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1. Introduction

The warped product M xg N, of a 1-dimensional manifold (M,3),3, = -1,
with a warping function F and a 3-dimensional Riemannian manifold (N, §) is
said to be a generalized Robertson-Walker spacetime (cf. [2], [32]). In particular,
when the manifold (N,§) is a Riemannian space of constant curvature, the
warped product M xr N is called a Robertson-Walker spacetime. In [11] it was
shown that at every point of a generalized Robertson-Walker spacetime M xy N
the following condition is satisfied:

(%), the tensors R- R— Q(S,R) and Q(g,C) are linearly dependent.
This condition is equivalent to the relation

on the set % consisting of all points of the manifold M xr N at which its Weyl
tensor C is non-zero, where L, is a certain function on %¢. For precise definitions
of the symbols used, we refer to the Sections 2 and 3. (x), is a curvature
condition of pseudosymmetry type. In this paper we will investigate generalized
Robertson-Walker spacetimes realizing a condition of pseudosymmetry type
introduced in [25]. Namely, semi-Riemannian manifolds (M, g), n > 4, fulfilling
at every point of M the following condition

(%) the tensors R-C and Q(S,C) are linearly dependent.
were considered in [25]. This condition is equivalent to the relation

R-C=LQ(S,C) ()
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on the set % = {x e M|Q(S,C) # 0 at x}, where L is a certain function on #.
We note that every semisymmetric manifold (R- R = 0) as well as every Weyl-
semisymmetric manifold (R- C = 0) realizes (*) trivially (see [25]). There exist
also non semisymmetric and non Weyl-semisymmetric manifolds realizing ()
([25]). We mention that warped products realizing curvature conditions of
pseudosymmetry type were studied in: [7], [8], [9], [11], [13], [14], [15], [16], [17],
[19], [20], [21], [24], [26], [28] and [29].

In Section 2 we present a review of the family of curvature conditions of
pseudosymmetry type. In the next section we give results on warped products
which we apply in the last two sections. In Section 4 we find necessary and
sufficient conditions for a warped product to be a manifold satisfying (2). Finally,
in Section 5 we present our main results.

Let (M,g) be a semi-Riemannian manifold satisfying (). We denote by %,
the set of all points of the set % — M at which the function L is non-zero. It is
clear that the tensors R- C and Q(S,C) are non-zero at every point of the set
;. Moreover, let (M, g) be a 4-dimensional warped product M xp N, dim M =
1. We denote by % the subset of %, consisting of all non-critical points of F.
Our main result states (see Theorem 5.1) that if the 4-dimensional warped
product M xy N, dim M = 1, satisfies (x) and the set % is a dense subset of %
then the open submanifold U; of the manifold M xp N is a pseudosymmetric
warped product of the 1-dimensional manifold, with the function F, defined by
F(x') = aexp(bx'), a = const. >0, b=const. #0, and a 3-dimensional semi-
Riemannian manifold such that its Ricci tensor is of rank one and its scalar
curvature vanishes identically. From this statement it follows immediately (see
Corollary 5.1) that if a generalized Robertson-Walker spacetime M xp N realizes
above assumptions then at every point of M xr N at least one of the tensors
R- C or Q(S, C) must vanish. Finally, using this fact we prove (see Theorem 5.2)
that every Robertson-Walker spacetime satisfying (*) is a pseudosymmetric
manifold.

2. Curvature Conditions of Pseudosymmetry Type

Let (M,g) be a connected n-dimensional, semi-Riemannian manifold of class
C*® and let V be its Levi-Civita connection. We define on M the endomorphisms
XAY RX,Y) and ¥(X,Y) by

(X A Y)Z=g(Y,2)X —g(X,2)Y, R(X,Y)Z=|Vx,Vy|Z-Vix 1Z,

G(X,Y) = R(X, Y) — — 2(}( ANFY +FX A Y—n—ifX/\ Y),

n—
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respectively, where X,Y,Z e E(M),E(M) being the Lie algebra of vector fields
of M. The Ricci operator & is defined by S(X,Y) = g(X,¥Y), where S is the
Ricci tensor and x the scalar curvature of (M, g), respectively. Next, we define
the tensors U, G, the Riemann-Christoffel curvature tensor R and the Weyl
conformal tensor C of (M,g), by

