation a(ml/2xm) = m.

The root xm to this equation uniquely exists and it is represented as

(5.2) tm = ≪-1/V1(w).

As is easily seen, xm satisfiesl/c <xm < c with some c > 1 independent of m ≫ 1.

The function q>(r)obeys Aq> = b, so that <p"{r)= fe(r)- a^/r2. Hence the value

g"(t;m) at point xm is calculated as

/(Tm;m)=l>(m1/2Tw)>^0>0,

so that g(t;m) attains a minimum at t = xm. Let Im = [xm ―3, xm 4-<S]c:(0, oo),

0 <
<5≪ 1, be a small

interval around tw. The family of phase functions {g(t; m)}

depends on the parameter m. It follows from (3.3) that this family is bounded in

C°°(/m)and ＼t―xm＼/g'(t;m), t e Im, is also bounded uniformly in m≫l. This

enables us to apply the stationary phase method (Theorem 7.7.5 in [7]) and we

obtain that

(5.3)

where

em = Fmrm(l + O{m 1)), m-*oo

(5.4) Fm = (2n)3/2(2h(ml/2rm))-l/2mm+^2Qxp(-2mg(zm;m)).

Similarly we can get

aw = FmrmW(ml/2rm)(l + Oim'1)).

Hence the eigenvalue Xm behaves like

Xm = W{mll2xm){＼ + 0(m-1)), m-*co.

Let £> 0 be small enough. Then it follows from (5.2) that there exists mE≫ 1

such that

(1 +e)-lW{a~l{m)) <Xm< {1 - e)'1 W{a~l {m))

for m >mE. By assumption (V.3), W also has the inverse function W~l{r) for

0<r≪l small enough and we have a{W~l(X)) = Z(1: W) for A>0 small
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enough. We now define

l±e(X)= # {m e N* : m > me, m < Z((l + c)A;W)}.

Then the quantity N(PWP > X) in question obeys the estimate

Le(X) < N(PWP >*)< l+e(X)+ me.

This, together with (4.1).proves the theorem. □

For laterreferences,we make furthercomments on the asymptotic behavior

of em. We consider the continuous version of em, m > 1. We definee(a) as

(5.5) e{o) = 2n(f+l ＼ texp(-2ag(t;a))dt, a>l,
Jo

g(t;tr)= p{al/2t)/a- logt.

As is easily seen, e(m) coincides with em for integer m>＼ and also the stationary

point t(<t) of phase function g(t;a) is given by a unique root to the equation

(5.6) a(ol/2T(a)) = a, a{r) =rcp'{r).

The stationary point z(a) is smooth as a function of a and it has the properties

＼/c< t(ct)< c, c > 1, and

(d/da)kr(a) = O{a~k), a -> oo.

By repeating an argument similar to that used in the proof of Lemma 5.1, we

obtain the lemma below, which is used for the proof of Proposition 3.1.

Lemma 5.3. Let e{a) he defined above. Then ＼/e{a) takes the form

＼/e{a)= (J-ll2G{o)e-al0*aQxV{2og{T{a);(j)), a > 1,

where G(a) is a smooth function and satisfies

(d/da)kG(a) = O(a~k), a^oo.

If we further set E = supa^.l Qxp(2g(t(a);a)), then l/e(a) obeys

＼/e{a)< ca-^+l'2)Ea

fnr sintnpr ~*>1
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6. Min-max principle

The proof of Theorem 4.1 is done by localizing the potential over small

sectorswith vertex at the origin.In this section we study a bound as X ―>0 of the

quantity w(A; W1I2P) for a class of non-negative potentials W(x) with support in

such sectors by use of the min-max principle.The aim is to prove the following

lemma.

Lemma 6.1. Let T c [0,2tc]and let /(0; T) be the chatacteristicfunction ofT.

Assume that W(x) > 0 is non-negative and obeys W(x) </(^;F)<x>~^ for some

d > 0. Then there exists C > 0 indenpendent of T such that

limsup XA'dn{X;Wl'2P) < C＼Tf

A->0

with p = min (1,1/2*/),where ＼T＼denotes thelength ofT.

