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Two-dimensional random Dirac fermions are studied numerically. They are realized on a square
lattice by ther-flux model with random hopping. It preserves a symmetry denoted#yy} = 0 in
an effective field theory. Although it belongs to the orthogonal ensemble, the zero-energy states do not
localize but become critical. The density of states vanishes &% and the exponent changes with
strength of the randomness (the critical line). Rapid enhancement of the Thouless number is observed
near the zero energy. The level-spacing distribution is also investigated, which is consistent with the
existence of the critical states Bt= 0. [S0031-9007(97)04538-9]

PACS numbers: 72.15.Rn, 05.30.Fk, 71.10.Fd

Dirac fermions often appear in condensed mattefi/*/ i (x,y) + i p(x,y) + i lThs(x,y) +
physics, for example, a transition between different quani /» /> y4(x, y)], where a is the lattice spacing and
tum Hall states [1-3], two-dimensional graphite sheetsx = aj,,y = aj,. Then the Hamiltonian becomes
[4], a mean-field theory of the-J model (“r-flux state”) in the continuum limit (@ — 0) Hpue = 2i X
[5] and d-wave superconductors [6]. It is then natural [ dx W1 (x)[(03 ® 01)d, + (I ® 073)9,]¥(x). There-
to investigate what happens when disorder is includedore our lattice model includes doubled massless Dirac
Random Dirac fermions in a two-dimensional space werdermions.
investigated by several groups [6—12]. Possible appear- There are several subtleties for the massless Dirac
ance of nonlocalized states, critical states, in randonfermions. When the Fermi energy lies at zero energy,
Dirac fermions was pointed out in [7]. Recently, this that is, all the negative energy eigenstates are filled, the
disordered critical state was realized in a lattice modelHall conductivity o, is ill defined. An infinitesimal
where it was crucial to preserve a symmetry denoted bynass determines the,, in the continuum theory [13]. A
{H,v} = 0 with a4 X 4 matrix y in an effective field similar phenomenon also occurs in a lattice model where
theory [8] (see below). an infinitesimal next-nearest-neighbor hoppingpens a

In this paper, we study the random Dirac fermionsgap and theo,, is given by'/|¢'| [3]. Therefore the
numerically beyond the zero-energy states. In order tenassless Dirac fermions are at a quantum phase-transition
realize the massless Dirac fermions on a two-dimensiongdoint between different quantum Hall states.
lattice, we use a tight-binding model on a square lattice Let us consider the effect of randomness in the hopping
with half a flux quantum (¢ flux”) per plaquette, which matrix elements. We set,;; = (=) + &t;1;; and

is described by the Hamiltonian ti+s; = 1 + Otj45j, wheredt;.;; and dt;+5 ; are ran-
_ t dom variables and taken at random with constant proba-
Hywe = D¢ tije; + He., (1) bility from [—W, W]. As discussed below, we focus on

)
where the summation<ié over the nearest-neighbor bond e role of the symmetry d‘?”"ted W{ 7} = 0. There-

The hopping matrix elements are giveny; ; — (—1)h ore we do not consider diagonal dlsorder,_whlch breaks
and 45, = 1, wherej = (jy, jy), & = (170’)1 and § = the symmetry. It should be noted that this model pre-
0, 1). in the momentum space, the Hamiltonian is rewrit-S€"V€S the time-reversal symmetry and belongs to the
ten as orthogonal ense.mble. A_nother. example of t.he orthogo-
+/cosk, cosk nal ensemble, Dirac fermions with diagonal disorder, was

Hpue = 2lek<cosk} B cos)l; >¢k, studied in [9,10] and it was suggested that all the eigen-

ko ¥ YO states localize, which is consistent with the scaling theory

where the summation |sTover tpe magnetic Brillouin zoneyt the Anderson localization [14]. In the case of the
—m,m) X [0,7) and ¢ = (c 4, Ck.k,+x)- There  random-hopping model, however, it was found that the
are two energy bands(k) = iz%/co§ k. + co$k, on  Zero-energy states do not localize but become critical [8].
the magnetic Brillouin zone. They touch at two mo-A Similar phenomenon was found at the band center of
mentak! = (k},k}l,) — (w/2,7/2) andk? = (k%,kf,) — the quantum Hgll states [15]. In the quantum Hall states,
(—7/2,m/2). Near the degeneraciek’ (i = 1,2), however, the tlme—reve_rsal symmetry is broken and th_e
they behave ast(k) ~ +2\/(k k)2 + (ky — k)2 system belongs to a dnfferent unlv_ersallty class, the uni-
- x x Y y tary ensemble. In [8], it was confirmed that parameters

