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The Bethe ansatz~BA! equations for the two-dimensional Bloch electrons in a uniform magnetic field are
treated in the weak-field limit. We have calculated energies near the lower boundary of the energy spectrum up
to the first nontrivial order. It corresponds to calculating a finite size correction for the excitation energies of
the BA solvable lattice models and gives the Landau levels in the present problem.
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The system of two-dimensional Bloch electrons in a m
netic field has very rich structure. The ratio of a lattice co
stant and a magnetic length, which are two fundame
length scales, is crucially important. The incommensurabi
brings fractal structures in the problem, which can be
served in the energy spectrum and the wave functions.1 Fa-
mous Hofstadter’s butterfly diagram is a typical demons
tion of the structure. It is fractal and has a self-simi
structure. It also has an interesting relation to the quasip
odic systems~quasicrystals!.2

Recently intrinsic importance of a quantum-mechani
phase is stressed as a geometrical phase, which is essen
the Aharonov-Bohm effect, the Berry’s phase, anyons
the quantum Hall effect.3 The Bloch electrons in a magnet
field also have importance as a stage of a typical realiza
of the geometrical phase. It was first noticed by Zak in
study of a magnetic translation group.4 The effect of the
geometrical phase for the Bloch electrons was pursued in
studies of the quantum Hall effect and fundamental relati
between the Hall conductance and several topological inv
ants were discovered~the Chern number5 and the winding
number on the complex energy surface6!. This is a geometri-
cal aspect of the problem.

For an algebraic property of the problem that origina
from the magnetic translation group, there was a bre
through recently. Wiegmann and Zabrodin found a relat
between the Hamiltonian of the Bloch electrons in a m
netic field and the quantum groupUq(sl2).7,8 Using the re-
lation, the Schro¨dinger equation is rewritten as a function
equation and the Bethe ansatz~BA! equations are derived
The quantum group is a relatively new mathematical c
cept. It is a kind of generalization of the Lie algebra that
characterized by the so-calledq parameter. Thisq parameter
represents the noncommutativity of the elements in the qu
tum group that is related to the noncommutativity of t
magnetic translation group. Mathematically rich structures
the quantum group enable us to obtain insights of the ph
cal problem. Since the BA equations are high degree mu
variable ones, it is difficult to obtain an explicit solution.
usually occurs for the BA equations of the BA solvable l
tice models~the XXZ chain and the Hubbard chain!. How-
ever, for the present problem, the explicit solution of the B
PRB 610163-1829/2000/61~7!/4409~4!/$15.00
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equations for the zero energy was obtained
Hatsugai-Kohmoto-Wu.9,10 When the flux per plaquette i
irrational, the distribution function of the BA roots is no
where differentiable and the polynomial representation of
Uq(sl2) gives a polynomial with quasiperiodic coefficient
It implies that the wave function has a multifractal charact
Although this explicit solution is only restricted to the ze
energy, the other energies were also studied numerical10

Abanov, Talstra and Wiegmann gave beautiful results ba
on the string type ansatz when the flux per plaquette is
irrational golden mean.11 Krasovsky derived an integra
equation for the distribution function of the BA roots in th
weak-field limit and calculated the energy of the lowest e
ergy band.12 This corresponds to calculating a finite size co
rection of the ground-state energy in the usual BA solva
models.

In this letter, we focus on the weak-field limitf→0
where the flux per plaquette is given byf5Ba2/F0 in units
of a flux quantumF05hc/e (a is a lattice constant andB is
a magnetic field!. Physically, this weak-field limit can be
understood as a continuum limit from the lattice syste
where the lattice spacinga vanishes with the magnetic fiel
B fixed. We calculate energies of the lowest several sta
analytically up to the lowest nontrivial order inf. It corre-
sponds to calculating finite size corrections for excited st
energies of the usual BA solvable lattice models. Mathem
cally, this weak-field limit is a semiclassical limit where th
classicalsl2 is recovered from the quantumUq(sl2).

