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Recently the existence of a random critical line in two-dimensional Dirac fermions was confirmed. In this
paper, we focus on its scaling properties, especially in the critical region. We treat Dirac fermions in two
dimensions with two types of randomness, a random site~RS! model and a random hopping~RH! model. The
RS model belongs to the usual orthogonal class and all states are localized. For the RH model, there is an
additional symmetry expressed by$H,g%50. Therefore, although all nonzero energy states localize, the lo-
calization length diverges at the zero energy. In the weak localization region, the generalized Ohm’s law in
fractional dimensions,d* (,2), has been observed for the RH model.@S0163-1829~98!03635-2#
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The study of quantum phase transitions driven by r
domness has a long history. In 1958, Anderson discussed
absence of diffusion in random systems.1 In 1979, scaling
arguments by Thoulesset al.2 were further developed.3 The
dimensionless conductanceg(L) is treated as the only sca
ing parameter, whereL is the linear system size. When th
randomness is weak (g@1), the metallic behavior of the
d-dimensional system impliesg(L)5sLd22 with conductiv-
ity s ~‘‘the Ohm’s law’’!. On the other hand, when the ra
domness is strong (g!1), the wave function is exponen
tially localized, which brings g5g0 exp(2L/j). In the
scaling argument, the beta functionb5d ln g/d ln L5b(g)
plays a central role. In the above two asymptotic limits,
explicit forms are given byb(g)5(d22)1c1 /g1O(1/g2)
(g@1) andb(g)5 ln(g/g0) (g!1). It means that all state
are localized and the quantum phase transition is abse
one and two dimensions. However, random critical poi
can appear in two dimensions and much effort has been
voted to the study. One of the cases is quantum Hall syst
where the time-reversal symmetry is broken and they bel
to the unitary class.4 In spite of the experimental and theo
retical implications, since it is beyond the weak-coupling
gime, it is still difficult to understand the critical phenomen
In this paper, another example of the random criticality
two dimensions, which has been discovered recently, is s
ied in detail. The properties on the critical point (E50) have
been studied intensively.5 Here the scaling properties and th
weak localization effect are studied in a critical regi
(uEu*0). This is a quantum critical phenomena near
random critical line. It brings a novel weak localization e
fect ~‘‘Ohm’s law in fractional dimensions’’!.

Recently, the possible existence of a random critical l
in two dimensions was suggested6 and Dirac fermions with
link-type randomness in two dimensions were stud
numerically.7,8 The random Dirac fermions were realized o
a square lattice by thep-flux model9 with random hopping.
Our model preserves the time-reversal symmetry and
longs to the orthogonal class. The zero-energy states do
localize but become critical, which can be a prototype
critical states in two dimensions. The density of states
;uEu without randomness, and becomes;uEua in the pres-
ence of randomness. The singularity is closely related to
appearance of critical states. Similar phenomena were fo
in different models,10,11 where the density of states has
singularity and nonlocalized states appear in two dimensio
PRB 580163-1829/98/58~11!/6680~4!/$15.00
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The exponenta changes with strength of the randomness
implies the existence of the random critical line, which
comparable with other critical lines as the Tomonag
Luttinger liquid in one-dimensional quantum systems. T
stability of the zero-energy states against the random h
ping is due to an additional symmetry of the Hamiltonia
The random hopping preserves the symmetry in contras
the site-type randomness. This symmetry appears as a
change of the Hamiltonian under the transformationcj→
(21) j x1 j ycj . The corresponding symmetry in an effectiv
field theory is denoted by$H,g%50 with a 434 matrixg.7,8

One of the possible scenarios proposed in Ref. 8 is tha
nonzero energy states are localized and the zero-en
states are just on the critical point. Unfortunately, since
localization length near the zero energy is very large a
beyond numerically available system sizes, no direct ar
ment has ever been given for the scenario. In this paper
treat Dirac fermions with two types of randomness in t
light of the scaling. Support for the above scenario is giv
and weak localization effect near the random criticality
discussed.

We study Dirac fermions with two types of random
ness: ~i! random site~RS! model and~ii ! random hopping
~RH! model. The Hamiltonian is given by

H5 (
i 5 j 6~1,0!

~21! j yci
†t i j cj1 (

i 5 j 6~0,1!
ci

†t i j cj1(
i

ci
†Vici

~1!

with ~i! RS model:t i j 51, Vi5R(W1) and ~ii ! RH model:
t i j 5t j i 511R(W2), Vi50, whereR(W)’s are uniform ran-
dom numbers between@2W,W#. Although we present data
with W152.3 andW251.0, the qualitative feature does n
depend on the strength of randomness apart from finite-
effects.

