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Based on the two-dimensional lattice fermion model, we discuss transitions between different pairing states.
Each phase is labeled by an integer which is a topological number and characterized byvorticesof the Bloch
wave function. The transitions between phases with different integers obey a selection rule. Even without a
magnetic field, edge states necessarily exist in the superconductor if the topological number is nonzero. They
reflect the topological character of the bulk. Transitions driven by randomness are also discussed numerically.
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Quantum phase transitions between different superc
ducting states have attracted much interest recently. In R
1 and 2, for example, its possible realization in a high-Tc
superconductor was proposed, which is accompanied by
time-reversal symmetryT breaking. Further, there is a rece
observation that it has some similarity to the plateau tra
tion in the integer quantum Hall effect~IQHE!.3–6 One of the
claims is that each phase is labeled by an integer~an analog
of the Hall conductance in the IQHE! and there can be tran
sitions between phases with different integers.

In this paper, based on the lattice fermion model, we
vestigate the problem. The integer for each phase is defi
by a topological invariant of the U~1! fiber bundle~the Chern
number!.3,7,8 The U~1! fiber bundle is a geometrical objec
which is composed of the Brillouin zone~torus! and the
Bloch wave functions~fiber!. Due to its topological stability,
a singularity in the U~1! fiber bundle necessarily occurs wit
the change of the Chern number. The singularity is identifi
with the energy-gap closing.9–14 The Chern number is
closely related to zero points~vortices! of the Bloch wave
function. Focusing on the motion of the vortices near
singularity, we give a general proof of aselection ruleof the
transitions. Due to the intrinsic symmetry of the system,
selection rule differs from that of the IQHE.15 We also in-
vestigate the properties of the edge states and how the
flect the topological character of the bulk. The transition d
to the change of randomness strength is a typical examp
the problem. As emphasized in Ref. 16, the symmetry ef
leads to a new universality class and it is interesting as
Anderson localization problem. We also discuss
disorder-driven transition numerically.

The Hamiltonian is

H5(
l ,m

cl
†H lmcm5(

l ,m
cl

†S t lm D lm

Dml* 2tml
D cm , ~1!

wherecn
†5(cn↑

† ,cn↓
† ), cn5 t(cn↑ ,cn↓), andn5(nx ,ny)PZ2.

This is an extension of the lattice fermion model discusse
connection with the plateau transition in the IQHE.11–14Here
we comment on the relation between this Hamiltonian a
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the superconductivity. Under the unitary transformationcn↑
→dn↑ , cn↓→dn↓

† ~for ;n), the Hamiltonian~1! is equivalent
to H5( l ,m@dl↑

† t lmdm↑1dl↓
† t lmdm↓1dl↑

† D lmdm↓
† 1dm↓D lm* dl↑#.

This is the pairing model for the singlet superconductivity.
the context of superconductivity, the pair potentialD lm
should be determined by a self-consistent equation. Altho
the effect is interesting itself, it is beyond the scope of t
paper. Further, the conditionst lm* 5tml andD lm5Dml are im-
posed and they correspond to the Hermiticity and the SU~2!
symmetry, respectively. The SU~2! symmetry leads to the
condition5

2~syH lmsy!* 5H lm . ~2!

Due to the SU~2! symmetry, we can restrict ourselves to th
sector (ndn

†szdn50 without loss of generality. This is
equivalent to thehalf-filled condition for the Hamiltonian
~1!, which we impose in the following arguments.

Now let us define a topological invariant~the Chern num-
ber! for our model. It is a key concept in the following a
guments. Put the system on a torus, which isLx3Ly and
periodic in bothx andy directions. Define the Fourier trans
formation by cn51/ALxLy(ke

iknc(k) where k5(kx ,ky) is
on the Brillouin zone (2p,p#3(2p,p#. AssumingH lm to
be invariant under translations, we obtainH
5(kc(k)†H(k)c(k) whereH(k)5( ( l 2m)e

2 ik( l 2m)H lm . The
H(k) has two eigenvectors and eigenvalues. They co
spond to the Bloch wave functions and the energy ban
respectively. To satisfy the half-filled condition, the low
band is occupied for the ground state. We denote the Bl
wave function for the lower band byt„a(k),b(k)…. Then the
topological invariant@the Chern number of the U~1! fiber
bundle# is defined as

C5
1

2p i E dk ẑ•~“k3A!, ~3!

whereA5„a* (k),b* (k)…“k
t
„a(k),b(k)… andẑ5(0,0,1).3,7,8

The integration*dk is over the Brillouin zone which can b
identified with a torus. For simplicity, we assumedH lm to be
99 ©2000 The American Physical Society
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invariant under translations. However, a generalization t
multiband system~including a random system! is possible. It
is crucial for the following arguments to rewrite the abo
formula in terms of a zero point of the Bloch wave functio
~vortex! and the winding number~charge!. To be explicit, let
us perform thegauge fixingof the Bloch wave function for
the lower-energy band. We note that the Chern number it
does not depend on the gauge fixing. To define the gauge
use the rule a(k)51 and introduce a notationb(k)
5b8(k)e2 i z(k) @b8(k)PR#. An ambiguity in the gauge fix-
ing occurs whena(k)50. Around the zero point~vortex! in
the Brillouin zone, it is necessary to change the way of
gauge fixing—for example, asb(k)51. Then the Chern
number~3! is rewritten as

C5(
l

Cl , Cl51/2p R
]Rl

dk¹z~k!, ~4!

where the summation is taken over all vortices ofa(k) and
Rl is a region surrounding thel th vortex which does no
contain other zeros of eithera(k) or b(k). Here Cl is an
integer and we call it the charge of thel th vortex.