The proof relieson thelemma below. We accept thislemma as proved and

complete the proof of Lemma 6.1.

Lemma 6.2. Let %{Q) > 0 be a positive smooth function over [0,2ri＼.Assume

that W(x) > 0 is also a positive smooth function and takes the form

W(x)=X(0)<x>-d, |x|≫l,

for 0 < d < 2. Let KQ = H(W) =H+-W. Then

limsup X2/dN{K0 <-X) < C
A->0

for another C > 0 independent of %(0).

(2n

0

X(6fdd0

Proof of Lemma 6.1. The proof is dividedinto three steps.

(1) Let W{x) fulfillthe assumption in Lemma 6.2.Then we show that

(6.1) limsup A2/dN(PWP > A) < C
k->0

(In

0

x(0)2/ddd

This is proved in the same way as in the proof of Theorem 1.1.We define

T = P{W - W2/c)P, T＼= PWP, T2 = c~lPW2P
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for 0 < c < $0 = inf b{r). Then T＼= T + T2 and it follows from Proposition 2.1

that

N(T{ > X) = n(l; T{) < n{{＼- e)l;T) + n(eA; T2)

for any s > 0 small enough. Hence we have by Lemma 5.2 that

limsupl2/^iV(ri > A) < lim limsupX2/dn((l-e)X;T).
£-^° ;^o

Since N(T > X) < N{KQ < -X) by (4.2) and since N(T < -X) < N(T2 > X), we

obtain

n(X; T) = N{T > X) + N(T < -X) < N{KQ < -X) + N(T2 > X).

This, together with Lemmas 5.2 and 6.2, implies (6.1).

(2) The second step is to show the lemma for the case 0 < d < 2. It suffices

to prove the lemma for W(x) ― x(0; F)<x>"^ with 0 < d < 2. The proof is done

by approximation. We approximate W(x) by a monotone decreasing sequence

{Wk(x)} of positive smooth functions. The function Wk(x) takes the form

Wk{x) = Xk(&)(xy~d f°r＼x＼̂ 1 anci Xki.0) converges to %{0; T) as k ―> oo. Then it

frVIInws that

n(X;Wl/2P) = N(PWP > X2) < N(PWkP > A2).

Hence the lemma follows from (6.1) for the case 0 < d < 2.

(3) The finalstepis to prove the lemma for the case d > 2. We again assume

W(x) to take the form as in step (2) and decompose W as W ― W1^2 W2', where

Wx{x) = X(0; TKxy＼ W2{x) = X(0;r)<x>"M+1.

If we define Tx = PW{12 and T2 = W2l/2P, then

n{X; Wl/2P) = N(PWP > X2) = n{X2; T＼T2)

and hence it follows from Proposition 2.1 that

nikW1'2?) <n(u-Tx) +n(v-T2),

where /i= Xl/d/L and v = LX{2d-l)/dfor L > 0. By Lemma 5.2,we have

limsup X4/dn{v;T2) = limsup XA/dN{PW2P > v2)< CL^I^^

with some C > 0 independent of L. On the other hand, we have alreadyshown in

steo(2) that
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limsup X4/dn{pi; Tx) < CL4＼T＼

with another C > 0. If we take L = ＼r＼~{2d~l)/Sd,then

L4|r| = l-4/^-1) = |r|1/M

and hence the lemma is also proved for the case d > 2.

293

□

We shallprove Lemma 6.2.The proofis based on the min-max principleand

uses the followinglemma due to Colin de Verdiere [21.

Lemma 6.3. Let Q{R) be a cube with side R. Let Hy be the Schrodinger

operator with constant magnetic field y > 0. We consider the operator H7 over the

cube Q{R) under zero Dirichlet boundary conditions and denote by Ni){Hy < pi;

Q(R)), /i> 0, the number of eigenvalues less that pi. Then

ND{Hy < pt-Q(R)) < (2nylyR2v(pi/y),

where

v(u)= #{neN* :2n+l<u＼.