The Hamiltonian of electrons on a square lattice in a u
form magnetic field is given by

H5Tx1Ty1h.c.,

whereTx and Ty are the covariant translation operatorsTx

5(m,ncm,n
† eium,n

x
cm11,n , Ty5(m,ncm,n

† eium,n
y

cm,n11 , and
cm,n is an annihilation operator for an electron at a s
(m,n). Discrete rotation of the phasesum,n

x andum,n
y gives a

flux per plaquettef: (plaquetteum,n5um,n
x 1um11,n

y 2um,n11
x

2um,n
y 52pf. We assume the fluxf5P/Q with mutually

prime integersP and Q. In the diagonal gauge@um,n
x

52p(m1n)f, um,n
y 5p(m1n11)f#, the Hamiltonian in

the momentum space is given asH5(kH(k), whereH(k)
4409 ©2000 The American Physical Society
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5(e2 ikxX1eikyX21)Y1Y21(e2 ikyX1eikxX21) with 2Q
32Q matricesX and Y @Xi j 51 if i 2 j [1 ~mod 2Q), Xi j
50 otherwise,Y5diag(q,q2, . . . ,q2Q)#. When one takesP
to be odd and chooses momenta (kx ,ky) on the so-called
midband line @k15(kx1ky)/2[p/2 ~mod p/Q)#, the
Hamiltonian is given by

Hmidband5 i ~q2q21!$rc~B!1rc~C!%,

whererc(B) andrc(C) supplemented byrc(A), rc(D) are
the cyclic representations of the quantum groupUq(sl2)
5$A,B,C,D%.7,10 Here, the quantum group enters in th
problem where theq parameter is given byq5eipf. Since
we consider the casef5P/Q, it implies that theq is a root
of unity (q2Q51). This cyclic representation is only pos
sible for theq that is a root of unity. The classicalsl2 is a
spin algebra and it has a usual highest weight representa
given by the differential operators. Correspondingly, t
quantum groupUq(sl2) also has a highest weight represe
tation given by the difference operators. The highest wei
representation implies that finite degree polynomials
span the bases. On the other hand, the cyclic represent

FIG. 1. Numerical solutions for the roots of the Bethe ans
equations:~a! for the second lowest energy band and~b! for the
third band (f51/50).
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does not have a classical correspondence. However, us
relation between the highest weight representation and
cyclic representation, the discrete Schro¨dinger equations of
the Bloch electron in a magnetic field are extended to a fu
tional equation for a polynomialC(z)5)k51

Q21(z2zk) of the
degreeQ21 ~Ref. 7! as

i ~z211qz!C~qz!2 i ~z211q21z!C~q21z!5«C~z!.
~1!

Putting z5zm and also comparing the coefficients of th
highest order term, we have the BA type equations7 as

zm
2 1q

qzm
2 11

5qQ )
k51

Q21
qzm2zk

zm2qzk
, m51,2, . . . ,Q21,

«5 iqQ~q2q21! (
k51

Q21

zk . ~2!

For the semiclassical casef51/Q, which we consider in the
paper, all the BA roots are on a unit circle,uzku51 (k
51,2, . . . ,Q21) ~Ref. 10! ~see Fig. 1!. Therefore, we set
zk5eiwk(wkPR). Then the BA Eq.~2! is written as

cosS wm2
p

2QD
cosS wm1

p

2QD 52 )
k51

Q21 sin
1

2 S wm2wk1
p

QD
sin

1

2 S wm2wk2
p

QD . ~3!

In the limit Q→`, the distribution functionr(w) of the BA
roots is well defined and the energy is given by

«52pE
2p

p

eivr~v!dv,

wherer(wk)5 lim
Q→`

1/Qdk anddk5wk112wk . Recently,

Krasovsky calculated the energy of the lowest band up to
1/Q order and an integral equation forr was derived.12 Ex-
tending the method in Ref. 12, we calculate energies of
general bands in the vicinity of the lower boundary of t
spectrum@«5241O(1/Q)#. To obtain the energies, on
needs the distribution of the BA roots. For then-th lowest
energy band withn5O(1), Q2n roots are almost uni-
formly distributed on the left semicircle with a unit radiu
and the othern21 roots are on the right semicircle10 ~see
Fig. 1!. We determine the arguments of then21 roots up to
the order of unity. We denote the arguments of theQ2n
roots and those of the othern21 roots asu andt, respec-
tively @uP(p/2,3p/2) andtP(2p/2,p/2)#. In general, the
n21 roots consist of clusters separated by finite distanc
The roots within each cluster converge to the single poin
the Q→` limit. Then the arguments of the BA roots ar
written as $t11, . . . ,t1n1

%,$t21, . . . ,t2n2
%, . . . where t1i

→c1 , t2 j→c2 , . . . (Q→`) (ciÞcj ,iÞ j ). Further we as-
sumeciÞ6p/2 ~see Fig. 1!. Then the BA Eq.~3! for t11 in
the limit Q→` gives

z
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05 lim
Q→`

(
k

lnU sin
1

2 S c12uk1
p

QD
sin

1

2 S c12uk2
p

QDU
1 lim

Q→`
(
i 52

n1

lnU sin
1

2 S t112t1i1
p

QD
sin

1

2 S t112t1i2
p

QDU . ~4!