Let us discuss thedx22y21 idxy model on a torus as
an example.3,5 The model is defined bytn1ex ,n5tn1ey ,n

5t, Dn1ex ,n52Dn1ey ,n5Dx22y2, and Dn1ex1ey ,n

52Dn2ex1ey ,n5 iDxy for ;n @ex5(1,0),ey5(0,1),t

.0,Dx22y2,DxyPR# and the other matrix elements are ze
Then

H~k!5S A~k! B~k!

B* ~k! 2A~k!
D ,

where A(k)52t(coskx1cosky) and B(k)52Dx22y2(coskx
2cosky)12iDxy@cos(kx1ky)2cos(kx2ky)#. The energy spec
trum is given byE56AA(k)21uB(k)u2. WhenDxy50, the
upper band and the lower band touch at four points (6p/2,
6p/2) in the Brillouin zone. The low-lying excitation
around the gap-closing points are described by mass
Dirac fermions. By turning on a finiteDxy , the mass genera
tion occurs in the Dirac fermions. The vortex position
given by a(k)50 and it is (kx ,ky)5(0,0). Using B(k)
5B8(k)ei z(k)@B8(k)PR#, the charge of the vortex is
1/2pr (0,0)dk¹z(k)52 sgn(Dxy /Dx22y2). Since there is no
other vortex, the Chern numberC is given by

C52 sgn~Dxy /Dx22y2!. ~5!

Here we note that, as in the case of the IQHE on a lattice,
Chern number can take various integer values in gen
cases—e.g., a multiband system and a model with a diffe
T-broken pairing symmetry. Even in these cases, there
universal features in this problem. They are, for example,
existence of edge states without a magnetic field and a se
tion rule as discussed below.

As in the QHE,17–19 the edge statesplay a crucial role in
the problem.3–5 The edge states reflect the bulk propert
and it is possible to detect the topological character of
bulk through the edge states. We also note that the exist
of the edge states even without a magnetic field can jus
the network model in Ref. 4. In order to discuss the ed
states, put the system on a cylinder which isLx3Ly and
a
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periodic only in y direction. Further we impose an ope
boundary condition in thex direction. Define the Fourier
transformation bycn51/ALy(ky

eikynycnx
(ky) whereky is on

(2p,p#. ThenH5(ky
cl x

(ky)
†H l xmx

(ky)cmx
(ky) whereH lm

is assumed to be invariant under translations in they direc-
tion and H l xmx

(ky)5( ( l y2my)e
2 iky( l y2my)H lm . The relation

~2! can be rewritten as2„syH l xmx
(ky)sy…* 5H l xmx

(2ky).

Define an eigenvectoru by (mx
H l xmx

(ky)umx
5Eul x

. Now

we show that there are two basic operationsP andQ on the
vector. They are defined by (Pu)nx

5(syunx
)* and (Qu)nx

5uLx2nx11. Then (mx
H l xmx

(2ky)(Pu)mx
5(2E)(Pu) l x

.
Further, when there is a reflection symmetry, we can ob
another relation(mx

H l xmx
(2ky)(Qu)mx

5E(Qu) l x
. Based

on the symmetry, we shall discuss basic properties of
edge states. Consider a case whenu is an eigenstate which is
localized spatially on the left~or right! boundary, i.e., a left
~or right!-hand edge state. Then, from the above argum
u, Pu, Qu, PQu are classified into two left-hand edge stat
and two right-hand edge states. Now, as in the argumen
the IQHE,20 let us introduce a fictitious flux through the cy
inder and change it from 0 to flux quantahc/e. Due to the
symmetry, the number of edge states which move from
boundary to the other is necessarilyeven. We shall consider
thedx22y21 idxy model on a cylinder as an example. In Fi
1, the energy spectrum is shown. It is confirmed that
energy spectra of the edge states appear in pairs and
number of the edge states which move from one boundar
the other as the fictitious flux is added is even and coinci
with the Chern number. In other words, the edge states
rectly reflect the topological character of the bulk. Therefo
even without a magnetic field, the edge states necess
exist in the superconductor if the Chern number is nonze

As discussed above, each phase in our model is labele
the Chern number. The vortices move as the Hamiltonia
perturbed. The Chern number, however, does not chang
general. Due to the topological stability, the change of
Chern number is necessarily accompanied by a singularit
the U~1! fiber bundle. The singularity is identified with th
energy-gap closing. Focusing on the singularity, we c
prove aselection rulefrom a general point of view~see also
Refs. 10–14!. The selection rule is closely related to th