Proof of Lemma 6.2. The proof is divided into three steps. Throughout the

proof, X > 0 is assumed to be small enough and we use the notation ＼G＼to denote

the measure of Gci?2.

(1) Let W(x) be as in the lemma. We define

Gjx = {xeR2: W(x) > X/{j + 1)}, 1 < j < 3.

Then Gu c Gix a G^ in the strict sense. We introduce a smooth non-negative

partition {iA0)<Ai} with the following properties: (1) ＼JJq(x',X)2+＼jj1(x;X)2= 1 on

R2. (2) i^o is suported in Gu and ijj0= 1 on Gu. (3) ^0 and ＼}ixobey the estimate

for Ca independent of L A simple calculation shows that

(6.2) Ko = H{W) = H+ - W = J2 HKo ' W;

7=0,1

in the form sense, where

Yi = Yi{x;X) = J2 |V**/(*;*)|2 = 0{X2'd), X -. 0

;=0,l
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Kx = H{Wi) =H+- Wh Wi{x＼X)= W{x) + Yx{x;X)

and use the notation Nd{K＼ < ―X;G) with the same meaning as in Lemma 6.3

for domain G c R2. By relation(6.2),the min-max principleimplies that

N(K0 < -X) < ND{KX < -X; Glk)+ND{KX < -X;Qk),

where Qi = R2＼Gu. Since 0<d<2 by assumption, it follows that that W＼

{x]X)<X for xeQx and Yi(x;X)<X/2 for xeG2x- This yields that ND

(Ki < -X＼Qx) = 0 and

(6.3) N(K0 < -X) < ND(K0 < -A/2; G2k).

(2) We take M ≫ 1 large enough and denote by Qk the cube with center at

Zk and side M. We cover G2x with a family of such cubes

This can be done in such a way that []]<l,<,Qk <= Gu and

(6.4)
/
E

k=＼

＼Qk＼<2＼Gu＼.

We further introduce a non-negative smooth partition {(Pk＼k=＼subject to the

covering above. The partition has the following properties: (1) J2k=i ^(x) ― 1

on G2X- (2) (pk is supported in Qk and obeys |d"^(x)| < CUM~^ for Ca in-

dependent of M. Then we again obtain the form equality

in C0°°(C?2A), where

Hence we have

(6.5)

where

k=＼

Y2(x) = Ei

k=＼

Y2)9k

V,^(x)|2< CM'2.

/
ND(K0 < -X/2- G2X) < Y,nd{K2 < -A/2; Qk),

k=i

K2 = H{W2) =H+- W2, W2{x) = W(x) + Y2(x)
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(3) We now expand the magnetic potential a/(x) as

aj(x) = aj(zk) + Vxaj(zk) ･(x - zk) + rjk{x), 1 <j < 2,

in Qk, where the remainder term rjk satisfies

＼rjk(x)＼<C<zk}-lM＼ xeQk,

for C independent of M and k. We set

Ajk = -idj - {aj - rjk)= Tij+ rjk, 1 <j < 2,

and define Hk = A^ + A^ as an operator acting on L2(Qk). This operator has

hk = h(zk) > 0 as a constant magnetic field and satisfiesthe form inequality

(6.6) Hk/2-qk^nl + Ul

in C (Qk), where qk(x) = nk(x)2 + r2k(x)2. We may assume that l^-jtl―^oo as

k ―>oo. Thus, if we choose M large enough, then there exists&m ≫ 1 independent

of X such that

2(b(x) + W2(x) + qk(x) - X/2) < 5bk/2, x e Qk,

for k > Um- Hence it follows from (6.6) that

ND(K2 < -X/2; fit) < ND(Hk < 5bk/2; Qk)

for k as above. We now use Lemma 6.3 to obtain that

ND(K2 < -X/2; Qk) < (2n)-lbk＼Qk＼.