U(Xy, X2, X3, X4) = g(X1, Xa)S(X>, X3) + g(X2, X3)S(X1, X4)
— g(X1, X3)S(X2, Xa) — g(X2, X4)S(X1, X3),
G(X1, X2, X3, Xa) = g((X1 A X2) X3, Xa),
R(X, X2, X5, X4) = g(2(X1, X2) X3, X4),
C(Xi, X2, X3, Xy) = g(€(X1, X2) X3, X4),

respectively. Now we can present the Weyl tensor C in the following form

1 K
C:R_n—2U+(n—2)(n—l)G' (3)

For a (0,k)-tensor field 7,k > 1, we define the (0,k+ 2)-tensors R-T and
0(g,T) by
(R T)(Xla"'an;Xa Y) = (‘%(X7 Y) ’ T)(Xla"'9Xk)
=-T(RX, V)X, Xs,...,Xk)
= T(X,. . X, R(X, Y) X,
06, T)(X1, ... Xi; X, ¥) = (X A ¥)-T)(X1,..., Xi)
= —T((X A Y)Xl,Xz, e ,Xk)
- T(Xla"'an—lv(X A Y)Xk)
Putting in the last formulas 7 =R, T =S or T = C, we obtain the tensors
R-R,R-S,R-C,0(g9,R),Q(g,S) and Q(g, C), respectively. The tensor C - C we
define in the same way as the tensor R- R.

Let (M, g) be a Riemannian manifold covered by a system of charts {#7;x"}.
We denote by g5, Iy, Resius Ssts Grsu = Grugst — grgsu and

K

1
Crsiu = Resry — ;‘_—2 (gruSst - grtSsu + gstSru - gsuSrt) +
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the local components of the metric g, the Levi-Civita connection V, the Riemann-
Christoffel curvature tensor R, the Ricci tensor S, the tensor G, and the Weyl
conformal curvature tensor C of (M,g), respectively, where p,g,r,s,t,u,v,we
{1,2,...,n}. The local components of the tensors R - R and Q(g, R) are given by
the following formulas

(R . R) = VwVerstu - VvaRrstu

rstuvw

= gpq (RpstuRqrvw - Rprtuquvw + RpurSthuw - Rptrquuvw)y
Q(ga R)rmww = groRustu + GsoRrwiu + GroRrswu + GuoRrstw

- grvastu - gaervtu - gtersvu - guerstv-

A semi-Riemannian manifold (M,g), n > 2, is said to be an Einstein manifold if
the following condition

K

S=- 4

9 (4)
holds on M. According to [4] (p. 432), (4) is called the Einstein metric condition.
Finstein manifolds form a natural subclass of various classes of semi-Riemannian
manifolds determined by a curvature condition imposed on their Ricci tensor ([4],
Table, pp. 432-433). For instance, every Einstein manifold belongs to the class of
semi-Riemannian manifolds (M,g) realizing the following relation

V(S—E(n—"_T)g>(X, Y;Z):V(S—m’c_—l)g>(x,z; Y), (5)

which means that S — (x/(2(n — 1)))g is a Codazzi tensor on M. Manifolds of
dimension >4 fulfilling (5) are called manifolds with harmonic Weyl tensor ([4],
p. 440). It is known that every warped product S! x M of the sphere S ! with a
positive smooth function F, and an Einstein manifold (M, g), dim M > 2, realizes
(5) ([4], p. 433). Such warped product is a non-Finstein manifold, in general. We
say that (5) is a generalized Einstein metric condition ([4], chapter XVI). On the
other hand, such warped product realizes a condition of pseudosymmetry type
too. Namely, the warped product S' xz M of the sphere S', with a positive
smooth function F, and an Einstein manifold (M,g), dimM >2, is a Ricci-
pseudosymmetric manifold ([24], Corollary 3.2). Thus, in particular, the warped
product S! xz CP" of S!, with a positive smooth function &%, and the complex
projective space CP” (considered with its standard Riemannian locally symmetric
metric) is a Ricci-pseudosymmetric manifold.
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A semi-Riemannian manifold (M, g), n > 3, is said to be Ricci-pseudosymmetric
([14], [24]) if at every point of M the following condition is satisfied:

(%), the tensors R-S and (Q(g,S) are linearly dependent.

