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1. Introduction

The warped product M xF N, of a 1-dimensional manifold (M,g),gn ――1,

with a warping function F and a 3-dimensional Riemannian manifold (N, g) is

said to be a generalized Robertson-Walker spacetime (cf.[2],[32]).In particular,

when the manifold (N,g) is a Riemannian space of constant curvature, the

warped product M xF N is called a Robertson-Walker spacetime. In [11] it was

shown that at every point of a generalized Robertson-Walker spacetime M xF N

the following condition is satisfied:

(*)j the tensors R- R ― Q(S,R) and Q{g,C) are linearly dependent.

This condition is equivalent to the relation

R-R-Q(S,R)=LlQ(g,C) (1)

on the set %c consisting of allpoints of the manifold M xF N at which its Weyl

tensor C is non-zero, where L＼is a certain function on %c- For precise definitions

of the symbols used, we refer to the Sections 2 and 3. (*)x is a curvature

condition of pseudosymmetry type. In this paper we willinvestigate generalized

Robertson-Walker spacetimes realizing a condition of pseudosymmetry type

introduced in [25]. Namely, semi-Riemannian manifolds (M, g), n > 4, fulfilling

at every point of M the following condition

(*) the tensors R ■C and Q(S, C) are linearly dependent.

were considered in [25]. This condition is equivalent to the relation

R-C = LQ(S, C)
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(2)
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on the set f = {xe M＼Q(S, C) # 0 at x}, where L is a certain function on °U.

We note that every semisymmetric manifold (R ･ R = 0) as well as every Weyl-

semisymmetric manifold (R ･ C = 0) realizes (*) trivially (see [25]). There exist

also non semisymmetric and non Weyl-semisymmetric manifolds realizing (*)

([25]). We mention that warped products realizing curvature conditions of

pseudosymmetry type were studied in: [7], [8], [9], [11], [13], [14], [15], [16], [17],

[19], [20], [21], [24], [26], [28] and [29].

In Section 2 we present a review of the family of curvature conditions of

pseudosymmetry type. In the next section we give results on warped products

which we apply in the last two sections. In Section 4 we find necessary and

sufficient conditions for a warped product to be a manifold satisfying (2). Finally,

in Section 5 we present our main results.

Let (M,g) be a semi-Riemannian manifold satisfying (*). We denote by <%L

the set of all points of the set % <= M at which the function L is non-zero. It is

clear that the tensors R ■C and Q(S, C) are non-zero at every point of the set

^l- Moreover, let (M,g) be a 4-dimensional warped product M xF N, dimM =

1. We denote by °UF the subset of Qli consisting of all non-critical points of F.

Our main result states (see Theorem 5.1) that if the 4-dimensional warped

product M xF N, dimM = 1, satisfies(*) and the set °UF is a dense subset of ^l

then the open submanifold Ul of the manifold MxFN is a pseudosymmetric

warped product of the 1-dimensional manifold, with the function F, defined by

F(x1) = aexp(bxl), a ― const. > 0, b = const. # 0, and a 3-dimensional semi-

Riemannian manifold such that its Ricci tensor is of rank one and its scalar

curvature vanishes identically. From this statement it follows immediately (see

Corollary 5.1) that if a generalized Robertson-Walker spacetime M xF N realizes

above assumptions then at every point of M xF N at least one of the tensors

R ■C or Q(S, C) must vanish. Finally, using this fact we prove (see Theorem 5.2)

that every Robertson-Walker spacetime satisfying (*) is a pseudosymmetric

manifold.

2. Curvature Conditions of Pseudosymmetry Type

Let (M, g) be a connected ^-dimensional, semi-Riemannian manifold of class

C00 and let V be its Levi-Civita connection. We define on M the endomorphisms

X a Y, 91{X, Y) and <&(X, Y) by

(X a Y)Z = g( F, Z)X - g(X, Z) F, ≫{X, Y)Z = fVx, VriZ - V,,.rlZ,

< {x,Y) = 9t{x,Y)―l―(x a yr + yi a y--^-x a y)
n ―2 ＼ w ―I /
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respectively, where X, y,ZeS(M),S(M) being the Lie algebra of vector fields

of M. The Ricci operator Sf is defined by S(X, Y) = g{X,6fY), where S is the

Ricci tensor and k the scalar curvature of (M,g), respectively. Next, we define

the tensors U, G, the Riemann-Christoffel curvature tensor R and the Weyl

conformal tensor C of (M,g), by

U(Xl,X2,X3iX4)=g(XuX4)S(X2,X3)+g(X2,X3)S(XuX4)

