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Landau levels from the Bethe Ansatz equations
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(Received 18 October 1999

The Bethe ansatBA) equations for the two-dimensional Bloch electrons in a uniform magnetic field are
treated in the weak-field limit. We have calculated energies near the lower boundary of the energy spectrum up
to the first nontrivial order. It corresponds to calculating a finite size correction for the excitation energies of
the BA solvable lattice models and gives the Landau levels in the present problem.

The system of two-dimensional Bloch electrons in a mag-equations for the zero energy was obtained by
netic field has very rich structure. The ratio of a lattice con-Hatsugai-Kohmoto-Wd:'® When the flux per plaquette is
stant and a magnetic length, which are two fundamentaifrational, the distribution function of the BA roots is no-
length scales, is crucially important. The incommensurabilitjwhere differentiable and the polynomial representation of the
brings fractal structures in the problem, which can be obUq(slz) gives a polynomial with quasiperiodic coefficients.
served in the energy spectrum and the wave funcfidees. It implies that the wave function has a multifractal character.
mous Hofstadter’s butterﬂy diagram is a typ|ca| demonstraAlthOUgh this eXpIiCit solution is Only restricted to the zero
tion of the structure. It is fractal and has a self-similarenergy, the other energies were also studied numeritally.
structure. It also has an interesting relation to the quasiperiAbanov, Talstra and Wiegmann gave beautiful results based
odic systemgquasicrystals? on the string type ansatz when the flux per plaquette is an

Recently intrinsic importance of a quantum-mechanicalifrational golden meafi. Krasovsky derived an integral
phase is stressed as a geometrica| phase7 which is essentiaﬁmluation for the distribution function of the BA roots in the
the Aharonov-Bohm effect, the Berry’s phase’ anyons andveak'field limit and calculated the energy of the lowest en-
the quantum Hall effect.The Bloch electrons in a magnetic €rgy band?” This corresponds to calculating a finite size cor-
field also have importance as a stage of a typical realizatiofection of the ground-state energy in the usual BA solvable
of the geometrical phase. It was first noticed by Zak in themodels.
study of a magnetic translation grofipfhe effect of the In this letter, we focus on the weak-field limip—0
geometrical phase for the Bloch electrons was pursued in thehere the flux per plaquette is given dy=Ba? ® in units
studies of the quantum Hall effect and fundamental relation®f a flux quantunmb,=hc/e (a is a lattice constant aniél is
between the Hall conductance and several topological invarid@ magnetic fieltl Physically, this weak-field limit can be
ants were discoveretthe Chern numbérand the winding understood as a continuum limit from the lattice system
number on the complex energy surfic&his is a geometri- Wwhere the lattice spacing vanishes with the magnetic field
cal aspect of the problem. B fixed. We calculate energies of the lowest several states

For an algebraic property of the problem that originatesanalytically up to the lowest nontrivial order i. It corre-
from the magnetic translation group, there was a breaksponds to calculating finite size corrections for excited state
through recently. Wiegmann and Zabrodin found a relatiorenergies of the usual BA solvable lattice models. Mathemati-
between the Hamiltonian of the Bloch electrons in a mag-<ally, this weak-field limit is a semiclassical limit where the
netic field and the quantum group,(sl,).”® Using the re- ~ classicalsl, is recovered from the quantubilg(sly).
lation, the Schidinger equation is rewritten as a functional ~ The Hamiltonian of electrons on a square lattice in a uni-
equation and the Bethe ansdBA) equations are derived. form magnetic field is given by
The quantum group is a relatively new mathematical con-
cept. It is a kind of generalization of the Lie algebra that is H=T,+Ty+hc,
characterized by the so-callecbarameter. Thigj parameter where T, and T, are the covariant translation operatdfs
represents the noncommutativity of the elements in the quan-g ot G o T=s ot e and
tum group that is related to the noncommutativity of the ~mn~mn= = =m+ln. - Ty <mn=mn*= T emntls .
magnetic translation group. Mathematically rich structures ofmn 1S an annlhllatlpn operator for an electyron _at a site
the quantum group enable s to obtain insights of the physic™:")- Discrete rotation of the phase;ﬁ’n and or, , gives a
cal problem. Since the BA equations are high degree multiflux Per plaquetted: X paquetdmn= mnt 0?1/14-.1,“_ mn+1
variable ones, it is difficult to obtain an explicit solution. It — &n=27¢. We assume the fluy=P/Q with mutually
usually occurs for the BA equations of the BA solvable lat-prime integersP and Q. In the diagonal gaugd 6y, ,
tice models(the XXZ chain and the Hubbard chairHow-  =—m(m+n)¢, 6} ,=7(m+n+1)¢], the Hamiltonian in
ever, for the present problem, the explicit solution of the BAthe momentum space is given Hs= 2, H(k), whereH (k)
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(a) does not have a classical correspondence. However, using a
relation between the highest weight representation and the
cyclic representation, the discrete Safinger equations of