This, together with (6.3) ~(6.5), yields that

N{K0 < -X) < 2{2n)-lf]＼Gu＼+ C

for C independent of X, where B ― sup b(r). Since

lira sup X2/d＼G31＼< C

)2n

0

x(0fdd9

for some C > 0, the proof is now complete. □

7. Proof of Theorem 4.1

In thissectionwe prove Theorem 4.1.The proof furtheruses the following

two lemmas, which are proved aftercompleting the proof of Theorem 4.1.
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Lemma 7.1. Assume that W{x) satisfies(V.I) - (V.3). Let Wj(x), 1 <j < 2,

be defined by Wj = *(0;Fj) W(x) for open intervals Tj c [0,2n]. If Ti (1T2 = 0,

then

Mm X2'dn{k; w＼l2PW＼12) = 0

Lemma 7.2. Assume that W(r) is spherically

(V.I) - (V.3). Let TL = (0,2tt/L) for Merger L and

WL= x{O＼TL)W{r). Then

n(X; WlL/2PWlL/2) = Z(A; WL) + o(X~2/d)

where

Z(l; WL) = {2nYl
JWL(x)>i.

symmetric and satisfies

let WAx) be defined by

A->0

b{r)dx = Z(k＼W)/L.

Proof of Theorem 4.1. We prove only the upper bound

(7.1) limsup N{PWP > X)/Z{X :W)<1.

A->0

A similarargument shows the lower bound

liminf N(PWP > X)/Z(l: W) > 1.

Let TJL = (2(y- l)n/L,2jn/L), 1 <j < L, for integer L≫ 1 and let WjL{x)

x(0;TjL)W(x). We furtherdefine

Then we have

T1L =
E

＼<j,k<Lj^k

wfpwg

N(PWP >X)= n(A;W1I2PW1'2) = n{A;TlL + T2L).

By Proposition 2.1,it follows from Lemma 7.1 that

＼imA2/dn(A;T2L)= 0.

Let FjL = w)£pw}£ and let SjL = (0, oo) x TjL be the sector generated by TjL.

Then Fjl can be regarded as an operator from L2(Sjl) into itselfand hence

nU; TiL) =
7=1
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Thus we obtain again by Proposition2.1 that

limsup N(PWP > X)/Z(X- W) <
lim

L―≫oo
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L
Mm sup Y>((1 - ＼/L)X-FjL)lZ{X;W).

We now write W(r,6) for W(x) and denote by Ojl = (2/ ― ＼)n/L the midpoint of

interval F)/,. We set Wjl{t) ― W(r,9jL). We further define the operator Ejl as

EjL = UJl2PUjl2 with L|/1W=^;r/L)%(r). Then it follows from (V.I) and

(V.2) that

W/lW < (1 + cL-l)UJL{x), x e SjL,

for some c > 0 independent of L and hence

≪((1 - 1/L)X',Fjl) < n{{＼ - eL)X-EjL)

for some £/,> 0, where el satisfies that e/, ―> 0 as L ―≫oo. By Lemma 7.2, we have

≪((1 - eL)X; Ejl) = Z((l - ^)A; C^L) + o(r2/</)

and also it follows from (V.2) and (V.3) that

eL)bUjL) = Z(X',W)(l+o(＼)) L ―≫ oo

uniformly in X small enough. Thus (7.1) is obtained and the proof of the theorem

is complete. □

Proof of Lemma 7.1.

follows from Lemma 3.2

If the distance d(Ti,T2) > 0 is strictly positive, then it

that

lim XanU; Wl'2PW1'2)

for any a > 0 small enough. If d(Ti,r2) ―0,

approximation. Let Te be an intervalsuch that

= 0

then the lemma is proved by

r£ c Ti with dCTe, T2) > 0 and

for any e > 0 small enough. We decompopse W＼ into

Wx (jc) = X(0] 1*) WX (x) + x{0; Fe) Wi (x) = C/le(x) + U^x)

It follows again from Lemma 3.2 that

lim X2/dn(X- Ul'2PWl212) = 0

A-≫0 E



298 Akira Iwatsuka and Hideo Tamura

and also we have by Lemma 6.1 that

limsup A2/dn(X;u＼[2PWl212)= o(l), £-> 0.