FIG. 1. Energy spectrum in thedx22y21 idxy model on a cylin-
der (t51, Dx22y251, andDxy50.5). The system size is 40340.
The spectrum in the energy gap corresponds to the edge states
boundary where the edge states are localized is shown by L~left! or
R ~right!.
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SU~2! symmetry in our model. Let us introduce a parame
g in the Hamiltonian. Assume that, wheng5g0, the energy
gap closes at several zero-energy points in the Brillo
zone. Next focus on the region near one of the gap-clos
points (kx

0 ,ky
0), i.e., p5 t(kx2kx

0 ,ky2ky
0 ,g2g0);0. Then

the leading part of the Hamiltonian is, generally, given b

H0~p!51v0p1~sx ,sy ,sz!vp, ~6!

where v0 is a 133 vector,sx(y,z) is a 232 Pauli matrix,
and v is a 333 matrix. Now let us introduce thestandard
form, which is convenient for the following arguments.11

Choosing a unitary transformationU appropriately, one can
obtain UH0(p)U 2151v0p1(sx ,sy ,sz)DTp where D is
diag„1,1,sgn(detv)… and T is an upper triangle matrix with
positive diagonal elements. Let us performTp→p @the
parity-conserving affine transformation on (kx ,ky) and the
rescaling ong# and the redefinitionv0T21→v0. Finally the
standard form is obtained as

H1~p!51v0p1sxpx1sypy1szpz sgn~detv!. ~7!

This is equivalent to the HamiltonianH(k) where A(k)
5pz sgn(detv) and B(k)5px2 ipy . Performing the same
analysis, one can find that a vortex moves from one ban
the other at the gap closing, and the conclusion is that
change of the Chern number is practically determined
sgn(detv) and the change is11 or 21.11 Next let us con-
sider a dual gap-closing point (2kx

0 ,2ky
0) which exists due

to the symmetry. Here the relation derived from Eq.~2! plays
a crucial role and it is given byH(2k)52(syH(k)sy)* .
Therefore H(2kx

02px ,2ky
02py ,g)52„syH(kx

01px ,ky
0

1py ,g)sy…* ;21v0p1(sx ,sy ,sz)vp. To summarize, the
linearized Hamiltonian near the dual gap-closing po
(2kx

0 ,2ky
0) is given by

H~2kx
01px ,2ky

01py ,g!;21v0p1~sx ,sy ,sz!wp,
~8!

where w5v diag(21,21,1). It gives sgn(detv)
5sgn(detw). Therefore the change of the Chern number d
to gap closings always occurs in pair with the same sign
the total change isDC562 generally. This is the selectio
rule. On the other hand, in the absence of the relation~2! @or
SU~2! symmetry#, the above argument does not hold and
leads to the ruleDC561. Now we note the results in Ref.
where the network model with the same symmetry as
model was investigated. Although their model is differe
from the lattice fermion model considered here, our selec
rule still applies: this suggests the universality. Assum
that the system belongs to a phase with a vanishing Ch
number by tuning parameters in the Hamiltonian, the se
ci-
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tion rule implies that the Chern number is always eve
which supports the result based on the edge states.

Finally, we comment on the disorder-driven transitio
based on the randomdx22y21 idxy model. It is defined by
t i j 5t i j

0 1dt i j andD i j 5D i j
0 1dD i j wheredt i j anddD i j denote

the randomness. Here the hermiticity and the SU~2! symme-
try are imposed ont i j and D i j , respectively. It has an inti-
mate connection with the random Dirac fermio
problem.21–26 It is to be noted that the SU~2! symmetry is
kept even in the presence of randomness and the mod
interesting as the Anderson localization problem.16 As dis-
cussed above, the Chern number is62 in the absence o
randomness. On the other hand, in the presence of s
ciently strong randomness, it is expected that all the vorti
disappear through the pair annihilation of vortices with o
posite charges and the Chern number vanishes.13,14 By the
numerical diagonalization, we treated the disorder-driv
transition for thedt i j 5d i j f i and dD i j 5d i j gi where thef ’s
and g’s are uniform random numbers chosen fro
@2W/2,W/2#. The model was also studied extensively
Ref. 27. In Fig. 2, the density of states is shown in the c
Dxy

0 Þ0. It can be seen that the two energy bands come clo
and finally touch, as the randomness strength is increa
The transitionC562→0 with the gap closing is a natura
consequence from the selection rule. The exploration of
global phase diagram and the field-theoretical description
left as future problems.
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P.-A. Bares for a careful reading of the manuscript. T
work was supported in part by a Grant-in-Aid from the Mi
istry of Education, Science and Culture of Japan. The co
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computer Center, ISSP, University of Tokyo.

FIG. 2. Density of states in the randomdx22y21 idxy model. In
the absence of randomness, the model reduces to the puredx22y2

1 idxy model witht51, Dx22y251, andDxy50.5. The system size
is 30330 and the ensemble average is performed over 800 diffe
realizations of randomness.
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