The first term is estimated as ln(12sinc1)/(11sinc1). Add-
ing the BA equations for the roots$t11, . . . ,t1n1

%, we have
n1ln(12sinc1)/(11sinc1)50. It meansc150. Similarly, we
havec25•••50. Therefore, there is only one cluster on t
right semicircle~see Fig. 1! and

t i→0 ~Q→`!.

Now, let us calculate the rest of the BA rootsu i and the
energy for the (2p11)th lowest energy band~we assume
that theQ is even for definiteness!. By the symmetry of the
BA roots distribution9,10,12 ~see Fig. 1!, we write arguments
of the BA roots asu052p, uk52p1pk/Q1( j 50

k21D j ,
u2k52uk , k51,2, . . . ,Q/22p21 where D j5u j 112u j
2p/Q. Note that( j 50

k21D j vanishes in theQ→` limit, since
D j5o(1/Q). Moreover,Dk is exponentially small for thek
of the order Q (k;Q).13 Therefore, we setuk52p
1pk/Q1s/Qd1o(1/Qd) for k;Q wheres andd are con-
stants independent ofk andQ. Numerical solutions foruk are
shown in Fig. 2. For the energy«, we have «524
14pp/Q14s/Qd1o(1/Q,1/Qd) from Eq. ~2!. To fix the en-
ergy, we calculates andd. Now let us rewrite the BA Eq.~3!
by uk andt l as

lnU cosS um2
p

2QD
cosS um1

p

2QDU5(
k

lnU sin
1

2 S um2uk1
p

QD
sin

1

2 S um2uk2
p

QDU
1(

l
lnU sin

1

2 S um2t l1
p

QD
sin

1

2 S um2t l2
p

QDU .

FIG. 2. Numerical solutions for the arguments of the rootsuk

for the third lowest band (Q550, 70, 100, and 200!. The straight
lines are the asymptotic behavior forQ→`, uk52p1(k
13/2)p/Q @k51,2, . . . ,(Q24)/2#.
Note that if the first summation is naively estimated as in
gral, the integrand diverges at the pointsum2ku!Q @x!y
meansx/y→0(Q→`)#. In order to avoid this, we divide the
summation into two partsS andR, whereS is the contribu-
tion from k5m2N, . . . ,m1N (1!N!Q) and R is that
from the rest k @we take m such that limQ→` umÞ
6p/2]. After canceling numerators and denominators
suitable pairs, S is estimated as2 ln(11sinpm/Q)/(1
2sinpm/Q)1rm/Qbm1o(1/Qbm) whereQ2/3!N!Q and r m
andbm are constants independent ofQ. Since we have two
parameterss/Qd andr m /Qbm, we need another set of~simi-
lar! equations for the BA roots, which can be derived fro
the functional Eq.~1!.12 From the two sets of the equation
we can fix the parameters asd5bm51, s5p(p1 1

2 ).
Therefore, the asymptotic distribution of theuk is determined
as ~see Fig. 2!

uk52p1S k1p1
1

2D p

Q
1oS 1

QD ~k;Q!.

Cases for the 2pth bands are also discussed in the simi
way. To summarize the results, the energy of the (n11)th
lowest band@n50,1,2, . . . ;n5O(1)# is given as

«n5241S n1
1

2D 4p

Q
1oS 1

QD . ~5!

In Fig. 3, the five lowest energies are plotted as a function
1/Q(20<Q<200) and the straight lines are the asympto
behavior in Eq.~5!. We can also treat the general ener
bands near the higher boundary of the spectrum. Thesen

FIG. 3. Numerical results for the energies of several bands n
the lower boundary. Asymptotic behaviors are shown by the s
lines.
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11)th highest energies are given by«n8542(n1 1
2 )4p/Q

1o(1/Q) by the parallel argument.
Now, let us discuss the physical outcome of the results

the absence of the magnetic field, one can recover the p
bolic dispersion in the continuum model from the tigh
binding model as

Ek522t~coskxa1coskya! →
a→0

24t1ta2k2524t1
\2k2

2m*
.

It implies that the effective mass is given bym* 5\2/2a2t.
Since 1/Q5f5Ba2/F05eBa2/hc, we rewrite the above
result ~5! with this effective massm* as
n
ra-

En5t«n→2
2\2

m*

1

a2
1\vcS n1

1

2D ~a→0!,

n50,1,2, . . . ;n5O~1!,

wherevc5eB/m* c. These are usual energies of the Land
levels except the diverging energy shift. Now, we can a
lytically recover the Landau levels from the BA equations
the Bloch electrons in a magnetic field.14
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