the Bloch electron in a magnetic field are extended to a func-
tional equation for a polynomial (z) =112-}(z— z,) of the
degreeQ—1 (Ref. 7) as

i(z7'+q2¥(q2)—i(z *+q 12V (q 12)=V(2).
()

Putting z=2z,, and also comparing the coefficients of the
highest order term, we have the BA type equaticas

Q-1
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=

For the semiclassical cage= 1/Q, which we consider in the
paper, all the BA roots are on a unit circlg|=1 (k
=1,2,...0Q0-1) (Ref. 10 (see Fig. 1L Therefore, we set
z,=€'%(¢ e R). Then the BA Eq(2) is written as

T 1 T
co %rﬁ Q-18in; ¢m—¢k+6

=— 1 ) 3)
™ k=1 . m
COS{ emT E) SII’E( Pm— Pk~ 6)

In the limit Q— <, the distribution functiorp(¢) of the BA
G T roots is well defined and the energy is given by

N
NP

-1 -0.5

(=]

FIG. 1. Numerical solutions for the roots of the Bethe ansatz -
equations:(a) for the second lowest energy band ail for the 8:27TJ

1 ei"’p(w)dw,
third band @=1/50).

-

=(e X+ e*X Y+ Y e kyX+e*X"1)  with 2Q wherep(ey) =lim,,__1/Q5 and 6=y 1~ ¢. Recently,
X 2Q matricesX and Y [X;;=1 if i—j=1 (mod 2Q), X;
=0 otherwiseY =diag(q,q, . . . ,q??)]. When one takeP
to be odd and chooses momentg k,) on the so-called
midband line [k, =(ket+k/)/2=n/2 (mod «/Q)], the

Krasovsky calculated the energy of the lowest band up to the
1/Q order and an integral equation fprwas derived? Ex-
tending the method in Ref. 12, we calculate energies of the
NN general bands in the vicinity of the lower boundary of the
Hamiltonian is given by spectrum[e = —4+0(1/Q)]. To obtain the energies, one
. 1 needs the distribution of the BA roots. For theh lowest
Hmidband=1(4=0a"){pc(B) +pc(C)}, energy band withn=0(1), Q—n roots are almost uni-

wherep,(B) andp.(C) supplemented by.(A), p.(D) are formly distributed on the left semicircle with a unit radius
the cyclic representations of the quantum grdug(sl,) a_nd the othem—1 roots are on the right semiciréfe(see
={A,B,C,D}.7'1° Here, the quantum group enters in the Fig. 1). We determine the arguments of the- 1 roots up to
problem where thej parameter is given bg=¢'™. Since the order of unity. We denote the arguments of @en