Evidently, any FEinstein manifold is Ricci-pseudosymmetric. Thus we see that
(%), is a generalized Einstein metric condition. The manifold (M,g) is Ricci-
pseudosymmetric if and only if

R-S=LsQ(9,S) (6)

holds on the set Us = {xe M |S — (k/n)g # 0 at x}, where Lg is some function
on Us. Warped products realizing (*), were considered in [14], [17], [24] and [26].
Certain examples of compact and non-Einstein Ricci-pseudosymmetric manifolds
were found in [26] and [30]. For instance, in [30] (Theorem 1) it was shown that
the Cartan hypersurfaces M in the spheres S7, S!7 or §2° are non-pseudosymmetric,
Ricci-pseudosymmetric manifolds with non-pseudosymmetric Weyl tensor. The
Cartan hypersurfaces M in S* are non-semisymmetric, pseudosymmetric mani-
folds. Ricci-pseudosymmetric hypersurfaces immersed isometrically in a semi-
Riemannian manifolds of constant curvature were investigated in [10].

A very important subclass of the class of Ricci-pseudosymmetric manifolds
form pseudosymmetric manifolds. The semi-Riemannian manifold (M, g),n > 3,
is said to be pseudosymmetric ([21]) if at every point of M the following
condition is satisfied:

(%)5 the tensors R- R and Q(g,R) are linearly dependent.
The manifold (M,g) is pseudosymmetric if and only if
R-R=LrQ(g,R) ()

holds on the set Ug = {x e M |R — (k/(n(n — 1)))G # 0 at x}, where Lg is some
function on Ug. It is clear that any semisymmetric manifold (R-R = 0,[36])
is pseudosymmetric. Very recently the theory of Riemannian semisymmetric
manifolds has been presented in [6]. The condition (*), arose during the study of
totally umbilical submanifolds of semisymmetric manifolds ([1]) as well as when
we consider geodesic mappings of semisymmetric manifolds ([18], [37]). There
exist many examples of pseudosymmetric manifolds which are not semisymmetric
([13], [19], [20], [21], [28]). Among these examples we can distinguish also compact
pseudosymmetric manifolds (for instance, see [19], Example 3.1 and Theorem
4.1). Another example of a compact pseudosymmetric manifold is the warped
product S! xr §"1, with a positive smooth function F, as well as n-dimensional
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tori T" with a certain metric (see [19], Examples 4.1 and 4.2). It is clear that if
at a point x of a manifold (M,g) (x); is satisfied then also (x), holds at x. The
converse statement is not true. E.g. every warped product M| xp M, dim M| =
1, dim M, >3, of a manifold (M;,g) and a non-pseudosymmetric, Einstein
manifold (M>,§) is a non-pseudosymmetric, Ricci-pseudosymmetric manifold (cf.
[24], Remark 3.4 and [21], Theorem 4.1).

It is easy to see that if (x); holds on a semi-Riemannian manifold (M, g),
n >4, then at every point of M the following condition is satisfied:

(%)4 the tensors R-C and Qf(g,C) are linearly dependent.

Manifolds fulfilling (), are called Weyl-pseudosymmetric. Weyl-pseudosymmetric
manifolds has been studied in [15], [17] and [22]. The manifold (M,g) is a Weyl-
pseudosymmetric manifold if and only if the relation R-C = L,Q(g,C) holds
on the set %c = {xe M|C #0 at x}, where L, is some function on %c.

A semi-Riemannian manifold (M,g), n >4, is said to be a manifold with
pseudosymmetric Weyl tensor ([29)) if at every point of M the following condition
is satisfied:

(*)5 the tensors C-C and Q(g,C) are linearly dependent.

Thus (M, g) is a manifold with pseudosymmetric Weyl tensor if and only if the
relation C - C = L3Q(g, C) holds on the set % ¢, where L3 is a certain function on
U c. The condition (x)s arose during the study of 4-dimensional warped products
([17)). Namely, in [17] (Theorem 2) it was shown that at every point of a warped
product M| xp M, with dim M; = dim M = 2, () is fulfilled. Many examples
of manifolds satisfying (x); are presented in [9]. For instance, the Cartesian
product of two manifolds of constant curvature is a manifold realizing (*)s.
Warped products satisfying (x); were considered in [29]. In [9] it was shown that
the classes of manifolds realizing (*); and (x)s do not coincide. However, there
exist pseudosymmetric manifolds fulfilling (x)s, e.g. Einsteinian pseudosymmetric
manifolds ([9], Theorem 3.1). Curvature properties of pscudosymmetric manifolds
with pseudosymmetric Weyl tensor were obtained in [31].

