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We generalize the model of Hatsugai and Kohmoto and find ground states which do not show the properties
of Fermi liquids. We work in two space dimensions, but it is straightforward to generalize to higher dimen-
sions. The ground state is highly degenerate and there is no discontinuity in the momentum distribution; i.e.,
there is no Fermi surface. The Green’s function generically has a branch cut.@S0163-1829~98!11303-6#
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Since the discovery of high-Tc superconductivity,
strongly correlated electron systems have been inten
studied, both experimentally and theoretically. Much att
tion has been given to two-dimensional models, because
high-Tc cuprates have a layered structure. One of the m
studied models is the Hubbard model, but many fundame
questions have not yet been answered. A special versio
the model, in the limit that the space dimensionality goes
infinity, has recently been studied.1 There are attempts to
compare the results with experimental data, in spite of
fact that real materials have at most three dimensions. S
larly, a simple exactly solvable model which describes
metal-insulator transition, and has an altered ground-s
momentum distribution, was proposed.2 Like the
Sherrington-Kirkpatrick model of a spin glass,3 the interpar-
ticle interaction is independent of distance. The Hamilton
is

H5(
k

Hk ,

Hk5«~k!~nk↑1nk↓!1Unk↑nk↓ , ~1!

wherenks5cks
† cks . This gives non-Fermi-liquid behavior in

any dimension. Since the Hamiltonian is diagonal ink space,
we refer to this model as the HK model. A similar model w
discussed by Baskaran4 as part of an effort to understan
high-Tc superconductors. The metal-insulator transition
the HK model which was found in Ref. 2 has been discus
from a scaling point of view by Continentino an
Coutinho-Filho,5 who also formulated a boson version of th
model. Nogueira and Anda6 established the equivalence
the HK model with infinite range hopping to the Hubba
model with infinite range hopping.

In this paper, we extend the HK model to include co
pling betweenk modes with the same absolute values ofk.
Namely, an electron with momentumk interacts with many
other electrons with the same magnitude of momentum.
simplicity, we will work with spinless fermions in two di
mensions. Generalization to higher dimensions and to
clude spin are straightforward.

We study
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H5(
k

«~k!nk1
1

2V(
k,k8

f k,k8nknk8, ~2!

whereV is the volume of the system. The summations a
taken over 0,uku,kc , wherekc represents the short-rang
cutoff. It is interesting to note that ifnk is replaced by the
difference between the interacting and the noninteracting
tributions, the interaction energy of Eq.~2! has a resem-
blance to that in the Fermi-liquid theory. In fact, Khodel a
Shaginyan,7 starting from the Fermi-liquid equation, pro
posed the existence of ‘‘fermion condensation’’ which giv
large degeneracy at the Fermi surface. Within the Hartr
Fock treatment, Nozieres8 criticized such phenomenon.~See
also Ref. 9.! The highly degenerate ground state of o
model looks similar to the ‘‘fermion condensation.’’ How
ever, in our case there is no definite Fermi surface and
model is exactly solvable, so Nozieres’ critique does not
ply.

In the thermodynamic limitV→`, the interaction term in
Eq. ~2! can be written

f ~k,k8!5~2p!2U~k!d~k2k8!
g~f!

k
, ~3!

wherek5uku, k85uk8u, andf is the angle betweenk andk8.
The factor 1/k comes from the measure in two-dimension
polar coordinates. The functiong(f) is periodic g(f)
5g(f12p) and satisfiesg(f)5g(2f), assuming parity
invariance. Throughout this article we will work with th
condition thatg(f) takes themaximumfor f5p (k85
2k), and monotonically decreases towardf50. For this
class of models, we can obtain the exact ground states
high degeneracy. The momentum distribution is shown to
continuous and does not have a jump in contrast to the Fe
liquids. It will be shown that the Green’s functions gene
cally have a branch cut instead of a pole.

Let us obtain the ground state and its momentum dis
bution. Due to the angular dependence of the interac
g(f) the electrons will bunch up in an arc of anglefk . So,
the momentum distribution is
1340 © 1998 The American Physical Society
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nk5
fk

2p
. ~4!