In the absence of randomness, i.e.,t i j 51 andVi50, the
model is a tight-binding model with half a flux~‘‘ p flux’’ !
per plaquette.9 There are two energy bands on the magne
Brillouin zone @2p,p)3@0,p), which touch at two mo-
menta. Near the two momentak i ( i 51,2), where the energy
gap closes, the low-lying excitations are described by ma
less Dirac fermions in two dimensions. The effective Ham
tonian is given byHpure52i *dxC†(x)[(s3^ s1)]x1(I
6680 © 1998 The American Physical Society
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^s3!]y#C~x!, where C~x! is a four-component spinor
When the Fermi energy lies at zero energy, that is, all
negative-energy eigenstates are filled, the Hall conducti
sxy is ill defined. The sign of mass determines thesxy in the
continuum theory.12–14There is also the following subtlety in
the tight-binding model with half a flux~‘‘ p flux’’ ! per
plaquette and the next-nearest-neighbor hoppingt8.15 The
sxy is given byt8/ut8u and, whent850, the system is on the
transition point between states with different quantum H
conductivity. It implies that the zero mode carries nonze
Hall conductivity.

Here we briefly review some properties of the above t
random systems. The effective field theory of the RS mo
was discussed by mapping to the nonlinears model.16 It
predicts the localization of all states and finite density
states at zero energy. Recently, the question of whether
density of states at the zero energy is finite or not for rand
Dirac fermions has been controversial.17,18 A similar model
to the RS model with dilute and strong impurities~unitary
limit ! was also discussed and consistent results with the
fective field theory were obtained.19,20 All those results sug-
gest that the RS model belongs to the usual orthogonal c
and standard scaling arguments of the Anderson localizat3

seem to be valid for the RS model. On the other hand, in
case of the RH model, nonlocalized states were discovere
zero energy7 and the density of states vanishes at the z
energy as;uEua.8 It is not only a critical point but also
forms a random critical line, since the exponenta changes
with the strength of randomness. In Ref. 6, the appearanc
negativea was suggested for sufficiently strong randomne
However, even for strong randomnessW/t51.0, the expo-
nent is still positive and the negativea was not observed.8

Our model may be a part of the ‘‘longer’’ critical line. Thi
is analogous to the massless phase of spinless fermions
nearest-neighbor interactions, which is a part of the criti
line called the Tomonaga-Luttinger liquid. It may be possib
to construct models with negativea based on our model.21

Divergence of the localization length near the zero ene
was also suggested numerically. It is not allowed in a st
dard scenario of the two-dimensional Anderson localizati

Let us first discuss the density of statesr(E)
5^1/L2( id(E2Ei)&. We diagonalize the Hamiltonian o
the RS model for finite squares of sizeL25302, 402, and 502

and ensemble average over 10 000, 5000, and 3360 rea
tions is performed, respectively. The finite size effect
small for the density of states and only the result forL2

5502 is shown in Fig. 1. The result for the RH model is al
shown for comparison.8 Finite density of states at zero en
ergy is created for the RS model,r(E50)Þ0. It is in con-
trast to the RH model, where the density of states vanishe
;uEua, r(E50)50. The difference may be related to th
presence of random criticality in the RH model, which w
be discussed later.

Next let us discuss scaling properties of the Thoul
numberg(E)5V(E)/D(E), whereV(E) is an energy shift
obtained by replacing periodic boundary condition with a
tiperiodic boundary condition in one direction andD(E) is a
local mean level spacing near the energyE. The Thouless
numberg(E) tells us how the wave function is extended
the space.
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Numerical results for theg(E) are shown in Fig. 2. They
are shown forL25502 and an average within an energy win
dow is also performed together with the ensemble avera
The results suggest that, in both cases, the localization le
grows near the zero energy. The difference is that the gro
is ‘‘singular’’ for the RH model, which is related to the pres
ence of random criticality in the RH model. Although th
difference is clear between the RS model and the RH mo
it is crucial to apply scaling arguments to obtain defin
results, which will be given below.

In the following, we assumeg5g(L,E,W)5F@y
5L/j(E,W)# with the localization lengthj, which means

FIG. 1. Density of states for the RS model~black! and the RH
model ~white!, where W152.3, W251.0, andL25502. A finite
width d50.02 is given to the delta functions, although the resu
do not seriously depend on the small change ofd. The line is a
guide for the eyes; it is;uEu0.39.