(i =1,2). Define continuum variables¥f(x,y) =  for the critical states form a critical line in the parame-
(wf(x,y), c,//;r(x,y), gb;(x,y), c,//}(x,y)) by ¢j ~aX ter space of the Hamiltonian, which is connected to pure
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massless Dirac fermions at zero energy. We consider that T T T
the stability of the zero-energy states against random hop-
ping matrix elements is due to a symmetry of our Hamil-

- - - £ p(E) < |E|
tonian. The random hopping matrix elements preserve
the symmetry in contrast to the diagonal disorder. In e W=1.0, 0=0.39 K
the language of the lattice Hamiltonian (1), the symmetry W=09, °°=0-55\:

W=0.8, 0=0.74

means that the transformatian — (—1)/**/¢; induces
W=0.7, 0=0.90

a sign change of the Hamiltonian. Thus the eigenstates
always appear in pairs with energié&sand —E. The
corresponding transformation in the continuum Hamilton-
ian is given byg—[pure - 'yfg-[pure'y = _j_[pure’ where

v = o1 ® o;. Since the random hopping matrix ele-
ments preserve the symmetry, the continuum Hamil-
tonian H for the random-hopping model also satisfies
{H,y}=Hy + yH =0. Thus, taking the lowest
order in derivatives, we obtain the following form as a
possible Hamiltonian for the effective field theory

4
H = Hye + Y. [ dxav 0y v, @
i=1

T T T T T T T T T T T T T T T T T T

Whereyl =0,01, ,y2 = 0] ® 0y, ’)’3 = —0, ® 0y, 060  -040 020 00 020 040 060
y*=1® 0y, and a;(x,y) (i =1,...,4) are random E
variables. . . . .

In this paper, we study random Dirac fermions numeri-gli' 01_ bz)TCV%SfeT'Z 28?2&6‘;5{,(2 %W;t,ho_sg? *g_'gf“;‘,ﬁ;”f‘_ By_ p\%é
cally beyond the zero-energy states. We diagonalize thgave fitted the data by the power-law forp(E) = CE*™),
Hamiltonian for finite squares of size& = 202, 302, 40>,  where a(W) = 0.90, 0.74, 0.55, and 0.39 fow = 0.7, 0.8,
and 502. Here we note that the symmetry discussed-9. and 1.0, respectively.
above reduces the dimension of the Hilbert space for the
numerical diagonalization, which is half of the system sizedefined byg(E) = V(E)/A(E), whereV(E) is an energy
To obtain reliable statistics, an ensemble average oveshift obtained by replacing the periodic boundary condi-
16 000, 16 000, 8000, and3360 realizations is performed, tion by an antiperiodic boundary condition andE) is a

respectively. The observables are density of statéy, local mean level spacing near the eneigy Numerical

the Thouless number(E), and the level-spacing distribu- results for theg(E) are shown in Fig. 2 with. = 30, 40,

tion P(s). and 50, where an ensemble average is performed within an
Let us first discuss the density of stateg§E) =  energy window whose center is located at each data point.