For a (0,k)-tensor field 7,k > 1, and a symmetric (0,2)-tensor field 4, we
define the (0,k + 2)-tensor Q(4,T) by

OA,TY X, .. ., Xi; X, Y)= (X AaY)-T)(X1,..., Xe)
= —T((X N4 Y)X],Xz,...,Xk)

-t T(Xla"‘vkalv(X A4 Y)Xk)7
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where X A4 Y is the endomorphism defined by
(X AaY)Z=A(Y,2)X — A(X,2Z2)Y.

In particular, we have X A, Y = X A Y. Putting in the above formula 4 =S
and T=R,T=C or T=G, we obtain the tensors Q(S,R),Q(S,C) and
Q(S, G), respectively.

A semi-Riemannian manifold (M, g) is said to be Ricci-generalized pseudo-
symmetric ([7]) if at every point of M the following condition is satisfied:

(*)g the tensors R- R and Q(S,R) are linearly dependent.

A very important subclass of Ricci-generalized pseudosymmetric manifolds form
manifolds fulfilling the following relation R- R = Q(S,R) ([7], [8], [23]). Every
3-manifold (M,g) as well as every hypersurface M immersed isometrically in
an (n+ 1)-dimensional semi-Euclidean space E""! of index s,n > 3, fulfils the
last equality, see [16] (Theorem 3.1) and [27] (Corollary 3.1), respectively.

As it was shown in [27], every hypersurface M in a semi-Riemannian space
of constant curvature M"!(c),n >4, fulfils (1). More precisely, we have the
following

REMARK 2.1 ([27], Proposition 3.1). FEvery hypersurface M immersed iso-
metrically in a semi-Riemannian space of constant curvature M"™(c), n >4,
satisfies the equality R-R— Q(S,R) = —(({n —2)K)/(n(n+ 1)))Q(g, C), where &
is the scalar curvature of M"*'(c) and R, S and C are the curvature tensor, the
Ricci tensor and the Weyl tensor of M, respectively.

Using Theorem 3.1 of [16], which was mentioned above, and the fact that the
Weyl tensor of every 3-dimensional semi-Riemannian manifold vanishes identi-
cally, we conclude that (), is trivially satisfied on any 3-dimensional semi-
Riemannian manifold. Recently, warped products realizing (x), were considered
in [L1].

The relations (*), (¥),—(*)¢ are called conditions of pseudosymmetry type. We
refer to [12], [18] and [37] as the review papers on semi-Riemannian manifolds
satisfying such conditions. A hypersurface fulfilling a curvature conditon of
pseudosymmetry type is said to be a hypersurface of pseudosymmetry type ([12]).
We finish this section with the following

LemMA 2.1. Let (M,g), n=dimM > 3, be a semi-Riemannian manifold.
(i) ([13], Lemma 1.2; (23], Lemma 2) If the Weyl tensor C of (M,g) vanishes
at a point x € M then at x any of the following three identities is equivalent to each
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other:

R'R:aQ(ng)v RSZO(Q(g,S),

(nf i +(n—2)oc) (S—Sg) =52 —%tr(S"‘)g,

where o € R.

(ii) ([3], Lemma 3.1) The following identity is fulfilled on M : Q(S,G) =
—Q(g, V).

(iii) ([16], Theorem 3.1) If dim M =3 then R-R= Q(S,R) holds on M.

(iv) If the following conditions are fulfilled at a point xeM:C =0,
rank(S) =1 and k =0, then R-R =0 holds at x.

Proor. (iv) The condition rank(S) =1 we can present in the following form
Sy = Puiv, ueT; (M), BeR, (8)

where u; are the local components of u. From (8), by x =0, it follows that
Bg¥uu; = 0. Transvecting now (8) with u'=g"u, we get u'S, =0. Next,
transvecting (8) with S} and using the last relation we get S,-Jz = 0 which, in view
of (i), completes the proof.

