i
Tsukuba Library

Scaling near random criticality in
two-dimensional Dirac fermions

00 Morita Y., Hatsugai Y.

journal or Physical review B

publication title

volume 58

number 11

page range 6680-6683

year 1998-09

0ad (C) 1998 The American Physical Society
URL http://hdl.handle.net/2241/100842

doi: 10.1103/PhysRevB.58.6680




PHYSICAL REVIEW B VOLUME 58, NUMBER 11 15 SEPTEMBER 1998-I

Scaling near random criticality in two-dimensional Dirac fermions

Y. Morita and Y. Hatsugai
Department of Applied Physics, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113, Japan
(Received 29 May 1998

Recently the existence of a random critical line in two-dimensional Dirac fermions was confirmed. In this
paper, we focus on its scaling properties, especially in the critical region. We treat Dirac fermions in two
dimensions with two types of randomness, a random(Bif® model and a random hoppirfgH) model. The
RS model belongs to the usual orthogonal class and all states are localized. For the RH model, there is an
additional symmetry expressed b¥(,y}=0. Therefore, although all nonzero energy states localize, the lo-
calization length diverges at the zero energy. In the weak localization region, the generalized Ohm’s law in
fractional dimensionsj* (<2), has been observed for the RH mod&0163-18208)03635-2

The study of quantum phase transitions driven by ranThe exponent changes with strength of the randomness. It
domness has a long history. In 1958, Anderson discussed thmplies the existence of the random critical line, which is
absence of diffusion in random syste?'nEn 1979, scaling comparable with other critical lines as the Tomonaga-
arguments by Thoulesat al? were further developetiThe  Luttinger liquid in one-dimensional quantum systems. The
dimensionless conductangél) is treated as the only scal- stability of the zero-energy states against the random hop-
ing parameter, wherk is the linear system size. When the ping is due to an additional symmetry of the Hamiltonian.
randomness is weakg&1), the metallic behavior of the The random hopping preserves the symmetry in contrast to
d-dimensional system implieg(L) = oL.9~ 2 with conductiv-  the site-type randomness. This symmetry appears as a sign
ity o (“the Ohm’s law”). On the other hand, when the ran- change of the Hamiltonian under the transformatgmn-
domness is stronggi1), the wave function is exponen- (—1)’x"lvc;. The corresponding symmetry in an effective
tially localized, which bringsg=g, exp(~L/&). In the field theory is denoted biH, y} =0 with a 4x 4 matrix y."®
scaling argument, the beta functigh=d Ing/dIn L=8(g)  One of the possible scenarios proposed in Ref. 8 is that all
plays a central role. In the above two asymptotic limits, thenonzero energy states are localized and the zero-energy
explicit forms are given by3(g)=(d—2)+c,/g+0O(1/g?) states are just on the critical point. Unfortunately, since the
(g>1) andB(g)=In(g/go) (g<<1). It means that all states localization length near the zero energy is very large and
are localized and the quantum phase transition is absent #eyond numerically available system sizes, no direct argu-
one and two dimensions. However, random critical pointsnent has ever been given for the scenario. In this paper, we
can appear in two dimensions and much effort has been déteat Dirac fermions with two types of randomness in the
voted to the study. One of the cases is quantum Hall systenfight of the scaling. Support for the above scenario is given
where the time-reversal symmetry is broken and they belongnd weak localization effect near the random criticality is
to the unitary clas$.In spite of the experimental and theo- discussed.
retical implications, since it is beyond the weak-coupling re- We study Dirac fermions with two types of random-
gime, it is still difficult to understand the critical phenomena.ness: (i) random site(RS) model and(ii) random hopping
In this paper, another example of the random criticality in(RH) model. The Hamiltonian is given by
two dimensions, which has been discovered recently, is stud-
ied in detail. The propel%es on the critical poifg£€0) have
been studied intensiveRHere the scaling properties and the |, oy + +
weak localization effect are studied in a critical region ' %y (=D tiJCJ“Li:gZO’D Citiici+§i: CiVici
(JE|=0). This is a quantum critical phenomena near the (1)
random critical line. It brings a novel weak localization ef-
fect (“Ohm’s law in fractional dimensions).