The ground-state energy including a chemical potentialm is

^H2mN&G5
V

~2p!2E0

kc
dkkF „«~k!2m…fk

1U~k!E
0

fk
dfE

0

f

df8g~f8!G , ~5!

where^&G is the ground-state expectation value, and«(k) is
assumed to be independent off. Sincefk must minimize
Eq. ~5!, we obtain, by taking the derivative of^H2mN&G
with respect tofk ,

«~k!1U~k!E
0

fk
g~f!df5m. ~6!

The ground state is specified byfk , but it is highly degen-
erate due to the freedom of choice of an arc of anglefk at
eachk. The momentum distribution~4! is obtained by solv-
ing Eq. ~6!. Let k1 be the largest value ofk which gives
fk52p and letk0 be the smallest value ofk which gives
fk50. Thennk51 for k,k1, 0,nk,1 for k1,k,k0, and
nk50 for k0,k. Thusnk has cusps atk1 and k0. We also

FIG. 1. Ground-state momentum distribution forg(f)5(p2

2f2)21/2 andU51/2.

FIG. 2. Ground-state momentum distribution forg(f)
5sin(f/2) andU51/8.
definek1/2 by the conditionfk1/2
5p. It is possible to have

nk,1 for all k, i.e., the absence ofk1, if the interaction is
strong enough.

Suppose thatU(k) is not a singular function andg(f) is
a function whose singularity is weaker than the integra
ones. Thenfk , the solution of Eq.~6!, cannot have a dis-
continuity. Namely,nk5fk/2p is continuous and we do no
have a Fermi surface associated with discontinuity of m
mentum distributions.

Let us observe whether the Mott metal-insulator transit
may occur or not. Note that due to the cutoffkc, there is a
bandwidthW5«(kc)2«(0). Let usexamine the following
two cases:

~i! If the interaction satisfies the conditionsf k,k8;O(1)
for kÞ2k8 and f k,2k.VW, the anglefk is exactly equal to
p for any k at the half filling. A finite amount of energy is
needed to add one particle to this ground state. We sho
note that the conditionf k,2k.VW, namely thatf has a di-
vergence of orderV at k52k8, means that the function
g(f) contains ad-function-like singularity atf5p.

~ii ! If the conditionf k,2k.VW is not satisfied for somek,
it costs almost no energy to add a particle to the ground st
Namely, there is no gap between the ground state and
low-energy states. Thus, the Mott transition will not happe

To show the smooth falling off of the momentum distr
bution of the ground state, we will give some examples. F
simplicity, U(k) is taken to be constantU.

FIG. 3. Ground-state momentum distribution forg(f)
5 (1/sp1/2) exp@(p2f)2/s2# and U51/2, s5p/512, p/8, p/4,
p/2.

FIG. 4. Spectral function forg(f)5sin(f/2), atk1/2.
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~ I! g~f!5
1

~p22f2!1/2
for 0,f,p, ~7!

5
1

„p22~2p2f!2
…

1/2

for p,f,2p. ~8!

This interaction has an integrable singularity atf5p, caus-
ing the tangent tonk to be horizontal atnk51/2. The deriva-
tive of nk is discontinuous atk1 andk0. See Fig. 1.

nk5H 12
1

2
sin

m2«~k!

U
for k1,k,k1/2,

1

2
sin

m2«~k!

U
for k1/2,k,k0 .

~9!

~ II ! g~f!5sin
f

2
. ~10!

The derivative ofnk is discontinuous atk1 andk0. We have
limk→k1dn/dk}2(k2k1)21/2 and limk→k2dn/dk}2(k0
1 0

te

W
th
si
2k)21/2. At k5k1/2 the second derivative changes sign. S
Fig. 2.

nk5H 12
1

p
arccosS m2«~k!

2U
21D for k1,k,k1/2,

1

p
arccosS 12

m2«~k!

2U D for k1/2,k,k0 .

~11!

~ III ! g~f!5
1

sp1/2
expF2

~p2f!2

s2 G . ~12!