>.8(E — E;)/L>. When there is no randomness, theRapid enhancement of thgE) near zero energy is ob-
p(E) vanishes linearly at zero energy. Recently, whetheserved in Fig. 2. It suggests that the localization length
the density of states is finite or not at zero energy forgrows rapidly near zero energy. This is consistent with
random Dirac fermions is controversial [11,12]. Wethe existence of critical states at zero energy. One may
note that, although random Dirac fermions are alsaconsider that the zero-energy states are just on the criti-
studied in [11,12], the symmetry of disorder is differentcal point. Then one of the possible scenarios is that the
from ours. Since the symmetry is crucial in the long-non-zero-energy eigenstates are all off critical and there-
distance behavior of wave functions, it is possible thafore localized. It suggests an exponential dependence of
our system belongs to a different universality class fronthe Thouless numbef(E, L). The g(E, L) obtained nu-
random Dirac fermions studied in [11,12]. ThdE)'s  merically decreases when the system size increases. ltis,
for different strengths of randomness are shown in Fig. lhowever, far from the exponential dependence. In Fig. 2,
We obtained thep(E)'s for L = 30, 40, and 50. In we have plotted thg(E, L) as a function ofl /L. It sug-
Fig. 1, however, we show only results far= 50, since  gests a power-law forng(E,L) « 1/LY rather than an
the finite-size effect inp(E) is small. We have fitted exponential formg(E, L) « exp(—L/£). Although we
the data by the power-law form(E) = CE“"W). Our  cannot exclude the possible existence of critical states in a
results support, within the limitations imposed by finite- finite energy region, we consider that the non-zero-energy
size effects neaF = 0, the vanishing density of states states may be localized in an infinite-size system and a
at zero energy with an anomalous expone(®), which  crossover from the power-law form to an exponential form
depends on strength of the randomness. occurs when the system size increases beyond the locali-
Next, in order to reveal the nature of the eigenstateszation length. The localization length of the eigenstates
let us consider the Thouless numhgiE). The g(E) is  near zero energy may be large compared to the available
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FIG. 2. (a) The Thouless numbgfE), whereW = 1.0 and
L = 30, 40, and 50. (b)I/L — g(E,L) plot for W = 1.0,

E = 0.30, 0.42, 0.50, 0.62, and 0.70.

system sizes and we may say that the power-law depe
dence of the (E, L) is a critical slowing down in the avail-

We have also obtained the level-spacing distribution
P(s). The P(s)'s of the normalized energy separation
s = |E, — E,+1|/A(E,) are shown in Fig. 3, wherg,
and E,+; are two successive eigenenergies. In general,
the P(s) is well described by the Wigner surmigds) =
AsP exp(—Bs?) in the metallic regime and becomes the
Poissonian P(s) = exp(—s) in the insulating regime.
The parameterg in the Wigner surmise reflects the
symmetry of the Hamiltonian an@ = 1, 2, and 4 for
the orthogonal ensemble, the unitary ensemble, and the
symplectic ensemble, respectively. The parameteand
B are determined byf, ds P(s) = 1 and [, ds sP(s) =
1 and, in particular,A = 7 /2 and B = # /4 for the
orthogonal ensemble. The(s) characterizes the nature
of the eigenstates. States localized in different spatial
regions are allowed to lie at the same energy. It means
that the energy levels of the localized states distribute
independently, which is described by the Poissonian.
On the other hand, in metals where the eigenstates are
extended, two adjacent energy levels interact strongly,
which brings strong energy repulsion aR¢s) ~ s# near
s = 0, where 8 is determined by the symmetry of the
Hamiltonian. TheP(s) is well explained by a2 X 2
random matrix model, which is the Wigner surmise.
Level statistics near the mobility edge has been studied
recently and the appearance of critical level statistics is
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FIG. 3. The level spacing distributioA(s) near zero energy,
where L = 50, W = 1.0 and ensemble average is performed
vithin an energy window{0.1,0.5]. We confirmed that the

Inite-size effect is small, comparing the results for= 50 with
those forL = 20, 30, and 40. There is no substantial difference

able finite-size system. This also suggests the existence gétween results with energy window 1,0.3], [0.2,0.4], and

the critical state at zero energy.
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discussed [16]. Several numerical studies on level statiss global renormalization-group flow for random Dirac
tics near the mobility edge were performed for, e.g., thdermions is an interesting problem in relation to the
three-dimensional Anderson model [17] and the band cerguantum Hall effect.

ter of the quantum Hall states [18], which belong to the or- We are grateful to X.G. Wen, M.H. Hettler, K.
thogonal ensemble and the unitary ensemble, respectivelgjegler, and P. J. Hirschfeld for valuable communications.
and it was found that thé®(s)’s deviate from both the Y.H. was supported in part by Grant-in-Aid from the
Wigner surmise and the Poissonian. They exhibit criticaMinistry of Education, Science and Culture of Japan. The
behavior, i.e., thé(s)'s do follow the Wigner surmise for computation in this work was done using the facilities of
small s and they then deviate from it at higher values ofthe Supercomputer Center, ISSP, University of Tokyo.

s and show stretched exponential decay. PHe)’s near

zero energy for our model are shown in Fig. 3, where

the energy window is s¢.1,0.5] [19]. The location of

the energy window is set sufficiently close to zero energy
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