3. Warped Products

Let now (M,3) and (N,§),dimM = p,dimN =n—p,1 < p <n, be semi-
Riemannian manifolds covered by systems of charts {#%;x“} and {77; y*}, re-
spectively. Let F be a positive smooth function on M. The warped product
M xp N of (M,3) and (N,§) ([5], [33]) is the product manifold M x N with the
metric g = g Xr § defined by

g xpg=mn g+ (Fom)n,g,

where 7, : M x N > M and m : M x N — N are the natural projections on M
and N, respectively. Let {#% x ¥";x!,...,x?, xP* =yl ... x"= "7} be a
product chart for M x N. The local components of the metric g = § X pg with
respect to this chart are the following g, = g, if r=a and s =b,g,; = Fg,g if
r=o and s = f, and g,s = 0 otherwise, where a,b,¢,... € {1,...,p}, 0, B,7,... €
{p+1,...,n} and rs¢t,... €{1,2,...,n}. We will denote by bars (resp., by
tildes) tensors formed from g (resp., §). The local components I'}, of the Levi-
Civita connection V of M xyz N are the following ([34]):
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_ . 1. |

FZC = rgc’ r;y = rﬂy’ F;ﬂ = —igabegaﬂz rgﬁ' = ﬁFaégy
a oF 0
txb:r;‘bzo, Fa=6aF=ﬁ, 6‘1:6_);;.

The local components

0

~ oxw

Ry = grszfu = grw(aurz - atr;; + F;;FZ, - r_;)ur:,’)a Ou
of the Riemann-Christoffel curvature tensor R and the local components Sj; of
the Ricci tensor S of the warped product M xy N which may not vanish
identically are the following:

1 . - 1 ~
Rupea = Rabcd: Raabﬂ = —5 ab9ap> Raﬁyé = FRazﬂyﬁ - ZAIFGa/iny (9)

= n—pl ~ 1 n—p—1 -
Sap = Sap — 2PFTaba Sacﬁ:Saﬂ_i(tr(T)“‘—';F—AlF)gzﬁv (10)

where

= 1
Tap = VoFo = 55 FuFy,  r(T) =§Tw, AF = AyF = §F,Fy, (11)
and T is the (0,2)-tensor with the local components T,,. The scalar curvature x
of M xr N satisfies the following relation

1 n—p

N n—p-—1
K=FR+oK 7 (tr(T)_+-———4F AIF). (12)

From now we assume that dim M xy N = 4 and dim M = 1. Then (9), (10) and
(12) turn into

1 . - 1 ~
Ryp = o) T119,p,  Rapys = FRypys — ZAIFGaﬂyJa (13)
3 ~ 1 AF\
Sy = _ﬂ’:T“’ Sy —Sa/;—z(tr(T)—}——F—)gaﬁ, (14)
1. 3 1 A F

respectively. Further, by making use of (13), (14) and (15), we obtain the fol-
lowing relations (see [17], Lemma 6):
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| S A 1._.
szllﬁ:'ign Saﬂ—gkgaﬂ )

1. = . A e R 1.~
Capyo = EF(QWSSM + 9pySas — GuySps — GpsSuy) — gFKGaﬁyé- (16)

On the other hand, from (3) it follows that

1 -
Cupys = Rupys — Unpys + §K0a3y5~ (17)

Since Capy(; =0, the last identity reduces to

. _ 1 -
Uspys = Rapys + 5K Gapyo. (18)
Now (16) turns into
1 - 1. 1. 1 .
Cuip = — 79u (Sap — gkgaﬂ), Copys = EFRocﬁy(S — EFKGaﬁyé- (19)

4. Preliminary Results

Let M xr N be a 4-dimensional warped product with 1-dimensional base
manifold (M,§). Using (13), (14), (18) and (19), we can verify that the local
components of the tensors R- C and Q(S,C) of the manifold M xy N, which
may not vanish identically are the following:

| RS 1 -

(R : C)a/}y&lﬂ = EF(R ' R)a/)’yo'/lu - gA]FQ(g, R)ocﬂyé‘/l,u’ (20)
1 AF -
Q(S? C)mﬁy&i}l = ZF<tr(T) + T ) Q(g’ R)ocﬁy&/l,u
1 s
+ EFQ( 7R)ac/)‘y6&,u - EFKQ(Sv G)cxﬂyél,u’ (21)
11 | 1 Jp S