- g(XuX3)S(X2,X4) - g(X2,X4)S(XuX3)

G(XuX2,X3,X4)=g{{Xx aX2)X3,X4),

R(XuX2,X3,X4)=g{≫(XuX2)X3iX4)1

C(XuX2,X3,X4) = gMX1,X2)X3,Xt),

respectively.Now we can present the Weyl tensor C in the followingform

C = R

1

n-2
u + K
(n-2)(n-l)

G (3)

For a (0,k)-tensor fieldT,k>＼, we define the (0,k + 2)-tensorsR-T and

Q(g, T) by

(R ■T){XU. ..,Xk;X, Y) = {R{X, Y) ■T)(XU. ..,Xk)

= -T{a(X,Y)XuX2,...,Xk)

T{Xu...,Xk.u<M{X,Y)Xk),

Q(g, T)(XU.. .,Xk;X, Y) = ((X a Y) ■T)(Xh. ..,Xk)

= -T((X a Y)XuX2,...,Xk)

T(Xl Xk.h(X a Y)Xk)

Putting in the last formulas T ―R,T = S or T = C, we obtain the tensors

R-R,R-S,R-C, Q{g,R), Q(g,S) and Q(g, C), respectively.The tensor C ･ C we

definein the same way as the tensor R ･R.

Let (M,g) be a Riemannian manifold covered by a system of charts{W;xr}.

We denote by grs,Trst,Rrstu,Sst,Grstu= grugst- gngsu and

%~TStU R-rstu
n

1

2
{dru^st ~ 9rtSsu + Qst^ru ~ dsu^rt) +

K
(n-2)(≫-l)

(*rstuj
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the local components of the metric g, the Levi-Civita connection V, the Riemann-

Christoffel curvature tensor R, the Ricci tensor S, the tensor G, and the Weyl

conformal curvature tensor C of (M,g), respectively, where p,g,r,s,t,u,v,w e

{1,2,...,≪}. The local components of the tensors R ･R and Q(g, R) are given by

the following formulas

(R ■R)rstuvw ― ^w^vRrstu ~
VvVwRrstu

= 9 ＼-K-pstu-K-qrvw ■Kprtu-K-qsvw i ^-purs-^-qtvw ^-ptrs-^quvwji

Q{.9iR)rsmw ― Qrv^-wstu "i Qsv^-rwtu i Qtv^rswu i Quv^-rstw

Qrw^vstu Gsw^rvtu Qtw^-rsvu Quw^-rslv

A semi-Riemannian manifold (M,g), n > 2,is saidto be an Einsteinmanifold if

the followingcondition

H≪ (4)

holds on M. According to [4] (p. 432), (4) is called the Einstein metric condition.

Einstein manifolds form a natural subclass of various classes of semi-Riemannian

manifolds determined by a curvature condition imposed on their Ricci tensor ([4],

Table, pp. 432-433). For instance, every Einstein manifold belongs to the class of

semi-Riemannian manifolds (M,g) realizing the following relation

v(s
K

2(71-1)

･) (*,r;z) = v(s- K
2(^1)
･) (X,Z;7)

(5)

which means that S ―(k/(2(ji ―l)))g is a Codazzi tensor on M. Manifolds of

dimension >4 fulfilling(5) are called manifolds with harmonic Weyl tensor ([4],

p. 440). It is known that every warped product Sl xF M of the sphere S＼ with a

positive smooth function F, and an Einstein manifold (M,g), dimM > 2, realizes

(5) ([4],p. 433). Such warped product is a non-Einstein manifold, in general. We

say that (5) is a generalized Einstein metric condition ([4],chapter XVI). On the

other hand, such warped product realizes a condition of pseudosymmetry type

too. Namely, the warped product S1 xFM of the sphere Sl, with a positive

smooth function F, and an Einstein manifold (M,g), dimM>2, is a Ricci-

pseudosymmetric manifold ([24], Corollary 3.2).Thus, in particular, the warped

product Sl xF CPn of Sl, with a positive smooth function 3F, and the complex

protective space CPn (considered with its standard Riemannian locally symmetric

metric) is a Ricci-pseudosymmetric manifold.
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A semi-Riemannian manifold (M, g),n > 3,is saidto be Ricci-pseudosymmetric

([14],[24]) if at every point of M the following condition is satisfied:

(*)2 the tensors R ■S and Q(g, S) are linearly dependent.