This can be shown by repeating the same argument as used in step(3) of the

proof of Lemma 6.1.Thus the proof of the lemma is complete. □

Proof of Lemma 7.2. The proof is done in almost the same way as in the

proof of Theorem 4.1, so we give only a sketch for a proof. We use the notations

SjL, FiL and T＼r with the meanings ascribed in the proof of Theorem 4.1. Since

both b(r) and W(r) sltq spherically symmetric, FjL : L2(SjL) -> L2(SjL) are all

unitarilyequivalentto the operator FL ― W^PW]11 and hence

nU; TlL) =
LE n{X-FjL)=Ln{X;FL).

We repeat the same argument as used in the proof of Theorem 4.1. Then we

obtain by Lemmas 5.1 and 7.1 that

limsup n(A;TlL)/Z{X; W) < limlimsup N{PWP > (1 - e)X)/Z{k;W) = ＼.
40 ^o

This implies that

limsup n{X;FL)/Z(X; W) < l/L.
A->0

Similarlywe can show that

liminf n(X-FL)/Z(X; W) > l/L.

Thus the proof is complete. □

8. Proof of Proposition 3.1

In thissection we prove Proposition 3.1, which has played a basic role in the

proof of Theorem 4.1.

Proof of Proposition 3.1. The proof is divided into several steps. We begin

by recalling the definition (3.6)

P{x,y) = exp(-*(r, /))
f>w
exp(wi(0 - d'))/em,

m=0
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where x = (r, 0), y = (r',91), p = rr' and ri(r,r')= tp{r)+ (p{r').The function (p(r)

has the properties in (3.3) and hence tj(r,r') satisfies

ri(r,r')>c(r + r')2

for some c > 0. Throughout the proof, we assume that r + r'>＼.

(1) Assume that p < K for K ≫ 1 fixed. Then we have

oo

＼P(x,y)＼<exp{-i,{r,r>))YlXm/em.

w=0

It follows from Lemma 5.3 that J2^m/em < oo. Thus P(x,y) is shown to be

rapidly deceasing

P{x,y) = O{{r + r'yN), N≫l,

provided that p < K.

(2) Next we assume that p > K ≫ 1. We introduce a smooth nonnegative cut-

off function i//e Cg°([O,oo)) such that ＼j/{a)= 1 for 0 < a < 1 and ＼l/(a)= 0 for

a > 2. We fix 0 < 5 ≪ 1 small enough and define

＼l/l(o;p)= ＼jj(o/dp), ＼l/2(a]p)= ＼l/(3a/p)-＼l/(a/dp), fafap) = 1-＼/t(da/p).

Then P{x,y) is decomposed into the sum P(x,y) = Y^=iPj(xiy)> where

Pj{x,y)=exp(-ri(r,r')

00

)E

m=0

il/j(m;p)pm Qxp{im(0 - 0f))/em.

We shall show that each function Pj(x,y) has rapidly decreasing property.

(3) We firstconsider P＼(x,y) and P^(x,y). By definition,P＼(x,y) obeys the

estimate

[25p]
＼Pi(x,y)＼<exp(-n(r,r'))J2pm/em,

m=0

where [ ] denotes the Gauss notation. By Lemma 5.3,we have

Pm/em < cm-W^ogEp-logm)^ m > L

If we take 5 so small that [25p]< Ep/e, then m(logEp - logm) is monotone

increasingin m, 1 < m < [25p].Since

[2Sp](logEp - Iog[25/>1)= [25p]logEp/[25p] = o(l)p, 5 - 0,
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uniformly in p > K, this yields that P＼(x, y) is rapidly deceasing. It is also easy to

prove that P-$(x,y) is rapidly deceasing. We may assume that [p/3] > IE p. Then

it follows again from Lemma 5.3 that

pm/em<cm-l/2(EP/m)m<2-m, m>[p/S＼.

This shows that P$(x,y) is also rapidly deceasing.

(4) We shall prove that P2(x,y) is rapidly deceasing. The proof uses the

Poisson summation formula. Recall the definition (5.5). The function e{a) is

defined bv

e(a) = 27i(f+l
r

Jo
tQxp(-2ag(t; a)) dt, g>＼

where

g(t;<j)= tp(a1/2t)/a-logt.