(R- Chiagps = =5 F T11 Coapy + 153 T11 Goapy = 7 T11(GyoSap = o)y (22)

31 1. [~ = -~ 1.,. = . =
O(S, C)iappis = 5 F T Coopy + 5911 (SéySaB — SspSuy — gk(gaﬁséy - ga;.Sa/s)>

1

_ MF\ _ =
+ 12K<IV(T) "“F—)gnGézﬂy

1_ MFY, . - . =
=330 () + 2 ) G - o), 23)
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11 O 1 -

(R-C)apipys = — 5 7 (F(R “S)apys — ZAIFQ(@ S)aﬁy&)? (24)
1 1 1 MF -

0(S. ugys = =3 (573 (D) + 57) )01 09

From Lemma 2.1(ii) it follows that Q(S, (N;)aﬁy(w =—0(g, ﬁ)uﬂmﬂ, which by

making use of (18), turns into Q(S, G)uﬂwﬂu = —0(3, R),p,51,- Now (21) takes the
form

1 < = 1 1 AF -
Q(S7 C)aﬂy&&u = EF(Q(S’ R)ozﬂyd/ly + (6’2 - E <tr(T) + ]T> ) Q(g’ R)ocﬁ’y&/l,u) :

(26)

In view of Lemma 2.1(iii) we have also (R- R)aﬂyéiu = Q(S, R)a/iyéll,u' Substituting
this in (26) we obtain

| R 1. 1 AMF . =
Q(57 C)aﬂy(ﬁﬂ = -Z-F(R ) R)aﬂyély + (gK - 5 (U‘(T) + T) Q(g’ R)mﬂyé},y>>
whence
1 -
Q(S C)aﬁyé}{,u 2F(R )mﬁyﬁiu - EFTQ(ng)aﬂyéi.u’ (27)
1 1. AF

Now, the equality (R-C =LO(S,C), 4,5, In virtue of (20) and (27), gives
afydiu afydiu

(1 - L)(I’é : ﬁ)aﬂyéiﬂ = <‘1‘_ A}l;'F - TIL) Q( N)aﬂ/ély (29)

By (22) and (23) the relation (R - C);,5,15 = LO(S, C)y54,15 is equivalent to

11 | 1 . = . =
“3F T'11 Csupy + ‘1‘2‘KT11 Giupy — 7 T11(Gy5S2p — Gp5Suy)

1 L. 1 AF
LT!IC«Saﬁy+§L§11(Sy«sSa —S/faSayHﬁ ( (T)+I—)L911G5aﬁy

3
2 F F

1 1 AMF o~ 1. . =« . =
2L911 (—— (”(T) 7 )(Qaysocﬁ GopSuy) — g'f(gaﬂséy - gayséﬂ)) (30)

Further, we can check that the relation (R-C),y15,5 = L(S, C)yy4p,5 turns into

(R-8),5,5 = GAIFE‘“L) Q(G, )apys- (31)
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This, in view of Lemma 2.1(iii), is equivalent to

L 1 A\F . 5
O (Z - TnL) (9, R)upyoru- (32)
Thus we have the following

PROPOSITION 4.1. A 4-dimensional warped product M xp N,dim M =1,
satisfies the condition R-C = LQ(S,C) if and only if (29), (30) and (32) hold
on U.

5. Main Results

ExaMpLE 5.1. (i) We present an example of a 4-dimensional warped product,
with 1-dimensional base manifold, realizing (x) and (x),. Let (N,g),dim N = 3, be
a semi-Riemannian manifold such that its Ricci tensor S is of rank one and its
scalar curvature K vanishes identically on N. Then, in view of Lemma 2.1(iv), (N, §)
is a semisymmetric manifold. Furthermore, let F, defined by F(x') = aexp(bx!),
a = const. > 0,b = const. # 0, be a function on a 1-dimensional manifold (M,gy).
It is easy to check, that M xr N realizes (29), (30) and (32), with L = 1/3. Thus,
in view of Proposition 4.1, M x¢ N fulfils R- C = (1/3)Q(S, C). From Corollary
4.2 of [21] it follows that the manifold M xr N is pseudosymmetric too. Next,
using (3.12) of [21] and (15), we get R- R= (1/12)xQ(g, R), where k is the scalar
curvature of M xg N.