Evidently, any Einstein manifold is Ricci-pseudosymmetric. Thus we see that

(*)2 is a generalized Einstein metric condition. The manifold (M,g) is Ricci-

pseudosymmetric if and only if

R-S = LsQ(g,S) (6)

holds on the set Us = {x e M ＼S ―{K/n)g # 0 at x), where Ls is some function

on Us. Warped products realizing(*)2 were considered in [14],[17],[24] and [26].

Certain examples of compact and non-Einstein Ricci-pseudosymmetric manifolds

were found in [26] and [30]. For instance, in [30] (Theorem 1) it was shown that

the Cartan hypersurfaces Min the spheres S1 ,S17 or S25 are non-pseudosymmetric,

Ricci-pseudosymmetric manifolds with non-pseudosymmetric Weyl tensor. The

Cartan hypersurfaces M in S4 are non-semisymmetric, pseudosymmetric mani-

folds. Ricci-pseudosymmetric hypersurfaces immersed isometrically in a semi-

Riemannian manifolds of constant curvature were investigated in [10].

A very important subclass of the class of Ricci-pseudosymmetric manifolds

form pseudosymmetric manifolds. The semi-Riemannian manifold (M,g),n > 3,

is said to be pseudosymmetric ([21]) if at every point of M the following

condition is satisfied:

(*)3 the tensors R ･R and Q(g, R) are linearly dependent.

The manifold (M,g) is pseudosymmetric if and only if

R-R = LRQ(g,R) (7)

holds on the set Ur ―{x e M ＼R ―(}c/(n(n ―l)))G # 0 at x}, where Lr is some

function on Ur. It is clear that any semisymmetric manifold (R ■R = 0,[36])

is pseudosymmetric. Very recently the theory of Riemannian semisymmetric

manifolds has been presented in [6].The condition (*)3 arose during the study of

totallyumbilical submanifolds of semisymmetric manifolds ([1])as well as when

we consider geodesic mappings of semisymmetric manifolds ([18], [37]). There

exist many examples of pseudosymmetric manifolds which are not semisymmetric

([13],[19],[20],[21],[28]).Among these examples we can distinguishalso compact

pseudosymmetric manifolds (for instance, see [19], Example 3.1 and Theorem

4.1). Another example of a compact pseudosymmetric manifold is the warped

product S1 xF Sn~＼ with a positive smooth function F, as well as n-dimensional



118 Ryszard Deszcz and Marek Kucharski

tori Tn with a certain metric (see [19], Examples 4.1 and 4.2).It is clear that if

at a point x of a manifold {M,g) (*)3 is satisfiedthen also (*)2 holds at jc.The

converse statement is not true. E.g. every warped product Mi xFM2, dim Mi =

1, dimM2>3, of a manifold (M＼,g) and a non-pseudosymmetric, Einstein

manifold (M2,g) is a non-pseudosymmetric, Ricci-pseudosymmetric manifold (cf.

[24], Remark 3.4 and [21], Theorem 4.1).

It is easy to see that if (*)3 holds on a semi-Riemannian manifold (M,g),

n>4, then at every point of M the following condition is satisfied:

(*)4 the tensors R ■C and Q(g, C) are linearly dependent.

Manifolds fulfilling(*)4 are called Weyl-pseudosymmetric. Weyl-pseudosymmetric

manifolds has been studied in [15],[17] and [22].The manifold (M,g) is a Weyl-

pseudosymmetric manifold if and only if the relation R- C ―L2Q(g,C) holds

on the set %c ―{x e M ＼C # 0 at x}, where Li is some function on °Uc-

A semi-Riemannian manifold (M,g), n>4, is said to be a manifold with

pseudosymmetric Weyl tensor ([29])if at every point of M the following condition

is satisfied:

(*)5 the tensors C ■C and Q(g, C) are linearly dependent.