In this example, we set«(k)5k2/2m. As s→0, the interac-
tion approaches ad function and the Hamiltonian approache
the original HK model. This can be seen in Fig. 3. For t
smallests, the momentum distribution appears to have tw
pseudo-Fermi surfaces, as in the HK model. Note that, ifs is
finite, there is no Mott transition at half filling, as mentione
earlier. We may obtainfk by inverting
k55A2mFm2
U

2
erfS p2fk

s
,
p

s D G for fk,p,

A2mFm2
U

2
erfS 0,

p

s D2
U

2
erfS 0,

fk2p

s D G for fk.p,

~13!
ns-
where erf(x,y)52p21/2*x
ye2t2dt.

Next, let us study the Green’s function. The ground sta
of our models are highly degenerate. For eachk in the par-
tially occupied zone, we may rotate the electrons ink space
by an arbitrary angle and obtain another ground state.
will show that after averaging over all such ground states,
single-particle Green’s function develops a branch cut, a
nature of a non-Fermi-liquid.

The Green’s function is

G~k,t !5u~ t !G.~k,t !2u~2t !G,~k,t !, ~14!

whereG:(k,t) are the correlation functions

G.~k,t !5E
0

2pdw

2p
^wuei ~H2mN!tcke

2 i ~H2mN!tck
†uw&,

G,~k,t !5E
0

2pdw

2p
^wuck

†ei ~H2mN!tcke
2 i ~H2mN!tuw&.

~15!
s

e
e

g-

Suppose that the electrons are on an arc betweenw and w
1fk of a circle with radiusk. Using circular symmetry, the
correlation functions are obtained and their Fourier tra
forms G:(k,v)5*2`

` dteivtG:(k,t) are

G.~k,v!522 ImE
0

2p2fkdw

2p

1

v2«~k!1m2UPk~w!1 id
,

G,~k,v!522 ImE
2p2fk

2p dw

2p

1

v2«~k!1m2UPk~w!1 id
,

~16!

where

Pk~w!5
1

2Ew

w1fk
dw8g~w8!. ~17!
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The integrands in Eq.~16! have a pole atv5«(k)2m
1UPk(w). Thus, after integration overw we have a branch
cut in the Green’s function instead of a pole which cor
sponds to a quasiparticle.

The spectral function, relevant to photoemission, is

A~k,v!5G.~k,v!1G,~k,v!

522 ImE
0

2pdw

2p

1

v2«~k!1m2UPk~w!1 id
.

~18!

For example, if one takes the interactiong(u)5sin(u/2),
M

-

A~k,v!uk5k1/2

55
A2

UA12
1

2
~11uvu/U !2

if uvu,U~A221!,

0 otherwise.

~19!

This is shown in Fig. 4.

This work was supported by a Grant-in-Aid from th
Ministry of Education, Science and Culture of Japan. D.
was supported by the Japan Society for the Promotion
Science.
ere
y.

-

B

1For a review see, e.g., A. Georges, G. Kotliar, W. Krauth, and
Rozenberg, Rev. Mod. Phys.68, 13 ~1996!.

2Y. Hatsugai and M. Kohmoto, J. Phys. Soc. Jpn.61, 2056~1992!.
3D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett.35, 1792

~1975!.
4G. Baskaran, Mod. Phys. Lett. B5, 643 ~1991!; V. N. Muthuku-

mar and G. Baskaran, Mod. Phys. Lett. B8, 699~1994!. Baska-
ran’s Hamiltonian,

H5(
k

„«~k!2m…cks
† cks1JS (

k
SkD 2

2J(
k

Sk
2

Sk[cka
† sabckb ,
. would be the same as the model of Hatsugai and Kohmoto w
it not for the second term which partially lifts the degenerac

5M. A. Continentino and M. D. Coutinho-Filho, Solid State Com
mun.90, 619 ~1994!.

6F. S. Nogueira and E. V. Anda, Int. J. Mod. Phys. B10, 3705
~1996!.

7V. A. Khodel and V. R. Shaginyan, JETP Lett.51, 553
~1990!.

8P. Nozieres, J. Phys.~Paris!, Colloq. 2, 443 ~1992!.
9D. V. Khveshchenko, R. Hlubina, and T. M. Rice, Phys. Rev.

48, 10 766~1993!.