(i) We present an example of a 3-dimensional semisymmetric warped product
such that the rank of its Ricci tensor is one and its scalar curvature vanishes
identically. Let M, = {(x*,x3):x?,x* € R} be a connected, non-empty, open
subset of R*, equipped with the metric tensor g, defined by gi» = g233 =0,
9223 =¢232 =1, and let H = H(x?) be a smooth function on M,. Moreover, let
(M3, g3) be a 1-dimensional manifold. In [35] (see p. 177) it was shown that the
rank of the Ricci tensor S of the warped product My xy M is equal to one and
that the scalar curvature of this manifold vanishes identically. Moreover, we have

(cf. [35), p. 177)
- 1 oH pe &
SZZ:__ 6_}1_2_._LH2H2 R sz—, S33:0, S44:0
X (’3x2

Furthermore, from Lemma 2.1 (iv) it follows that M, xy M3 is a semi-
symmetric manifold. (iil) We consider the warped product M xr N, where dim M
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=1, the warping function F is defined by F(x') = aexp(bx'),a = const. >0, b =
const. # 0, and (N,§) is a semisymmetric manifold defined in (ii). We can verify
that the tensor S — (ic/4)g is of rank one, ie. the warped product M xp N is a
quasi-Einstein manifold.

In this section we prove, that under certain assumptions every 4-dimensional
warped product M xr N,dim M = 1, realizing () is the manifold described in
Example 5.1(i).

Symmetrizing (30) in «,6 we obtain

1 _ s
(3701 = L ) 003 81y = (33)
where
1 2 AF
T—E(—§K+tr(T)+T)- (34)

From (19) it follows that the Weyl tensor C of every 4-dimensional warped
product M xy N,dim M = 1, vanishes at a point x € M xz N if and only

~ 1__

S“ﬁ = SKgaﬂ' (35)
holds at x. We note also that (g, S) vanishes at x if and only if (35) is satisfied
at x. So, if the tensor C is non-zero at the point x € M; Xg N then from (33) it
follows that

1

ET“ = TLgll (36)

holds at x. Applying (36) in (30) we obtain

T T .~ T~ & GG
— F C(Saﬂy + gKGéocﬂy - 5 (géySaﬁ - g&ﬂS“}’)

T | QP s = 1 AF\ -~
=-3 F C(;aﬂy + 5 (S,;VSuﬁ - SgﬂSw) + l—Z-K(tr(T) + T) Géa/iy

1 MFN, . - . = 1., =~ . =
~3 (”(T) + IT> (G5ySap — GspSay) — g’f(gaﬁsya = GuySsp)-  (37)

If x e Up then the last equality reduces to
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1 1. 1 AF\ N\ =
FT(3L — I)C,sa/g), +6K(T —5 (tr(T) +T)> Géaﬁy

1~ - JO. | .= . = .
= 5 (8550505 = SopSuy) = £ K(GupSsy = GuySps + 75538 — GopSy)
which, by (34), turns into

2

1, - U U .
Z 7L = 1)Coupy — §x2GM,, = S,5Sus — SspSay — = KUsegy

!
3
On the other hand (18) and (19) give
1 - 2 -
Coupy = 5 F | Usupy — 3% Goupy |-
Applying this in (38) we obtain
1

- 2 . 1_,= L. U .
t(3L = 1) Usagpy — 57(3L — 1)RGingy — ~ 12 Gsupy = Sy6Sup — SspSuy — 3% Usapy,

9

whence
Syégoc - Sﬂégocy = pﬁéaﬂy + ﬂééocli'yy

where

r€<2r(3L— 1) +%K)

W =

1
/):’C(3L—1)+§}z, H=—
We put A},; = Sa/; — pgyp- Thus, by (39), we have
Ayéfiaﬂ - fiﬁﬁfiay = Syéga - Sﬂészxy + pzé&xﬂy
= p(§,5558 + GapSys — Gp5Say — GaySps)
= (P2 + ﬂ)(;éaﬂya

which leads to

0(4,4) = (P> + W Q(4,G),
where the (0,4)-tensor A4 is defined by

Asys = AusApy — AuyAps.