Thus (M, g) is a manifold with pseudosymmetric Weyl tensor if and only if the

relation C ■C = Li,Q{g, C) holds on the set <%c, where L3 is a certain function on

°Uc-The condition (*)5 arose during the study of 4-dimensional warped products

([17]).Namely, in [17] (Theorem 2) it was shown that at every point of a warped

product Mi xF M2, with dim Mi = dimM2 = 2, (*)5 is fulfilled.Many examples

of manifolds satisfying (*)5 are presented in [9]. For instance, the Cartesian

product of two manifolds of constant curvature is a manifold realizing (*)5.

Warped products satisfying(*)5 were considered in [29].In [9] it was shown that

the classes of manifolds realizing(*)3 and (*)5 do not coincide. However, there

exist pseudosymmetric manifolds fulfilling(*)5, e.g. Einsteinian pseudosymmetric

manifolds ([9],Theorem 3.1).Curvature properties of pseudosymmetric manifolds

with pseudosymmetric Weyl tensor were obtained in [31].

For a (0,/c)-tensor field T,k> 1, and a symmetric (0,2)-tensor field A, we

define the (0,fc + 2)-tensor Q(A, T) by

Q(A, T)(XU..., Xk; X, Y) = ((X aa Y) ■T){XX,..., Xk)

= -T((X a4 Ym,X2 Xk)

T(Xl,...,Xk-U(X AAY)Xk),
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where X aa Y is the endomorphism defined by

(X aA Y)Z = A(Y,Z)X - A{X,Z) Y.

In particular, we have X Ag Y = X a Y. Putting in the above formula A = S

and T = R,T=C or T = G, we obtain the tensors Q(S,R), Q(S, C) and

Q(S, G), respectively.

A semi-Riemannian manifold (M,g) is said to be Ricci-generalized pseudo-

symmetric ([7])if at every point of M the following condition is satisfied:

(*)6 the tensors R-R and Q(S,R) are linearly dependent.

A very important subclass of Ricci-generalized pseudosymmetric manifolds form

manifolds fulfillingthe following relation R-R = Q{S,R) ([7],[8],[23]). Every

3-manifold (M,g) as well as every hypersurface M immersed isometrically in

an (n + 1)-dimensional semi-Euclidean space E"+1, of index s,n>3, fulfilsthe

last equality, see [16] (Theorem 3.1) and [27] (Corollary 3.1), respectively.

As it was shown in [27], every hypersurface M in a semi-Riemannian space

of constant curvature Mn+l(c),n> 4, fulfils(1). More precisely, we have the

following

Remark 2.1 ([27], Proposition 3.1). Every hyper surface M immersed iso-

metrically in a semi-Riemannian space of constant curvature Mn+1(c), n>4,

satisfiesthe equality R-R- Q(S,R) = -(((≪- 2)k)/{n(n + ＼)))Q{g,C), where k

is the scalar curvature of M"+l(c) and R, S and C are the curvature tensor, the

Ricci tensor and the Weyl tensor of M, respectively.

Using Theorem 3.1 of [16], which was mentioned above, and the fact that the

Weyl tensor of every 3-dimensional semi-Riemannian manifold vanishes identi-

cally, we conclude that (*)j is triviallysatisfied on any 3-dimensional semi-

Riemannian manifold. Recently, warped products realizing (*)j were considered

in [11].

The relations(*),(*)i-(*)6 are called conditions of pseudosymmetry type. We

refer to [12], [18] and [37] as the review papers on semi-Riemannian manifolds

satisfying such conditions. A hypersurface fulfillinga curvature conditon of

pseudosymmetry type is said to be a hypersurface of pseudosymmetry type ([12]).

We finish this section with the following

Lemma 2.1. Let (M,g), n = dimM > 3, be a semi-Riemannian manifold.

(i) ([13],Lemma 1.2;[23],Lemma 2) If the Weyl tensor C of (M,g) vanishes

at a point x e M then at x any of the following three identitiesis equivalent to each
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other.
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R = aQ(g,R), R-S = aQ(g,S)

^+(B_2)a)(5-^)=S>
l

~tr(S2)g

where a e R.