Recently, the possible existence of a random critical linewith (i) RS model:tjj=1, V;=R(W,) and (ii) RH model:
in two dimensions was suggesteahd Dirac fermions with  tj;=t;;=1+R(W,), V;=0, whereR(W)’s are uniform ran-
link-type randomness in two dimensions were studieddom numbers betwedgn-W,W]. Although we present data
numerically’® The random Dirac fermions were realized on with W;=2.3 andW,=1.0, the qualitative feature does not
a square lattice by the-flux modef with random hopping. depend on the strength of randomness apart from finite-size
Our model preserves the time-reversal symmetry and besffects.
longs to the orthogonal class. The zero-energy states do not In the absence of randomness, itg.=1 andV;=0, the
localize but become critical, which can be a prototype ofmodel is a tight-binding model with half a fluX  flux™)
critical states in two dimensions. The density of states igper plaquetté. There are two energy bands on the magnetic
~|E| without randomness, and become$E|“ in the pres-  Brillouin zone [ —ar, ) X[0,7r), which touch at two mo-
ence of randomness. The singularity is closely related to thenenta. Near the two momenka (i = 1,2), where the energy
appearance of critical states. Similar phenomena were foungap closes, the low-lying excitations are described by mass-
in different models?!! where the density of states has aless Dirac fermions in two dimensions. The effective Hamil-
singularity and nonlocalized states appear in two dimensiongonian is given byHpure=2i[dx¥ T (X)[(03®c1)dx+ (I
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®a3)oy|¥(x), where ¥(x) is a four-component spinor.
When the Fermi energy lies at zero energy, that is, all the
negative-energy eigenstates are filled, the Hall conductivity
oyy is ill defined. The sign of mass determines thg in the
continuum theory?~'*There is also the following subtlety in
the tight-binding model with half a flux* 7 flux”) per
plaquette and the next-nearest-neighbor hopgind® The
oy is given byt'/|t’| and, whert’ =0, the system is on the
transition point between states with different quantum Hall
conductivity. It implies that the zero mode carries nonzero
Hall conductivity.

Here we briefly review some properties of the above two
random systems. The effective field theory of the RS model
was discussed by mapping to the nonlineamodel® It
predicts the localization of all states and finite density of
states at zero energy. Recently, the question of whether the

p(E)

density of states at the zero energy is finite or not for random 2.0 -1.5 -1.0 -0.50 0.0 0.50 1.0 1.5 2.0
Dirac fermions has been controversial® A similar model
to the RS model with dilute and strong impuritiasnitary E

limit) was also discussed and consistent results with the ef- i 1 pensity of states for the RS modélack and the RH
fective field theory were obtainéd?° All those results sug- model (white), where W, =2.3, W,=1.0, andL2=50. A finite
gest that the RS model belongs to the usual orthogonal clasgdth 5=0.02 is given to the delta functions, although the results
and standard scaling arguments of the Anderson localiZationlo not seriously depend on the small changesofhe line is a
seem to be valid for the RS model. On the other hand, in thguide for the eyes; it is-|E|*.

case of the RH model, nonlocalized states were discovered at

zero energy and the density of states vanishes at the zero Numerical rgsults for thg(E) are shown in Fig. 2. They
energy as~|E|.8 It is not only a critical point but also 2re shown fot.>=50? and an average within an energy win-

forms a random critical line, since the exponenthanges dow is also performed together with the ensemble average.

with the strength of randomness. In Ref. 6, the appearance dihe results suggest that, in both cases, the localization length

negativea was suggested for sufficiently strong randomnessd"OWs near the zero energy. The difference is that the growth
However, even for strong randomnedét=1.0, the expo- Is “singular” for the RH model, which is related to the pres-

nent is still positive and the negative was not observel, ©€nce of random criticality in the RH model. Although the
Our model may be a part of the “longer” critical line. This difference is clear between the RS model and the RH model,

is analogous to the massless phase of spinless fermions with'S cruua! to a}pply s'callng arguments to obtain definite
nearest-neighbor interactions, which is a part of the critical€Sults, which W'”,be given below.
line called the Tomonaga-Luttinger liquid. It may be possible N the following, we assumeg=g(L,E,W)=F[y
to construct models with negative based on our moddt. ~ =L/&(E,W)] with the localization lengtr€, which means
Divergence of the localization length near the zero energy 0.35
was also suggested numerically. It is not allowed in a stan- [
dard scenario of the two-dimensional Anderson localization.
Let us first discuss the density of states(E)
=(1/L%2%,8(E—E;)). We diagonalize the Hamiltonian of !
the RS model for finite squares of sizé=30?, 4%, and 56 0.25 |
and ensemble average over 10 000, 5000, and 3360 realiz: i
tions is performed, respectively. The finite size effect is __ =~ 45|
small for the density of states and only the result f5r LU [
=50 is shown in Fig. 1. The result for the RH model is also ‘5.,
shown for comparisof\.Finite density of states at zero en-
ergy is created for the RS mod@l(E=0)+#0. It is in con- -
trast to the RH model, where the density of states vanishes a 0.1}
~|E|%, p(E=0)=0. The difference may be related to the i
presence of random criticality in the RH model, which will 0.05 F
be discussed later. [
Next let us discuss scaling properties of the Thouless ok
numberg(E)=V(E)/A(E), whereV(E) is an energy shift -4.0
obtained by replacing periodic boundary condition with an-
tiperiodic boundary condition in one direction andE) is a
local mean level spacing near the enefgy The Thouless FIG. 2. The Thouless numbe(E,L) for the RS mode(black
numberg(E) tells us how the wave function is extended in and the RH modelwhite), where W;=2.3, W,=1.0, andL?
the space. =50