(39)

Since the tensor Q(4,A) vanishes identically, we have (p?+ u)Q(4,G) =0,
whence we get easily (p2 + u)(4 — (1/3)tr(4)§) = 0. Since S # (1/3)&g holds at
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x, the last relation yields
pP+u=0. (42)
Further, using (29) and (32) we deduce that

L 1 AF
(@) (R Rl =0, (0) 3~ =cL, (43)

hold at x e %;. Further, contracting (39) with §* we obtain
825 = (R = p)Sys + Qu+ pR)gys,

which, by making use of (42), can be rewritten in the following form
= | IO K ~ K. - K K
St =380 = (5+2) (S5-50) s=G-p)-5=5-p @

From (44), in view of Lemma 2.1(i), it follows that (R~S')aﬂy(5 = aQ(g, S’)aﬂw
holds at xe%; and in a consequence, (R'R)aﬂy()'ey = ocQ(g,f()aﬂy&ﬂ. The last
relation, by (43)(a), implies o =0, i.e. p =«/2. Applying the last equality and
(42) in (40) we find

K, %k(3L — D= -%zz, (45)
which gives (5/6)%* = —(13/36)x?, whence & = 0. Now (45) reduces to (3L — 1)7 =
0 and in a consequence, from (40) we get p=pu=0. So, (39) reduces to
rank(S) = 1. Since & = 0, (28) and (34) leads to 7; = 7 = (1/2)(er(T)+ (AF/F)).
Further, we denote by % the set consisting of all points of %, at which F’ # 0.
We suppose that t vanishes at x € r. Then (43)(b) implies F' =0, a contra-
diction. Thus L = 1/3 holds on %r. We note that if L =1/3 then only the
functions F, defined by F(x') =aexp(bx!),a = const. > 0,b = const. # 0, are
non-constant solutions of (36) and (43)(b). Thus we have the following.

BL-1)r=

[« YRV,

TueoreM 5.1.  Let the set Ur be a dense subset of the set Uy of a 4-
dimensional warped product M x N,dim M = 1. Then the warped product M xp N
satisfies the condition R - C = LQ(S,C) on the set Uy = U = M x N if and only
if L=1/3,F(x') =aexp(bx!'),a= const. > 0,b = const. #0, and (N,§) is a 3-
dimensional semi-Riemannian manifold fulfilling rank(S) =1 and k = 0.

REMARK 5.1. Let (N,§),dimN =3, be a semisymmetric manifold with
vanishing identically on N scalar curvature . Suppose that § is a Riemannian



128 Ryszard Deszcz and Marek KUCHARSKI

metric. Using this fact we can easily deduce that the condition rank S < 1 implies
S = 0. Therefore, if the assumption rank S =1 is fulfilled on (N,g) then the
metric § must be necessary indefinite, more precisely, § is a Lorentzian metric.

Now from Theorem 5.1, in view of the above remark, follows the following

COROLLARY 5.1. If a generalized Robertson-Walker spacetime satisfies (x)
then at every point of this spacetime at least one of the tensors R-C or Q(S, C)
must vanish.

Let x be a point of a 4-dimensional warped product M xp N, dimM = 1. If
at x the conditions: C # 0 and R- C = 0 are satisfied then R- R =0 holds at x
([17], Theorem 3). If at x the conditions: C # 0,5 #0 and Q(S, C)=0 are
satisfied then R- R = (x/3)Q(g,R) holds at x ([25], Theorem 3.1). If at x the
condition S = 0 is satisfied then C = 0 holds at x. This statement is an immediate
consequence of (14) and (32). Finally, if at x the condition C =0 is satisfied then
R-R=0aQ(g,R),x € R, holds at x ([13], Lemma 3.1). These facts, together with
Corollary 5.1, leads to the following

THEOREM 5.2. Every generalized Robertson-Walker spacetime satisfying (x) is
a pseudosymmetric manifold.

REMARK 5.2. (i) Theorem 2 of [29] implies that the warped product
M xp N, of a 1-dimensional base manifold (M, g), a warping function F and a
3-dimensional manifold (N, g) with the Ricci tensor S of rank one realizes (x)s,
i.e. M xpg N is a manifold with pseudosymmetric Weyl tensor.

(ii) We can also check that the Weyl tensor of the warped product defined
above is not of harmonic curvature.
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