(ii) ([3], Lemma 3.1) The following identity is fulfilled on M:Q(S,G) =

-Q(g, V).

(iii)([16], Theorem 3.1) 7/dimM = 3 then R-R=Q(S,R) holds on M.

(iv) If the following conditions are fulfilled at a point xe M : C = 0,

rankiS) = 1 and k = 0, then R-R = 0 holds at x.

Proof, (iv) The condition rank(S) = 1 we can present in the following form

S^fimuj, ueT;(M), PeR, (8)

where ut are the local components of u. From (8), by k = 0, it follows that

pgVuiUj = 0. Transvecting now (8) with ul = gnur we get urSrj = 0. Next,

transvecting (8) with S'k and using the last relation we get S^ = 0 which, in view

of (i),completes the proof.

3. Warped Products

Let now (M, g) and (TV,g), dim M = p, dim N = n ―p,＼ < p < n, be semi-

Riemannian manifolds covered by systems of charts ＼°U＼xa}and {^~;.ya},re-

spectively. Let F be a positive smooth function on M. The warped product

M xF N of (M,g) and (TV,g) ([5],[33])is the product manifold M x N with the

metric g = g xF g defined by

gxFg = n＼g + (F o ^i)^^,

where 7ii: M x N ―>M and 712: M x N ^> N are the natural projections on M

and iV, respectively. Let {^ x tT; x1 ,...,x^, x^1 = /,..., xn = yn~p} be a

product chart for M x N. The local components of the metric g = g x Fg with

respect to this chart are the following grs = gab if r = a and s ―b,grs ― Fgap if

r = a and 5 = /?,and grs= 0 otherwise, where a,b,c,... e {1,...,/?}, a,/?,7,... e

{/?+!,...,≪} and r,s,f,... g {1,2,...,≪}. We will denote by bars (resp., by

tildes)tensors formed from g (resp., g). The local components Vst of the Levi-

Civita connection V of MxFN are the following ([341):
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1 Py Kb

ri = O, Fa = daF =

The local components

= -^9abFb~g

dF

dxa da =

d

dxa

ra
2FF^h

D n nw n (pi t-w a T≫v | rtr* t-≪i;rw＼ p ^

of the Riemann-Christoffel curvature tensor R and the

the Ricci tensor S of the warped product MxpN

identically are the following:

Sab

R-abcd ― Rabcd-, Raabfi ― ~X

where

Sab ~

n ― p 1
T; -*ab

1

F

1

2

3

IF

K

SaB

121

local components Sts of

which may not vanish

Tab9a.pi Rafiyd = FR-apyS ~ -7&＼FGapy$

S
<x/3

1

2

H+^

tr(T)=gabTab, A,F

K ―

n

F

AiF

)

(9)

§

≪fi,

(10)

= Al§F = gabFaFb,

-
0+^

^WQap-i Rafiyd ― FRapy§

^11, Stf ― SaR

1 .

FK

3_

F

1

2

(≫(T)
+

- Ai FGrfys,

Gap

(11)

(12)

(13)

(14)

(15)

2 F

1

Tab = ^bFa - -XjFaFb,

and T is the (0,2)-tensor with the local components Tab. The scalar curvature k

of M xFN satisfiesthe following relation

K = 7C+

From now we assume thatdimM xF N ―4 and dimM = 1. Then (9),(10) and

(12) turn into

RolIIB = ―

-Si, =

respectively. Further, by making use of (13), (14) and (15), we obtain the fol

lowing relations (see [171, Lemma 6):
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1 _

29n
(sa(i--Kg0CA

CapyS =
2^(SasSpy

+ gpySaS - QzySfid - 9psS*y) - -^FKGzfad

On the other hand, from (3) it follows that

Since Capy§=

CaByd ~ RtxByd ~ UaByd +

0, the last identity reduces to

1 -

Now (16) turns into

1-1
Cxiip = -

2
9＼l(^ ~ t £0o0) aByS ― TiFR^Ryd ~ -T7zFkGaRyS

(16)

(17)

(18)

(19)

4. Preliminary Results

Let MxFN be a 4-dimensional warped product with 1-dimensional base

manifold (M,g). Using (13),(14),(18) and (19), we can verifythat the local

components of the tensors R- C and Q(S,C) of the manifold M xFN, which

may not vanish identicallyare the following:

