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We generalize the model of Hatsugai and Kohmoto and find ground states which do not show the properties
of Fermi liquids. We work in two space dimensions, but it is straightforward to generalize to higher dimen-
sions. The ground state is highly degenerate and there is no discontinuity in the momentum distribution; i.e.,
there is no Fermi surface. The Green’s function generically has a brandf86163-18208)11303-4

Since the discovery of higl; superconductivity, 1
strongly correlated electron systems have been intensely H=; e(k)ne+ WE fik NNk, ()
studied, both experimentally and theoretically. Much atten- kK’

tion has been given to two-dimensional models, because the . .
high-T. cuprates have a layered structure. One of the mosv(vherev s the volume of the system. The summations are
studied models is the Hubbard model, but many fundamentéﬁken over &|k|<|50’ wherek, repr_ese_nts the short-range
guestions have not yet been answered. A special version .tOﬁ' It Is interesting tp note Fhat M IS repla_ced by.the .
the model, in the limit that the space dimensionality goes tcg!ﬁ‘erence between the interacting and the noninteracting dis-

infinity, has recently been studiédThere are attempts to tributions, the.interaction.e'ne.rgy of E@) has a resem-
y y b lance to that in the Fermi-liquid theory. In fact, Khodel and

compare the results with experimental data, in spite of tht%h varl. starting. f the Fermi-liauid i
fact that real materials have at most three dimensions. Simi2'ad!nyarn, starling from the =ermi-liquid equation, pro-

larly, a simple exactly solvable model which describes osed the existence of “fermio_n condensati_on_” which gives
metal-insulator transition, and has an altered ground-sta rge degeneracy at the Fermi surface. Within the Hartree-

momentum distribution, was proposed.Like the ock treatment, Nozier@sriticized such phenomenotSee
Sherrington-Kirkpatrick model of a spin gladthe interpar- 2150 Ref. 9. The highly degenerate ground state of our

ticle interaction is independent of distance. The HamiltoniaHﬂOdel_ looks similar to t_he ferm'.o'_“ condeljsanon. How-
: ever, in our case there is no definite Fermi surface and the

'S model is exactly solvable, so Nozieres’ critique does not ap-
ply.
H= zk Hi, In the thermodynamic limit/— o, the interaction term in
Eqg. (2) can be written
Hi=e(k) (i +ng ) +Ungng (1)
wheren,,= cl(,ck(,. This gives non-Fermi-liquid behavior in f(k,k')=(2m)2U(K) (k- kr)g(¢) ®)
any dimension. Since the Hamiltonian is diagonakispace, k

we refer to this model as the HK model. A similar model was

discussed by Baskarams part of an effort to understand Wherek= k|, k’=|k’|, and¢ is the angle betweekandk’.

high-T, superconductors. The metal-insulator transition ofThe factor 1k comes from the measure in two-dimensional

the HK model which was found in Ref. 2 has been discusse@olar coordinates. The functiog(¢) is periodic g(¢)

from a scaling point of view by Continentino and =g(¢+2m) and satisfiegy($)=g(— ¢), assuming parity

Coutinho-Filho® who also formulated a boson version of the invariance. Throughout this article we will work with the

model. Nogueira and An§aestablished the equivalence of condition thatg(¢) takes themaximumfor ¢=m (k'=

the HK model with infinite range hopping to the Hubbard —k), and monotonically decreases towagd=0. For this

model with infinite range hopping. class of models, we can obtain the exact ground states with
In this paper, we extend the HK model to include cou-high degeneracy. The momentum distribution is shown to be

pling betweerk modes with the same absolute valueskof continuous and does not have a jump in contrast to the Fermi

Namely, an electron with momentukninteracts with many liquids. It will be shown that the Green’s functions generi-

other electrons with the same magnitude of momentum. Fogally have a branch cut instead of a pole.

simplicity, we will work with spinless fermions in two di- Let us obtain the ground state and its momentum distri-
mensions. Generalization to higher dimensions and to inbution. Due to the angular dependence of the interaction
clude spin are straightforward. d(¢) the electrons will bunch up in an arc of anglg. So,

We study the momentum distribution is

0163-1829/98/5()/13404)/$15.00 57 1340 © 1998 The American Physical Society
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FIG. 1. Ground-state momentum distribution fof¢)= (2
—¢?) Y2 andu=1/2.

nk:2¢_7:. (4)

The ground-state energy including a chemical potentia

V ke
<H_MN>G_WJO dkk{(s(k)_ﬂ)(/’k

b ]
+U<k>fO kd¢fo dg'g(6))|, (5

where()¢ is the ground-state expectation value, aif#) is
assumed to be independent #f Since ¢, must minimize
Eqg. (5), we obtain, by taking the derivative ¢H — uN)g
with respect tog, ,

oy
8(k)+U(k)J0 g(p)do=p. (6)

The ground state is specified lay, but it is highly degen-
erate due to the freedom of choice of an arc of anfjleat

eachk. The momentum distributiof¥) is obtained by solv-
ing Eq. (6). Let k; be the largest value df which gives
¢=2m and letk, be the smallest value df which gives
¢«=0. Thenn,=1 for k<k,, 0<n,<1 for k;<k<k,, and

n,=0 for ko<k. Thusn, has cusps ak; andky. We also
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FIG. 2. Ground-state momentum distribution fag(¢)
=sin(¢/2) andU=1/8.
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FIG. 3. Ground-state momentum distribution fay(¢)
= (Uom'?) exd(m—¢)%d?] and U=1/2, o=x/512, w8, =/4,
wl2.

defineky;, by the conditiong{;km: . It is possible to have

n,<1 for all k, i.e., the absence df,, if the interaction is
strong enough.