By definition,i/j2{(r,p)has support in (Sp,2p/S). If we take K > 1/8 large enough,

then ＼I/2(<j;p)vanishes over the interval (―oo,l) for p>K. Thus

q(a;P) = U^P)Pffei<T{9-eVe(a)

can be defined as a function of the Schwartz class over (-00,00) and P2(x,y) is

represented as

00
P2{x,y)=Qxp(-fj(r,r')) ]T q(m;p).

m=―oo

Hence the Poisson summation formula vields

where

P2(x,y) = (2n)l/2Qxp(-n(r,/))

q(2mn;p) =
-―iimna

oo
£

m=―oo

q(2mn;p)

q{a;p)da.

According to Lemma 5.3,l/e(a) takes the form

l/e(a) = G(a)<j-l/2e-°l0*°exp(2ag(T(Gy,G)),

where r(a) is the unique root to equation (5.6).We now rewrite q(2mn;p) as

q{2mn;p) = e-ou{a;P)exp(/ff(0 _ ei _ 2mn))v{(T-p) da,
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where

u(a;p) = loga/p - 2(p{al/2r(a))/a+ 2log t{a),

v{o-p) = o-ll2^2{G-p)G(o).

We further make a change of variable a ―*■ps to obtain that

q(2mn;p) = e-pf(s;p)exp(i>(0 -0' - 2mn)s)w{s;p) ds,

where

f(s;p) = su(ps;p)= slogs - 2<p((ps)l/2T(p$))/p+ 2slogr(ps),

w(s;p) = pv(ps;p)= p1/2s-l/2＼l/2(ps;p)G{ps).

The function w(s;p) has support in the interval(8,2/8) and satisfies

＼(d/ds)kw(s;p)＼< Ckp1'2

for Ck independent of p. We look at the stationarypoint of f(s;p). Since

<p'((pS)ll2T(ps))= {psfl2lx{ps)

by (5.6),f'(s;p)is calculatedas

(8.1) f'(s;p)=logs + 2＼ogz(ps)=logsr(ps)2.

Hence the stationarypoint sp is given as a solutionto equation

(8.2) SpT{pSpf = 1

301

The equation above has a unique solution.In fact,we differentiatethe both sides

of (5.6)

a(//V/2T(/≪)) = PS

with respect to s. Since a'(r)= rh(r), we obtain

(8.3) b(pl/2sl/2T(ps))(ST(pS)2y= 2.

This implies that st(ps)2 is a monotone increasing function. Thus (8.2) has a

unique solution. We calculate the values of f(s;p) and f"(s;p) at stationary point

sp. It follows from relations (8.1) ―(8.3) that
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r(Sp;p)=2/b(pl'2)>0

and also we have f{sp;p) = ―2f(pl/2)/p by a simple calculation. Hence f($;p)

attains the minimum ―2(p(pl/2)/pat s = sp. We assert that

exp(-*(ry)-pf(sp',p)) = exp(-rtr) - ?>(/)+2^((r/)1/2)) < 1.

To see this, we set F{t) = ^(e1). Then we have

<p(r)+ <p{r')- 29((rr'f2) = F(r) + F(r') - 2F((/ + f)/2)

with f = logr and t'―logr'. Since F"{t) = e2tb{et)> 0, F(t) is a convex function

and hence the above assertion follows at once. By assumption, 6 ^ 6', so that

6 ―6' ―2mn ^ 0 for any integer me Z. Thus we obtain by repeated use of

partial integration that

q{2mn-p) = (1 + ＼m＼yN0{p-% p - oo,

for any JV≫1. This proves that ^(Xjj) is rapidly decreasing when

l/c < r'/r < c, c > 1. If r ≫ r' or r'≫ r, then

exp(-^(r) - <p{r')+ 2^((rr')1/2))= O((r + r')^)-

Hence /*2(x,_y)has also rapidly decreasing property in such a case.

We can show by use of the same argument as above that dax(fyP{x,y)is also

rapidly decreasing. Thus the proof of the proposition is now complete. □
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