(* ･ CW<^ =
＼m
■RUySi4l -

＼*iFQ(g,
R)ah8＼, (20)

1

Q＼S-> C)
x0y51.fi ~ a^

(

+＼

tr{T) +
AiF

F

)

Q{9i R)xBySAM

FQ(S> *)afiys*- T2^e(5, G)^^

(R ■c)upy＼d = -2 ~FTnCsaPy + -TjKTnGsoifiy

1

4

Q(s>c)iifiyid= -2jTnCWy + 29n

(

(21)

Tu(9y6So0 - dBdS≪y), (22)

~~ ~~ 1
>
. -

~ ~
＼

SsySoc/i- SspSxy ―^(g^Ssy - gaySsp) 1

+ ^k(*(T) +
t )

H<^＼) {OdySoiP ― ddfiSxy), (23)
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("^ ■C%ll/?)/<5
~ ~2 Is

Q{^i C)ocUPyd ―~2RU

■■

(

nR-~s)^s-＼^FQ{g,~sUys

G≪ K tr{T) + AiF ))

)･

Q(9> S)apy5

From Lemma 2.1(ii)it follows that Q(S,GUdA=-Q(g

123

(24)

(25)

u)*pys^ which hy
making use of (18), turns into Q(S, G)aPy6Xfi= -Q(g,R)apySxM- Now (21) takes the

form

Q(s,cUys^ =
＼p(
Q&*)aBy3iu +

G*
1

2(>m+^))e( 9i R)apy5Xti

(26)

In view of Lemma 2.1(iii)we have also (R ■R)^^ = Q{S,R)^y3kfi. Substituting

thisin (26) we obtain

Q(S> C)aPydAti ―
2

whence

F{R-RUysxu +

2(S> C)aBydku

G*
1

2 H+^)e( 9i
^JoLfiySXfi

2F(^ ･ *)≪p7d^ ~2FrQ&*)*fiyS＼>

_u_ 1

Tl 2V 3 K + tr{T)+-y-＼

Now, the equality (R ■C)^ySX/I = LQ{S, C)a/^, in virtue of (20)

By

1

2

(22)

{l-L){R-R)afiySiM =

and (23) the relation(R

t; T＼i Cstfy +
r

-
3 lIT

+ 2L#ii

1

12*

CsaPy

(-K

Further, we can

T＼ 1 GsaPy

+

trlT) +

1

~4

AiF＼

F )

check that

G

C)

the relation

AiF
-riLJ Q(9>R)atfiydXM-

(27)

(28)

and (27), gives

c)ia/?yi<sis equivalent to

- QBd^oiy)

n*( tr(T) +
AXF

~F~

)

(29)

Lg＼＼Gsapy

)

(30)

turns into

(31)

F

laByld ― LQ(S

Tn{.9ydSa#

1
-Lgn(Sy$Saf$ - Sp§Say)+

(§gyS≪p- G6pS<xy) ~
^KidapSsy ~

QaySsfi)

(R S) -
(l AlF
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This, in view of Lemma 2.1(iii),is equivalent to

Thus we have the following

-nLJ Q(9iR)xPy6An- (32)

Proposition 4.1. A ^-dimensional warped product MxFN,dimM=l

satisfiesthe condition R-C = LQ{S, C) if and only if (29), (30) and (32) hold

on %.

5. Main Results

Example 5.1. (i) We present an example of a 4-dimensional warped product,

with l-dimensional base manifold, realizing(*) and (*)3. Let (N,g),dimN = 3, be

a semi-Riemannian manifold such that its Ricci tensor S is of rank one and its

scalar curvature k vanishesidenticallyon N. Then, in view of Lemma 2.1(iv),{N,g)

is a semisymmetric manifold. Furthermore, let F, defined by F(xl) = aexp(bxl),

a ― const. > 0,b ― const. # 0, be a function on a l-dimensional manifold (M,g＼).

It is easy to check, that M xFN realizes(29), (30) and (32), with L = 1/3. Thus,

in view of Proposition 4.1, M xF N fulfilsRC= {l/3)Q{S, C). From Corollary

4.2 of [21] it follows that the manifold M xFN is pseudosymmetric too. Next,

using (3.12) of [21] and (15), we get R-R = (l/12)jcQ(g,R), where k is the scalar

curvature of M xF N.