we consider the casg= P/Q, it implies that theg is a root rpots and those of the other-1 roots asf and r, respec-
sible for theq that is a root of unity. The classical, isa N~ 1 roots consist of clusters separated by finite distances.
spin algebra and it has a usual highest weight representatior’® roots within each cluster converge to the single point in
given by the differential operators. Correspondingly, thethe Q—< limit. Then the arguments of the BA roots are
quantum groupJ4(sl,) also has a highest weight represen-Written as{ry, ...,7an {721, - . \T2n ), ... Where 7y
tation given by the difference operators. The highest weight-cy, 75;—C,, ... (Q—®) (¢;#c;,i#]). Further we as-
representation implies that finite degree polynomials carsumec;# = 7/2 (see Fig. 1L Then the BA Eq(3) for 74, in
span the bases. On the other hand, the cyclic representatitime limit Q— oo gives
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FIG. 2. Numerical solutions for the arguments of the ro@ts
for the third lowest band@=50, 70, 100, and 200 The straight
lines are the asymptotic behavior fo@—«, @=—a+(k
+312)7w/Q [k=1,2,...,Q—4)/2].
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The first term is estimated as In{kinc,;)/(1+sinc;). Add-
ing the BA equations for the roots;, . ..,71, }, we have

niIn(1—sincy)/(1+sinc,)=0. It meansc;=0. Similarly, we

havec,=---=0. Therefore, there is only one cluster on the

right semicircle(see Fig. 1 and
7i—0 (Q—).

Now, let us calculate the rest of the BA rodtsand the
energy for the (p+1)th lowest energy ban@ve assume
that theQ is even for definitene$sBy the symmetry of the
BA roots distributio1%*2 (see Fig. 1, we write arguments
of the BA roots asfp=—m, 6= —m+7k/IQ+2 54,
0*k= - t9k, k=1,2, e ,Q/Z— p_ 1 Where Alz 0j+l_ 0]
—7/Q. Note thatZ}‘;lAj vanishes in th&— o limit, since
A;=0(1/Q). Moreover,Aklis exponentially small for thé
of the order Q (k~Q).'® Therefore, we setfy=—m
+ 7k/Q+s/Q%+ 0(1/Q?) for k~Q wheres and § are con-
stants independent &fandQ. Numerical solutions fop, are
shown in Fig. 2. For the energg, we havee=-4
+4mplQ+45/Q%°+0(1/Q,1/Q?% from Eq. (2). To fix the en-
ergy, we calculats and 8. Now let us rewrite the BA Eq(3)
by 6, and 7, as

T 1 T
CO{ Om— 2—) SII’E( Om— O+ 6)
In T =§k: In 1 -
005< Ot E smi( Om— O— 6)
1 T
Slng( Bm_ T|+6)
+Z In 1 -
PR
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FIG. 3. Numerical results for the energies of several bands near
the lower boundary. Asymptotic behaviors are shown by the solid
lines.

Note that if the first summation is naively estimated as inte-
gral, the integrand diverges at the poihts—k|<Q [x<y
meansx/y— 0(Q—)]. In order to avoid this, we divide the
summation into two partS andR, whereS is the contribu-
tion from k=m—N, ... m+N (1<N<Q) and R is that
from the restk [we take m such that linQ—cw 6,#
*/2]. After canceling numerators and denominators in
suitable pairs, S is estimated as—In(1+sinmnV/Q)/(1

— sinmm/Q) -+, /QPm+0(1/QPm) whereQ¥3<N<Q andr,,
and B,, are constants independent @f Since we have two
parameters/Q° andr,,/Q”m, we need another set ¢gimi-

lar) equations for the BA roots, which can be derived from
the functional Eq(1).}? From the two sets of the equations,
we can fix the parameters a8=pB,=1, s=w(p+3).
Therefore, the asymptotic distribution of thgis determined
as(see Fig. 2

1
Q

Cases for the pth bands are also discussed in the similar
way. To summarize the results, the energy of the-()th
lowest bandn=0,1,2 ...;n=0(1)] is given as

1
—) . (5)

In Fig. 3, the five lowest energies are plotted as a function of
1/Q(20=Q=200) and the straight lines are the asymptotic
behavior in Eq.(5). We can also treat the general energy
bands near the higher boundary of the spectrum. These (

O, = — 7+ (k~Q).