Suppose thal) (k) is not a singular function ang(¢) is
a function whose singularity is weaker than the integrable
ones. Theng,, the solution of Eq(6), cannot have a dis-
continuity. Namelyn,= ¢,/27 is continuous and we do not
have a Fermi surface associated with discontinuity of mo-
mentum distributions.

Let us observe whether the Mott metal-insulator transition
may occur or not. Note that due to the cutkff there is a
bandwidthW=¢(k;) —e(0). Let usexamine the following
two cases:

(i) If the interaction satisfies the conditiorfig,,~O(1)
for k# —k' andf, _,>VW, the angley, is exactly equal to
7 for anyk at the half filling. A finite amount of energy is
needed to add one particle to this ground state. We should
note that the conditiori, _,>VW, namely thatf has a di-
vergence of ordeV at k=-—k’, means that the function
d(¢) contains as-function-like singularity atp= .

(ii) If the conditionf, _,>VW s not satisfied for somk,
it costs almost no energy to add a particle to the ground state.
Namely, there is no gap between the ground state and the
low-energy states. Thus, the Mott transition will not happen.

To show the smooth falling off of the momentum distri-
bution of the ground state, we will give some examples. For
simplicity, U (k) is taken to be constand.

Alw)

U2 - 1) 0

(O]

Uz - 1)

FIG. 4. Spectral function fog(¢) =sin(¢/2), atk,,.
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1
(|) g(d)):m for 0<¢<’7T, (7)

1
(- (2m— g)H2

for m<¢<2m. (8)

This interaction has an integrable singularity¢at v, caus-
ing the tangent tm to be horizontal ah,=1/2. The deriva-
tive of ny is discontinuous ak; andk,. See Fig. 1.

1 —e(k
l—isin/%() for ky<k<kyp,
ne= 9
1 —&(k
> sinﬁ%() for kqp<k<kg.
¢
(1) g(¢)=sm§. (10

The derivative ofn, is discontinuous ak; andk,. We have
Iimk_,k1+dn/dko< —(k—k;)"*? and Iim<_>kad n/dkec — (kg
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—k) 2, At k=k,,, the second derivative changes sign. See
Fig. 2.

1 —e(k
1——arcco%'u—8()—1> for ky<k<kyp,

T 2U

nk=
1 —e(k
—arcco 1—'u =(k) for kyp<k<kg.
T 2U
(11)
(i g(é)-— (m=¢F (12
= expg — .
9 0_77_1/2 0_2

In this example, we set(k) =k?/2m. As 0—0, the interac-
tion approaches afunction and the Hamiltonian approaches
the original HK model. This can be seen in Fig. 3. For the
smallesto, the momentum distribution appears to have two
pseudo-Fermi surfaces, as in the HK model. Note that,iff
finite, there is no Mott transition at half filling, as mentioned
earlier. We may obtaim, by inverting

for ¢ <,

(13

where erf,y) =27 Y2[Ye dt.

(o,(ﬁk_q-r” for ¢ >,

Suppose that the electrons are on an arc betweamnd ¢

Next, let us study the Green’s function. The ground states" ¢« of a circle with radiusk. Using circular symmetry, the

of our models are highly degenerate. For ekdh the par-
tially occupied zone, we may rotate the electron& ispace

correlation functions are obtained and their Fourier trans-
forms G=(k,w) =7 . dte“'G=(k,t) are

by an arbitrary angle and obtain another ground state. We
will show that after averaging over all such ground states, the

single-particle Green’s function develops a branch cut, a sig-

nature of a non-Fermi-liquid.
The Green'’s function is

G(k,t)=0(1)G™(k,t)— 8(—t)G=(k,1), (14

whereG=(k,t) are the correlation functions

G>(k t): 27Td_¢< |ei(H*,u,N)tC e*i(H*,uN)tCT| >
) 0 277 () k k D),

G<(k t): 27Td_¢< |CTei(H*,u.N)tC e*i(H*/.LN)t| >
) o 277 (P k k (P .

(19

™ (Kow)= —2 | J‘2W¢kd(p 1
(k)= m 0 27 w—e(K)+u—UP(@)+i6’

G=(k )=—2|mj2w de !
'@ 2 2 0~ 8(K) T p—UP(@)+10’

(16)
where

1 (et Pk
Pk(so):if de'g(e’). 17
¢
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The integrands in Eq(16) have a pole atw=e(k)—u  A(k,w)|c=k
+UP,(¢). Thus, after integration oves we have a branch- vz

cut in the Green’s function instead of a pole which corre- \/E
sponds to a quasiparticle. )

The spectral function, relevant to photoemission, is _ 1 if |o|<U(v2-1),

=\ u 1—5(1+|w|/U)2
AK,0)=G"(K,w)+G~(K,w) 0 otherwise.
27Td(P 1 (19)
=-2 'mJ’O 27 o—e(K)+u—UP(@)+id" This is shown in Fig. 4.
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