(ii) We present an example of a 3-dimensional semisymmetric warped product

such that the rank of its Ricci tensor is one and its scalar curvature vanishes

identically. Let M2 = {{x2, x3) : x2, x3 e R} be a connected, non-empty, open

subset of R2, equipped with the metric tensor $2 defined by gi,22= 92,33―R,

92,23―92,32 = 1, and let H = H(x2) be a smooth function on M2. Moreover, let

(M3,gf3) be a l-dimensional manifold. In [35] {see p. 177) it was shown that the

rank of the Ricci tensor S of the warped product M2 xH M3 is equal to one and

that the scalar curvature of thismanifold vanishes identically.Moreover, we have

(cf [35], p. 177)

,$22 = ―

1 fdH2

＼dx2
― H2H2y H2 =

8H s
33 = 0, 5*44 = 0

Furthermore, from Lemma 2.1 (iv) it follows that M2 xH M3 is a semi-

symmetric manifold,(iii)We considerthe warped product M Xp N, where dimM
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= 1, the warping function F is defined by F(xY) = aexp(bxl),a = const. > 0, b =

const. 7^ 0, and (N,g) is a semisymmetric manifold defined in (ii).We can verify

that the tensor S― (/c/4)g is of rank one, i.e. the warped product M xFN

quasi-Einstein manifold.

In this section we prove,

is a

that under certain assumptions every 4-dimensional

warped product M xFN, dimM = 1, realizing(*) is the manifold describedin

Example 5.1(i).

Symmetrizing (30)

where

in a,8 we obtain

6
-Tn -rLgu

T =

1

2

)

Q(§>S)aByS = O

(-＼K
+ tr{T) +

(33)

(34)

From (19) it follows that the Weyl tensor C of every 4-dimensional warped

product M xF N, dimM = 1, vanishes at a point xe M＼ xpN if and only

S*p = -Kgap. (35)

holds at x. We note also that Q(g, S) vanishes at x if and only if (35) is satisfied

at x. So, if the tensor C is non-zero at the point x e M＼ xF N then from (33) it

follows that

-2Tu- ?Lgn

holds at x. Applying (36) in (30) we obtain

T T ~ T ~
- -p Csapy +-pfcG§^y - - {cJsySap - QspSay)

3 -p Csrfy + ~

-S( tr(T) +

(SsySaR ~ SspSxy) +

If x e Ul then the last equality reduces to

rA tr{T) +

(36)

(37)

~F~

{.9SyS<tP- 9dpS*y) - ^(dapSyd ~ 9aySSp)
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-t(3L- l)Csapy + -K

_ 1

~2

(

'

(SYsSaR ― SsfiSay)

which, by (34), turns into

2

J

K

On the other hand (18) and (19) gi

whence

where

We put Aap

Oa/Jy

p = t(3L-l) +

= Stf

AyS^afi ― Ap§Aay

which leads to

tr(T) +

ve

■
H
UsaBy -

1.

3*' M

))
GdaBy

)

^KUstfy

･

dpsSxy ― 9*y$pd)

(38)

-zKUsafiy,

(39)

(40)

(41)

^(g^Sgy - (JaySfiS + QydSu-P ~ 9dB^a.y)i

t(3L ― l)Csufi7 ― q?c Gstfy = SysSrf ― S$pSay

2
~

Applying this in (38) we obtain

2
~
1~

~_~~
T(3L - l)Usapy - -t(3L - VjicGsrfy―q^ GSafly= SydSrf - SspSay -

SySSrf - Sp§Say = pllsapy + [iGstfy

H 2t(3L-1)+|

- pgaR. Thus, by (39), we have

= SysSap ― SpsSay + P Gsafiy

= (p2 + li)GSa,By,

Q(A,A) = (p2+M)Q(A,G),

where the (0,4)-tensor A is defined by

^■afiyd= AusApy - AayAps-

Since the tensor Q(A,A) vanishes identically, we have (p2 + ju)Q(A, G) = 0,

whence we get easily (p2 +/j)(A - (＼/3)tr(A)g) = 0. Since S # {l/3)icg holds at
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x, the last relation yields

p2+ju = 0.