0.3 fF
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FIG. 3. Scaling functiorF and the localization lengt&(E) for
the RS model. The data ag(E,L) near zero energy withW;
=2.3,L=30, 40, and 50, and different symbols correspond to dif-
ferentL’s. The localization lengtlé(E) is £(E)/|E|#=1+0.057
—0.782—-0.323+0.51¢*, where 3=0 and e=|E|. The scaling
function is F(y)=In(y/230)(—0.12—0.000 6§+ 0.000 003 2?).
The curve beyond the data points is a guide for the eyes.
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o(L,E,W)’s with differentL andE are on a single smooth
curveg=F(y) using the localization length(E,W) (scaling
hypothesis®%? We assume a functional form of theas
EE,W)=|E[PW&(E|,W) )
with a smooth functiorf(e,W) =1+ & (W)e+--- . Theg,’s
are chosen so that(L,E,W)'s with differentL andE are on
a single smooth curvg=F(y). Here the localization length
&(E,W) is introduced to define a dimensionless paramete
y[ =L/&(E,W)] and is determined by the scaling hypothesis.
It is related to the usual localization lengih(E,W) of the
exponentially localized wave function | (x,E,W)|

~exp(—[X—Xol|/&o(E,W)) @S €0 E, W) =Cc(W)E(E,W).

Fitting our numerical results, we obtain

B=0 for the RS model (Fig. 3),

B=—0.75 for the RH model (Fig. 4),

whereW;=2.3 for the RS model anw/,=1.0 for the RH
model. This implies thafi) RS model: all states are local-
ized, and(ii) RH model: all nonzero energy states are local-
ized with the localization lengthi(E,W), which is diverging

as E—0, and the zero-energy states are just on a criticajj«

point.
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FIG. 4. Scaling functiorF and the localization lengt§(E) for
the RH model. The data ag{E,L) near the zero energy wit/,
=1.0,L=30, 40, and 50, and different symbols correspond to dif-
ferent L’s. &(E)/|E|#=1+0.47e—0.005%%+0.20e>— 0.10*,
where 8=—0.75 and e=|E|. The scaling function isF(y)
=y~ 091%0.44-0.009%+0.000 0852). The curve beyond the data
points is a guide for the eyes.

Thereforeg~L9"2 and B(g) = (d—2)+c,/g+ O(1/g?) for
largeg. In particular, ford=2, 8(g)=c,/g+0O(1/g?) and
g~In(L/¢) for largeg. We confirmed that the results of the
RS model can be fitted to this form, which is consistent with
usual scaling arguments of the Anderson localizatiee
Fig. 3. On the other hand, although states near zero energy
in the RH model are localized in the thermodynamic limit,
they behave as critical states due to the large localization
length beyond the available system size. Then we can expect
the g behaves as-(L/£)? (y<0) for the available system
Size. The results for the RH model are consistent with this
discussion(see Fig. 4. Note that, sinceg~exp(—L/¢§) for
large L/, there is a correction ih/& to the above expres-
sion, which is assumed to tee=(L/£)?(go+g4L/E+--+).
We obtained good agreement with this consideration for the
RH model.

Here we define an anomalous dimens@inas

d*=lim B(g)+2=y+2<2

gHOO

()

for states in a critical region in two dimensions. It means

~ L% =2 in the weak localization regimege1). This is a
generalized Ohm'’s law in fractional dimensions between 1
and 2. For example, we obtaif*=1.8 in the RH model
with W,=1.0. The emergence of this anomalous dimension
may be due to the multifractal nature of the zero-energy
wave function in the RH modél.

Let us discuss the above results in the light of the scaling.

Assume that thg8 function for the Thouless numbgrobeys
the scaling form, i.e.8=d In g/d In L=g(g). For an almost
metallic state, i.e.g>1, we expect that\(E)~1/L% and
V(E)~1/L? due to the level repulsiofinote thatV(E)
~1/L for pure systems, since there is no level repulion
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