K 1\ 7
+p+§ 6+0
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+1)th highest energies are given by,=4—(n+3)47/Q 242 1 1
+0(1/Q) by the parallel argument. En=ten——— —2+th n+ > (a—0),
Now, let us discuss the physical outcome of the results. In m™ a

the absence of the magnetic field, one can recover the para- n=012...:n=0(1)
bolic dispersion in the continuum model from the tight- e '
binding model as wherew.=eB/m*c. These are usual energies of the Landau
levels except the diverging energy shift. Now, we can ana-
lytically recover the Landau levels from the BA equations of
a—0 - 72k? the Bloch electrons in a magnetic fiettl.
Ex=—2t(cosk,a+cosk,a) — —4t+tak = —4t+ —-. We thank Y. Morita for fruitful discussions. Y.H. was
supported in part by a Grant-in-Aid from the Ministry of
Education, Science, and Culture of Japan. The computation

It implies that the effective mass is given by* =%%2a’t.  in this work has been partly done at the YITP Computing
Since 1Q=¢=Ba%*/P,=eBa/hc, we rewrite the above Facility and at the Supercomputer Center, ISSP, University
result(5) with this effective massn* as of Tokyo.
*Electronic address: hatsugai@coral.t.u-tokyo.ac.jp (1996.
1D.R. Hofstadter, Phys. Rev. B4, 2239(1976. IA.G. Abanov, J.C. Talstra, and P.B. Wiegmann, Phys. Rev. Lett.
2H. Hiramoto and M. Kohmoto, Int. J. Mod. Phys. & 281 81, 2112 (1998; Nucl. Phys. B525 571 (1998; P.B. Wieg-
(1992. mann, Prog. Theor. Phys. SupfB4, 171(1999.
3Geometric Phases in Physjaadited by A. Shapere and F. Wilc- 21.V. Krasovsky, Phys. Rev. B9, 322(1999.
zek (World Scientific, Singapore, 1989 BFor the k of the order Q, one can estimateA, as A
*J. Zak, Phys. Rev134 1602(1964. =(Ak/ A=) -+ (Agzer/ D) Ao =< (A2 + 1/ D) Ay
5D.J. Thouless, M. Kohmoto, P. Nightingale, and M. den Nijs, <Cyx(6*)~ %2 where#* and« are constants independent@f
Phys. Rev. Lett49, 405 (1982. such thaty(6*)<1 and O<a<1 (Ref. 12. Therefore,A, is
6Y. Hatsugai, Phys. Rev. B8, 11 851(1993; Phys. Rev. Lett71, exponentially small for thé of the orderQ.
3697(1993. 14To show the Landau degeneracy, we have to show that each of
"P.B. Wiegmann and A.V. Zabrodin, Nucl. Phys. &2, 495 the bandwidth vanishes in the semiclassical limit even after the
(1994); Mod. Phys. Lett. B3, 311(1994); Phys. Rev. Lett72, rescalinge ,— E,=te,=#2/2m* 1/a’s,, (a—0). However, the
1890(1994. sum of theQ energy bandwidths calculated numerically scales
8L.D. Faddeev and R.M. Kashaev, Commun. Math. Pig§, 181 as ~Ct/Q (Ref. 15. It implies that each bandwidth scales as
(1995. ~Ct/Q?=C(h%2m*a®)(eB&/hc)>~C'a?. If we assume it,
Y. Hatsugai, M. Kohmoto, and Y.S. Wu, Phys. Rev. Létg, the bandwidth vanishes in the continuum limét-¢0). To show
1134(1994. the degeneracy analytically is an interesting future problem.

10y Hatsugai, M. Kohmoto, and Y.S. Wu, Phys. Rev5B 9697  1°D.J. Thouless, Phys. Rev. B3, 4272(1983.