Further, using (29) and (32) we deduce that

1 AiF
(≪)(*-*W = o> (*)

4-7
= rL,

hold at x °Ul-Further, contracting(39) with g^ we obtain

Sjs = (ic- p)Sy6+ (2/i+ pK)gyd,

which, by making use of (42), can be rewrittenin the following form

S2yd--tr{S2)gy8 = 1 + aj f SyS 39yS) ct= (ic-p)-
ft

2
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(42)

(43)

=
＼-p.

(44)

From (44), in view of Lemma 2.1(1),it follows that (R ■S)apyd ― aQ(g, S)aoyd

holds at x£ft and in a consequence, (R ■R)aPydE^ = ocQ(g,R)^^. The last

relation, by (43)(a),implies a = 0, i.e.p ―k/2. Applying the last equality and

(42) in (40) we find

(3L-1)t =
|k, ?/c(3L-l)r=-^/c2,

(45)

which gives(5/6)/c2 = ―(13/36)/c2, whence k = 0. Now (45) reduces to (3L ―l)r =

0 and in a consequence, from (40) we get /?= //= 0. So, (39) reduces to

rank(S) = 1. Since k = 0,(28) and (34) leads to n = t = (l/2)(fr(r)+ (AiF/f)).

Further, we denote by °UF the set consisting of all points of %l at which F' ^ 0.

We suppose that r vanishes at x e %F. Then (43)(b) implies F' = 0, a contra-

diction. Thus L= 1/3 holds on <%>. We note that if L= 1/3 then only the

functions F, defined by F(xl) ― aexp(bxl),a = const. > 0,Z>= const. # 0, are

non-constant solutions of (36) and (43)(b). Thus we have the following.

Theorem 5.1. Let the set tflf be a dense subset of the set °Ul of a 4-

dimensional warped product M xF N, dimM = 1. Then the warped product M xF N

satisfiesthe condition R- C = LQ(S, C) on the set %l c ^ c M x TV if and only

if L = l/3,F(xl) ―aQxp(bxl),a = const. > 0,b = const. # 0, and (N,g) is a 3-

dimensional semi-Riemannian manifold fulfillingrank(S) = 1 and k = 0.

Remark 5.1. Let (N,g),dimN ―3, be a semisymmetric manifold with

vanishingidenticallyon N scalarcurvature k. Suppose that g is a Riemannian
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metric. Using this fact we can easily deduce that the condition rank 5*< 1 implies

S = 0. Therefore, if the assumption rank S = 1 is fulfilledon (JV,g) then the

metric a must be necessary indefinite,more precisely, a is a Lorentzian metric.

Now from Theorem 5.1,in view of the above remark, follows the following

Corollary 5.1. If a generalized Robertson-Walker space time satisfies(*)

then at every point of this spacetime at least one of the tensors R- C or Q{S, C)

must vanish.

Let x be a point of a 4-dimensional warped product M xF TV,dimM ― 1. If

at x the conditions: C # 0 and i? ･ C = 0 are satisfiedthen R- R = 0 holds at x

([17], Theorem 3). If at x the conditions: C#0,S#Q and 0(5, C) = 0 are

satisfiedthen R-R = (rc/3)Q(g,R) holds at x ([25], Theorem 3.1).If at x the

condition S = 0 is satisfiedthen C = 0 holds at x. This statement is an immediate

consequence of (14) and (32). Finally,if at x the condition C = 0 is satisfiedthen

RR = <xQ(g,R),ct R, holds at x ([13], Lemma 3.1).These facts,together with

Corollary 5.1,leads to the following

Theorem 5.2. Every generalized Robertson-Walker spacetime satisfying(*) is

a pseudosymmetric manifold.

Remark 5.2. (i) Theorem 2 of [29] implies that the warped product

M xF N, of a 1-dimensional base manifold (M,g), a warping function F and a

3-dimensional manifold {N,g) with the Ricci tensor S of rank one realizes(*)5,

i.e. M xF N is a manifold with pseudosymmetric Weyl tensor.

(ii)We can also check that the Weyl tensor of the warped product defined

above is not of harmonic curvature.
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