FIG. 2. The Thouless numberg(E,L) for the RS model~black!
and the RH model~white!, where W152.3, W251.0, and L2

5502.
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g(L,E,W)’s with different L andE are on a single smooth
curveg5F(y) using the localization lengthj(E,W) ~scaling
hypothesis!.3,22 We assume a functional form of thej as

j~E,W!5uEub~W!j̄~ uEu,W! ~2!

with a smooth functionj̄(e,W)511j1(W)e1¯ . Thejn’s
are chosen so thatg(L,E,W)’s with differentL andE are on
a single smooth curveg5F(y). Here the localization length
j(E,W) is introduced to define a dimensionless parame
y@5L/j(E,W)# and is determined by the scaling hypothes
It is related to the usual localization lengthj loc(E,W) of the
exponentially localized wave function uc(x,E,W)u
;exp„2ux2x0u/j loc(E,W)… as j loc(E,W)5c(W)j(E,W).
Fitting our numerical results, we obtain

b50 for the RS model ~Fig. 3!,

b520.75 for the RH model ~Fig. 4!,

whereW152.3 for the RS model andW251.0 for the RH
model. This implies that~i! RS model: all states are loca
ized, and~ii ! RH model: all nonzero energy states are loc
ized with the localization lengthj(E,W), which is diverging
as E→0, and the zero-energy states are just on a crit
point.

Let us discuss the above results in the light of the scal
Assume that theb function for the Thouless numberg obeys
the scaling form, i.e.,b5d ln g/d ln L5b(g). For an almost
metallic state, i.e.,g@1, we expect thatD(E);1/Ld and
V(E);1/L2 due to the level repulsion@note that V(E)
;1/L for pure systems, since there is no level repulsio#.

FIG. 3. Scaling functionF and the localization lengthj(E) for
the RS model. The data areg(E,L) near zero energy withW1

52.3, L530, 40, and 50, and different symbols correspond to d
ferent L ’s. The localization lengthj(E) is j(E)/uEub5110.057e
20.78e220.32e310.51e4, where b50 and e5uEu. The scaling
function is F(y)5 ln(y/230)(20.1220.000 60y10.000 003 2y2).
The curve beyond the data points is a guide for the eyes.
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Thereforeg;Ld22 andb(g)5(d22)1c1 /g1O(1/g2) for
large g. In particular, ford52, b(g)5c1 /g1O(1/g2) and
g; ln(L/j) for largeg. We confirmed that the results of th
RS model can be fitted to this form, which is consistent w
usual scaling arguments of the Anderson localization3 ~see
Fig. 3!. On the other hand, although states near zero ene
in the RH model are localized in the thermodynamic lim
they behave as critical states due to the large localiza
length beyond the available system size. Then we can ex
the g behaves as;(L/j)g (g,0) for the available system
size. The results for the RH model are consistent with t
discussion~see Fig. 4!. Note that, sinceg;exp(2L/j) for
largeL/j, there is a correction inL/j to the above expres
sion, which is assumed to beg5(L/j)g(g01g1L/j1¯).
We obtained good agreement with this consideration for
RH model.

Here we define an anomalous dimensiond* as

d* 5 lim
g→`

b~g!125g12,2 ~3!

for states in a critical region in two dimensions. It meansg

.sLd* 22 in the weak localization regime (g@1). This is a
generalized Ohm’s law in fractional dimensions between
and 2. For example, we obtaind* .1.8 in the RH model
with W251.0. The emergence of this anomalous dimens
d* may be due to the multifractal nature of the zero-ene
wave function in the RH model.7

Y.H. was supported in part by a Grant-in-Aid from th
Ministry of Education, Science and Culture of Japan and a
by the Kawakami Memorial Foundation. The computation
this work has been done using the facilities of the Superco
puter Center, ISSP, University of Tokyo.
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FIG. 4. Scaling functionF and the localization lengthj(E) for
the RH model. The data areg(E,L) near the zero energy withW2

51.0, L530, 40, and 50, and different symbols correspond to d
ferent L ’s. j(E)/uEub5110.47e20.0057e210.20e320.10e4,
where b520.75 and e5uEu. The scaling function isF(y)
5y20.15(0.4420.0097y10.000 085y2). The curve beyond the dat
points is a guide for the eyes.
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